Coronary Microvascular Dysfunction: Bridging the Diagnosis–Treatment Divide in Women with INOCA—A Review
Abstract
1. Introduction
- The presence of symptoms suggestive of myocardial ischemia.
- The objective documentation of myocardial ischemia as assessed by currently available techniques.
- The absence of CAD (<50% coronary diameter reduction and/or fractional flow reserve (FFR) > 0.80).
- Confirmation of a reduced coronary blood flow reserve and/or inducible microvascular spasm (Figure 1).
2. Diagnostic Assessment of CMD
2.1. Non-Invasive Assessment of CMD
2.2. Invasive Assessment of CMD
- Index of Microvascular Resistance (IMR): A quantitative measure of minimal achievable microvascular resistance calculated using a pressure or temperature sensor-tipped guidewire. It calculates distal coronary pressure and the mean transit time of a saline bolus during maximal hyperemia [26]. An IMR equal to or greater than 25 suggests abnormal microvascular function [25].
- Hyperemic Microvascular Resistance (HMR): Measured with the help of a Doppler flow wire to calculate the ratio of mean distal coronary pressure to mean hyperemic flow velocity [26]. HMR greater than or equal to 1.9–2.0 mmHgcm−1 is above the normal threshold.
- Intracoronary Provocation Testing: Assesses microvascular spasm or hypercontractility with the help of provocative agents such as acetylcholine, ergonovine during angiography to detect microvascular or epicardial spasm [25].
3. Clinical Algorithm for CMD Diagnosis and Management in Women
4. CMD Endotypes and Phenotypes
4.1. Structural CMD Endotype
4.2. Functional CMD Endotype
4.3. Mixed CMD Endotype
5. Comorbidity Interactions
6. Prevalence of CMD
7. Outcomes of CMD
8. Diagnostic and Prognostic Indicators
9. The CorCTA Trial
10. Disconnect Between Diagnosis and Outcomes
11. Therapeutic Approaches
12. Emerging Therapies and Future Directions
13. Critical Analysis of Current Evidence
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
CMD | Coronary Microvascular Dysfunction |
CAD | Coronary Artery Disease |
MACE | Major Adverse Cardiac Events |
OR | Odds Ratio |
PET | Positron Emission Tomography |
TTE | Transthoracic Echocardiography |
HR | Hazard Ratio |
NOCAD | Non-Obstructive Coronary Artery Disease |
INOCA | Ischemia with Non-Obstructive Coronary Arteries |
MINOCA | Myocardial Infarction with Non-Obstructive Coronary Arteries |
CFR | Coronary Flow Reserve |
CMR | Cardiac Magnetic Resonance |
References
- Rocco, E.; Grimaldi, M.C.; Maino, A.; Cappannoli, L.; Pedicino, D.; Liuzzo, G.; Biasucci, L.M. Advances and Challenges in Biomarkers Use for Coronary Microvascular Dysfunction: From Bench to Clinical Practice. J. Clin. Med. 2022, 11, 2055. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vancheri, F.; Longo, G.; Vancheri, S.; Henein, M. Coronary Microvascular Dysfunction. J. Clin. Med. 2020, 9, 2880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dikalov, S.; Itani, H.; Richmond, B.; Vergeade, A.; Rahman, S.M.J.; Boutaud, O.; Blackwell, T.; Massion, P.P.; Harrison, D.G.; Dikalova, A. Tobacco smoking induces cardiovascular mitochondrial oxidative stress, promotes endothelial dysfunction, and enhances hypertension. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H639–H646, Erratum in: Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H939. https://doi.org/10.1152/ajpheart.zh4-2748-corr.2019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T.J.; Ridger, V.; Roddie, H.; Evans, P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Thoumine, O.; Nerem, R.M.; Girard, P.R. Oscillatory shear stress and hydrostatic pressure modulate cell-matrix attachment proteins in cultured endothelial cells. In Vitro Cell Dev. Biol. Anim. 1995, 31, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Rahman, H.; Perera, D. Coronary microvascular disease: Current concepts of pathophysiology, diagnosis and management. Cardiovasc. Endocrinol. Metab. 2020, 10, 22–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parlati, A.L.M.; Nardi, E.; Sucato, V.; Madaudo, C.; Leo, G.; Rajah, T.; Marzano, F.; Prastaro, M.; Gargiulo, P.; Paolillo, S.; et al. ANOCA, INOCA, MINOCA: The New Frontier of Coronary Syndromes. J. Cardiovasc. Dev. Dis. 2025, 12, 64. [Google Scholar] [CrossRef]
- Pepine, C.J. ANOCA/INOCA/MINOCA: Open artery ischemia. Am. Heart J. Plus 2023, 26, 100260. [Google Scholar] [CrossRef]
- Ong, P.; Camici, P.G.; Beltrame, J.F.; Crea, F.; Shimokawa, H.; Sechtem, U.; Kaski, J.C.; Bairey Merz, C.N. Coronary Vasomotion Disorders International Study Group (COVADIS). International standardization of diagnostic criteria for microvascular angina. Int. J. Cardiol. 2018, 250, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Aggarwal, N.T.; Rao, A.; Bryant, E.; Sanghani, R.M.; Byrnes, M.; Kalra, D.; Dairaghi, L.; Braun, L.; Gabriel, S.; et al. Microvascular Disease and Small-Vessel Disease: The Nexus of Multiple Diseases of Women. J. Women’s Health 2020, 29, 770–779. [Google Scholar] [CrossRef]
- Bland, A.; Chuah, E.; Meere, W.; Ford, T.J. Targeted Therapies for Microvascular Disease. Cardiol. Clin. 2024, 42, 137–145. [Google Scholar] [CrossRef]
- Ford, T.J.; Stanley, B.; Good, R.; Rocchiccioli, P.; McEntegart, M.; Watkins, S.; Eteiba, H.; Shaukat, A.; Lindsay, M.; Robertson, K.; et al. Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina. J. Am. Coll. Cardiol. 2018, 72, 2841–2855. [Google Scholar] [CrossRef]
- Tonet, E.; Pompei, G.; Faragasso, E.; Cossu, A.; Pavasini, R.; Passarini, G.; Tebaldi, M.; Campo, G. Coronary Microvascular Dysfunction: PET, CMR and CT Assessment. J. Clin. Med. 2021, 10, 1848. [Google Scholar] [CrossRef] [PubMed]
- Schindler, T.H.; Fearon, W.F.; Pelletier-Galarneau, M.; Ambrosio, G.; Sechtem, U.; Ruddy, T.D.; Patel, K.K.; Bhatt, D.L.; Bateman, T.M.; Gewirtz, H.; et al. Myocardial Perfusion PET for the Detection and Reporting of Coronary Microvascular Dysfunction: A JACC: Cardiovascular Imaging Expert Panel Statement. JACC Cardiovasc. Imaging 2023, 16, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Thomson, L.E.; Wei, J.; Agarwal, M.; Haft-Baradaran, A.; Shufelt, C.; Mehta, P.K.; Gill, E.B.; Johnson, B.D.; Kenkre, T.; Handberg, E.M.; et al. Cardiac Magnetic Resonance Myocardial Perfusion Reserve Index Is Reduced in Women with Coronary Microvascular Dysfunction. Circ. Cardiovasc. Imaging 2015, 8, e002481. [Google Scholar] [CrossRef]
- Martins, A.M.; Nobre Menezes, M.; Alves da Silva, P.; Almeida, A.G. Multimodality Imaging in the Diagnosis of Coronary Microvascular Disease: An Update. J. Pers. Med. 2025, 15, 75. [Google Scholar] [CrossRef]
- Schroder, J.; Prescott, E. Doppler Echocardiography Assessment of Coronary Microvascular Function in Patients with Angina and No Obstructive Coronary Artery Disease. Front. Cardiovasc. Med. 2021, 8, 723542. [Google Scholar] [CrossRef]
- Feher, A.; Sinusas, A.J. Quantitative Assessment of Coronary Microvascular Function. Circ. Cardiovasc. Imaging 2017, 10, e006427. [Google Scholar] [CrossRef]
- Djaïleb, L.; Riou, L.; Piliero, N.; Carabelli, A.; Vautrin, E.; Broisat, A.; Leenhardt, J.; Machecourt, J.; Fagret, D.; Vanzetto, G.; et al. SPECT myocardial ischemia in the absence of obstructive CAD: Contribution of the invasive assessment of microvascular dysfunction. J. Nucl. Cardiol. 2018, 25, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.C.; Tsao, C.H.; Wu, Y.W.; Tsai, C.T.; Hung, C.L. Coronary microvascular dysfunction, cardiac maladaptation and poor clinical outcomes in non-ischemic heart failure with preserved ejection fraction: A prospective dynamic SPECT study. J. Nucl. Med. 2023, 64 (Suppl. 1), 336. [Google Scholar]
- Hillier, E.; Covone, J.; Friedrich, M.G. Oxygenation-sensitive Cardiac MRI with Vasoactive Breathing Maneuvers for the Non-invasive Assessment of Coronary Microvascular Dysfunction. J. Vis. Exp. 2022, 186, e64149. [Google Scholar] [CrossRef] [PubMed]
- Weberling, L.D.; Hillier, E.; Friedrich, M.G.; Zahlten, M.; Frey, N.; André, F.; Steen, H. Abnormal coronary vascular response in patients with long COVID syndrome—A case-control study using oxygenation-sensitive cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2025, 27, 101890. [Google Scholar] [CrossRef] [PubMed]
- Mangiacapra, F.; Viscusi, M.M.; Verolino, G.; Paolucci, L.; Nusca, A.; Melfi, R.; Ussia, G.P.; Grigioni, F. Invasive Assessment of Coronary Microvascular Function. J. Clin. Med. 2021, 11, 228. [Google Scholar] [CrossRef] [PubMed]
- Fearon, W.F.; Kobayashi, Y. Invasive Assessment of the Coronary Microvasculature. Circ. Cardiovasc. Interv. 2017, 10, e005361. [Google Scholar] [CrossRef]
- Fawaz, S.; Khan, S.; Simpson, R.; Clesham, G.; Cook, C.M.; Davies, J.R.; Karamasis, G.V.; Keeble, T.R. Invasive Detection of Coronary Microvascular Dysfunction: How It Began, and Where We Are Now. Interv. Cardiol. Rev. 2023, 18, e04. [Google Scholar] [CrossRef]
- Rehan, R.; Yong, A.; Ng, M.; Weaver, J.; Puranik, R. Coronary microvascular dysfunction: A review of recent progress and clinical implications. Front. Cardiovasc. Med. 2023, 10, 1111721. [Google Scholar] [CrossRef] [PubMed]
- Verma, B.R.; Galo, J.; Chitturi, K.R.; Chaturvedi, A.; Hashim, H.D.; Case, B.C. Coronary microvascular dysfunction endotypes: IMR tips and tricks. Cardiovasc. Revasc. Med. 2025, 71, 11–15. [Google Scholar] [CrossRef]
- Ang, D.T.Y.; Berry, C.; Kaski, J.C. Phenotype-based management of coronary microvascular dysfunction. J. Nucl. Cardiol. 2022, 29, 3332–3340. [Google Scholar] [CrossRef]
- Maas, A.M.; Damman, P. Some endotypes of microvascular dysfunction may be more worrisome than others. EuroIntervention 2022, 18, 703–704. [Google Scholar] [CrossRef]
- Rahman, H.; Ryan, M.; Lumley, M.; Modi, B.; McConkey, H.; Ellis, H.; Scannell, C.; Clapp, B.; Marber, M.; Webb, A.; et al. Coronary Microvascular Dysfunction Is Associated With Myocardial Ischemia and Abnormal Coronary Perfusion During Exercise. Circulation 2019, 140, 1805–1816. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, S.; Kramer, C.M. Coronary microvascular dysfunction in women: An overview of diagnostic strategies. Expert. Rev. Cardiovasc. Ther. 2013, 11, 1515–1525. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia, M.; Mulvagh, S.L.; Bairey Merz, C.N.; Buring, J.E.; Manson, J.E. Cardiovascular Disease in Women. Circ. Res. 2016, 118, 1273–1293. [Google Scholar] [CrossRef]
- Rahman, H.; Corcoran, D.; Aetesam-ur-Rahman, M.; Hoole, S.P.; Berry, C.; Perera, D. Diagnosis of patients with angina and non-obstructive coronary disease in the catheter laboratory. Heart 2019, 105, 1536–1542. [Google Scholar] [CrossRef]
- Mygind, N.D.; Michelsen, M.M.; Pena, A.; Frestad, D.; Dose, N.; Aziz, A.; Faber, R.; Høst, N.; Gustafsson, I.; Hansen, P.R.; et al. Coronary Microvascular Function and Cardiovascular Risk Factors in Women With Angina Pectoris and No Obstructive Coronary Artery Disease: The iPOWER Study. J. Am. Heart Assoc. 2016, 5, e003064. [Google Scholar] [CrossRef]
- Tunc, E.; Eve, A.A.; Madak-Erdogan, Z. Coronary Microvascular Dysfunction and Estrogen Receptor Signaling. Trends Endocrinol. Metab. 2019, 31, 228–238. [Google Scholar] [CrossRef]
- Steinberg, R.S.; Dragan, A.; Mehta, P.K.; Toleva, O. Coronary microvascular disease in women: Epidemiology, mechanisms, evaluation, and treatment. Can. J. Physiol. Pharmacol. 2024, 102, 594–606. [Google Scholar] [CrossRef]
- Mittal, S.R. Diagnosis of coronary microvascular dysfunction-Present status. Indian. Heart J. 2015, 67, 552–560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Welch, I.; Case, B. Treatment options for patients with coronary microvascular dysfunction. Future Cardiol. 2025, 21, 735–738. [Google Scholar] [CrossRef] [PubMed]
- Khandkar, C.; Rehan, R.; Ravindran, J.; Yong, A. An updated review on therapeutic strategies in coronary microvascular dysfunction. Int. J. Cardiol. 2025, 428, 133128. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, A.; Salihu, A.; Antiochos, P.; Lu, H.; Gros, B.P.; Berger, A.; Muller, O.; Meier, D.; Fournier, S. Evolution of Coronary Microvascular Dysfunction Prevalence over Time and Across Diagnostic Modalities in Patients with ANOCA: A Systematic Review. J. Clin. Med. 2025, 14, 829. [Google Scholar] [CrossRef] [PubMed]
- Szolc, P.; Guzik, B.; Niewiara, Ł.; Kleczyński, P.; Bernacik, A.; Diachyshyn, M.; Stąpór, M.; Żmudka, K.; Legutko, J. Tailored treatment of specific diagnosis improves symptoms and quality of life in patients with myocardial Ischemia and Non-obstructive Coronary Arteries. Sci. Rep. 2025, 15, 18968. [Google Scholar] [CrossRef] [PubMed]
- Morrow, A.; Young, R.; Abraham, G.R.; Hoole, S.; Greenwood, J.P.; Arnold, J.R.; El Shibly, M.; Shanmuganathan, M.; Ferreira, V.; Rakhit, R.; et al. Zibotentan in Microvascular Angina: A Randomized, Placebo-Controlled, Crossover Trial. Circulation 2024, 150, 1671–1683. [Google Scholar] [CrossRef]
- Rush, C.J.; Berry, C.; Oldroyd, K.G.; Rocchiccioli, J.P.; Lindsay, M.M.; Touyz, R.M.; Murphy, C.L.; Ford, T.J.; Sidik, N.; McEntegart, M.B.; et al. Prevalence of Coronary Artery Disease and Coronary Microvascular Dysfunction in Patients With Heart Failure With Preserved Ejection Fraction. JAMA Cardiol. 2021, 6, 1130–1143. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Pyrpyris, N.; Sakalidis, A.; Dri, E.; Iliakis, P.; Tsioufis, P.; Tatakis, F.; Beneki, E.; Fragkoulis, C.; Aznaouridis, K.; et al. ANOCA updated: From pathophysiology to modern clinical practice. Cardiovasc. Revasc. Med. 2024, 71, 1–10. [Google Scholar] [CrossRef]
- Kibel, A.; Selthofer-Relatic, K.; Drenjancevic, I.; Bacun, T.; Bosnjak, I.; Kibel, D.; Gros, M. Coronary microvascular dysfunction in diabetes mellitus. J. Int. Med. Res. 2017, 45, 1901–1929. [Google Scholar] [CrossRef]
- Gallinoro, E.; Paolisso, P.; Bertolone, D.T.; Belmonte, M.; Esposito, G.; Munhoz, D.; Sakai, K.; Bermpeis, K.; Ohashi, H.; Storozhenko, T.; et al. Endotypes of coronary microvascular dysfunction in patients with and without Diabetes Mellitus. Eur. Heart J. 2023, 44 (Suppl. 2), ehad655.1192. [Google Scholar] [CrossRef]
- Salvatore, T.; Galiero, R.; Caturano, A.; Vetrano, E.; Loffredo, G.; Rinaldi, L.; Catalini, C.; Gjeloshi, K.; Albanese, G.; Di Martino, A.; et al. Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022, 10, 2274. [Google Scholar] [CrossRef]
- Zdravkovic, M.; Popadic, V.; Klasnja, S.; Klasnja, A.; Ivankovic, T.; Lasica, R.; Lovic, D.; Gostiljac, D.; Vasiljevic, Z. Coronary Microvascular Dysfunction and Hypertension: A Bond More Important than We Think. Medicina 2023, 59, 2149. [Google Scholar] [CrossRef]
- Vitale, C. Microvascular angina and systemic hypertension. Escardioorg 2016, 14. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-14/microvascular-angina-and-systemic-hypertension# (accessed on 15 June 2025).
- Reynolds, H.R.; Bairey Merz, C.N.; Berry, C.; Samuel, R.; Saw, J.; Smilowitz, N.R.; de Souza, A.C.; Sykes, R.; Taqueti, V.R.; Wei, J. Coronary Arterial Function and Disease in Women With No Obstructive Coronary Arteries. Circ. Res. 2022, 130, 529–551. [Google Scholar] [CrossRef] [PubMed]
- Mileva, N.; Nagumo, S.; Mizukami, T.; Sonck, J.; Berry, C.; Gallinoro, E.; Monizzi, G.; Candreva, A.; Munhoz, D.; Vassilev, D.; et al. Prevalence of coronary microvascular disease and coronary vasospasm in patients with nonobstructive coronary artery disease: Systematic review and meta-analysis. J. Am. Heart Assoc. 2022, 11, e023207. [Google Scholar] [CrossRef]
- Sidik, N.P.; Stanley, B.; Sykes, R.; Morrow, A.J.; Bradley, C.P.; McDermott, M.; Ford, T.J.; Roditi, G.; Hargreaves, A.; Stobo, D.; et al. Invasive endotyping in patients with angina and no obstructive coronary artery disease: A randomized controlled trial. Circulation 2024, 149, 7–23. [Google Scholar] [CrossRef]
- Jensen, S.M.; Prescott, E.I.B.; Abdulla, J. The prognostic value of coronary flow reserve in patients with non-obstructive coronary artery disease and microvascular dysfunction: A systematic review and meta-analysis with focus on imaging modality and sex difference. Int. J. Cardiovasc. Imaging 2023, 39, 2545–2556. [Google Scholar] [CrossRef] [PubMed]
- Ruddy, T.D.; Tavoosi, A.; Taqueti, V.R. Role of nuclear cardiology in diagnosis and risk stratification of coronary microvascular disease. J. Nucl. Cardiol. 2023, 30, 1327–1340. [Google Scholar] [CrossRef] [PubMed]
- Bullock-Palmer, R.P.; Michos, E.D.; Gaballa, D.; Blankstein, R. The role of imaging in preventive cardiology in women. Curr. Cardiol. Rep. 2023, 25, 29–40. [Google Scholar] [CrossRef]
- Di Carli, M.F. Clinical Value of Positron Emission Tomography Myocardial Perfusion Imaging and Blood Flow Quantification. Cardiol. Clin. 2023, 41, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Godo, S.; Suda, A.; Takahashi, J.; Yasuda, S.; Shimokawa, H. Coronary Microvascular Dysfunction. Arter. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 1625–1637. [Google Scholar] [CrossRef]
- Tudurachi, A.; Anghel, L.; Tudurachi, B.S.; Zăvoi, A.; Ceasovschih, A.; Sascău, R.A.; Stătescu, C. Beyond the Obstructive Paradigm: Unveiling the Complex Landscape of Nonobstructive Coronary Artery Disease. J. Clin. Med. 2024, 13, 4613. [Google Scholar] [CrossRef] [PubMed]
- Kothawade, K.; Bairey Merz, C.N. Microvascular coronary dysfunction in women: Pathophysiology, diagnosis, and management. Curr. Probl. Cardiol. 2011, 36, 291–318. [Google Scholar] [CrossRef]
- Prescott, E.; Bove, K.B.; Bechsgaard, D.F.; Shafi, B.H.; Lange, T.; Schroder, J.; Suhrs, H.E.; Nielsen, R.L. Biomarkers and Coronary Microvascular Dysfunction in Women With Angina and No Obstructive Coronary Artery Disease. JACC Adv. 2023, 2, 100264. [Google Scholar] [CrossRef]
- Reis, S.E.; Holubkov, R.; Smith, A.; Kelsey, S.F.; Sharaf, B.L.; Reichek, N.; Rogers, W.J.; Merz, C.B.; Sopko, G.; Pepine, C.J. WISE Investigators. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: Results from the NHLBI WISE study. Am. Heart J. 2001, 141, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Bradley, C.; Berry, C. Definition and epidemiology of coronary microvascular disease. J. Nucl. Cardiol. 2022, 29, 1763–1775. [Google Scholar] [CrossRef]
- Ong, P.; Athanasiadis, A.; Sechtem, U. Pharmacotherapy for coronary microvascular dysfunction. Eur. Heart J. Cardiovasc. Pharmacother. 2015, 1, 65–71. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Prasad, M.; Widmer, R.J.; Toleva, O.; Quesada, O.; Sutton, N.R.; Lerman, A.; Reynolds, H.R.; Kesarwani, M.; Savage, M.P.; et al. Comprehensive Management of ANOCA, Part 2—Program Development, Treatment, and Research Initiatives: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 82, 1264–1279. [Google Scholar] [CrossRef]
- Toleva, O.; Smilowitz, N.R.; Quesada, O.; Kesarwani, M.; Savage, M.P.; Prasad, M.; El-Farra, A.B.; Holoshitz, N.; Moses, J.W.; Fearon, W.F.; et al. Current Evidence-Based Treatment of Angina With Nonobstructive Coronary Arteries (ANOCA). J. Soc. Cardiovasc. Angiogr. Interv. 2025, 4, 102633. [Google Scholar] [CrossRef]
- Houghton, J.L.; Pearson, T.A.; Reed, R.G.; Torosoff, M.T.; Henches, N.L.; Kuhner, P.A.; Philbin, E.F. Cholesterol Lowering With Pravastatin Improves Resistance Artery Endothelial Function. Chest 2000, 118, 756–760. [Google Scholar] [CrossRef]
- Solberg, O.G.; Stavem, K.; Ragnarsson, A.; Beitnes, J.O.; Skårdal, R.; Seljeflot, I.; Ueland, T.; Aukrust, P.; Gullestad, L.; Aaberge, L. Index of microvascular resistance to assess the effect of rosuvastatin on microvascular function in women with chest pain and no obstructive coronary artery disease: A double-blind randomized study. Catheter. Cardiovasc. Interv. 2019, 94, 660–668. [Google Scholar] [CrossRef]
- Elgendy, I.Y.; Ya’Qoub, L.; Chen, K.H.; Pepine, C.J. Coronary Microvascular Dysfunction in Patients with Non-Obstructive Coronary Arteries: Current Gaps and Future Directions. Drugs 2022, 82, 241–250. [Google Scholar] [CrossRef]
- Schumann, C.; Bourque, J.M. Coronary microvascular dysfunction: Filling the research gaps with careful patient selection. J. Nucl. Cardiol. 2019, 26, 1853–1856. [Google Scholar] [CrossRef] [PubMed]
- Bairey Merz, C.N.; Pepine, C.J.; Shimokawa, H.; Berry, C. Treatment of coronary microvascular dysfunction. Cardiovasc. Res. 2020, 116, 856–870. [Google Scholar] [CrossRef] [PubMed]
- Henry, T.D.; Merz, C.N.B.; Wei, J.; Corban, M.T.; Quesada, O.; Joung, S.; Kotynski, C.L.; Wang, J.; Lewis, M.; Schumacher, A.M.; et al. Autologous CD34+ Stem Cell Therapy Increases Coronary Flow Reserve and Reduces Angina in Patients With Coronary Microvascular Dysfunction. Circ. Cardiovasc. Interv. 2022, 15, 2. [Google Scholar] [CrossRef]
- Honigberg, M.C.; Economy, K.E.; Pabón, M.A.; Wang, X.; Castro, C.; Brown, J.M.; Divakaran, S.; Weber, B.N.; Barrett, L.; Perillo, A.; et al. Coronary Microvascular Function Following Severe Preeclampsia. Hypertension 2024, 81, 1272–1284. [Google Scholar] [CrossRef] [PubMed]
- Osborne, M.T.; Grewal, S.; Neilan, T.G. Call on the reserve: Coronary vasomotor dysfunction is a potential biomarker of cardiovascular risk in patients with breast cancer. J. Nucl. Cardiol. 2022, 29, 3082–3085. [Google Scholar] [CrossRef]
- Caliskan, M.; Erdogan, D.; Gullu, H.; Topcu, S.; Ciftci, O.; Yildirir, A.; Muderrisoglu, H. Effects of Atorvastatin on Coronary Flow Reserve in Patients with Slow Coronary Flow. Clin. Cardiol. 2007, 30, 475–479. [Google Scholar] [CrossRef]
- Ishida, K.; Geshi, T.; Nakano, A.; Uzui, H.; Mitsuke, Y.; Okazawa, H.; Ueda, T.; Lee, J.-D. Beneficial effects of statin treatment on coronary microvascular dysfunction and left ventricular remodeling in patients with acute myocardial infarction. Int. J. Cardiol. 2011, 155, 442–447. [Google Scholar] [CrossRef]
- Tjoe, B.; Barsky, L.; Wei, J.; Samuels, B.; Azarbal, B.; Merz, C.N.B.; Shufelt, C. Coronary microvascular dysfunction: Considerations for diagnosis and treatment. Clevel. Clin. J. Med. 2021, 88, 561–571. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Li, Z.; Feng, S.; Lin, S.; Ge, Z.; Fan, Y.; Wang, Y.; Wang, X.; Mao, J. Coronary microvascular dysfunction and cardiovascular disease: Pathogenesis, associations and treatment strategies. Biomed. Pharmacother. 2023, 164, 115011. [Google Scholar] [CrossRef] [PubMed]
- Munshi, A.; Desai, S.; Munshi, D. Gender bias in cardiovascular disease prevention, detection, and management, with specific reference to coronary artery disease. J. Mid-Life Health 2021, 12, 8. [Google Scholar] [CrossRef]
Condition | Prevalence (95% CI) | Detection Method |
---|---|---|
Coronary microvascular dysfunction | 41% (36–47%) | Invasive: 43% (33–53%); Non-invasive: 42% (36–49%); p = 0.993 |
Epicardial vasospasm | 40% (34–46%) | Acetylcholine: 49% (38–55%); Ergonovine: 48% (39–57%); p = 0.935 |
Microvascular spasm | 24% (21–28%) | Acetylcholine testing |
Combined CMD and vasospasm | 23% (17–31%) | Comprehensive testing |
Study | Study Type | Population | Sample Size | Key Findings |
---|---|---|---|---|
Mileva et al., (2022) [51] | Systematic Review and Meta Analysis | Patients with NOCAD | 56 studies; 14,427 patients (65% women) | • CMD prevalence: 0.41 (95% CI: 0.36–0.47) • Epicardial vasospasm: 0.40 (95% CI: 0.34–0.46) • Microvascular spasm: 0.24 (95% CI: 0.21–0.28) • Women at higher risk: RR 1.45 (95% CI: 1.11–1.90) |
Jensen et al., (2023) [53] | Systematic Review and Meta Analysis | Patients with NOCAD and CMD | 19 studies; more than 15,000 patients | • Adjusted HR for death: 2.45 (95% CI: 1.37–3.53) p < 0.001 • Adjusted HR for MACE: 2.08 (95% CI: 1.54–2.63) p < 0.001 • Similar prognosis in both sexes |
Ruddy et al., (2023) [54] | Narrative Review | Patients with NOCAD and CMD | Review | • NOCAD prevalence ~50% of angina patients • CFR measurement feasible with PET and SPECT • CFR < 2.0 predicts poor outcomes |
Bullock-Palmer et al., (2023) [55] | Narrative Review | Women with CVD | Review | • Women have greater prevalence of NOCAD and CMD • CAC > 0 confers greater CV mortality risk in women (HR 1.26, 95% CI 1.08–1.48) • INOCA associated with higher MACE |
Sidik et al., (2024) [52] | Randomized Controlled Trial | Outpatients with angina and NOCAD | 250 screened; 231 randomized (64.5% women) | • Microvascular angina: 55.0% • Vasospastic angina: 11.7% • Both: 7.4% • Diagnostic accuracy improved 4-fold (OR 4.05, 95% CI 2.32–7.24, p < 0.001) • No improvement in symptoms (p = 0.36) |
Method | Patients Studied | Death—OR (95% CI) | MACE—OR (95% CI) | CFR Threshold |
---|---|---|---|---|
TTE | 5 studies | 4.25 (2.94–6.15), p < 0.001 | 6.98 (2.56–19.01), p < 0.001 | 2.0–2.25 |
PET | 9 studies | 2.51 (1.40–4.49), p = 0.002 | 2.87 (2.16–3.81), p < 0.001 | 1.5–2.0 |
Invasive | 4 studies | 2.23 (1.15–4.34), p < 0.018 | 4.61 (2.51–8.48), p < 0.001 | 2.0–3.0 |
CMR | 1 study | Not reported | 2.62 (1.24–5.52), p = 0.012 | 1.5 |
Parameter | Women | Men | RR or HR | Source |
---|---|---|---|---|
CMD Prevalence | Higher risk | Reference | RR 1.45 (1.11–1.90) | [51] |
Prognosis with low CFR | Similar | Similar | No significant difference | [53] |
CAC > 0 mortality risk | Higher risk | Reference | HR 1.26 (1.08–1.48) | [55] |
Diagnostic Stage | Intervention Group (n = 115) | Control Group (n = 116) | p-Value |
---|---|---|---|
Pre-randomization | |||
Vasomotor disorder diagnosed | 51 (44.3%) | 55 (47.4%) | 0.891 |
Diagnostic certainty | 18 (15.7%) | 20 (17.2%) | 0.943 |
Post-randomization | |||
Vasomotor disorder diagnosed | 88 (76.5%) | 55 (47.4%) | <0.001 |
Diagnostic certainty | 102 (88.7%) | 20 (17.2%) | <0.001 |
OR for correct diagnosis | 4.05 (95% CI: 2.32–7.24) | <0.001 |
Outcome | Intervention Group | Control Group | p-Value |
---|---|---|---|
Seattle Angina Questionnaire Summary Score (mean ± SD) | |||
Baseline | 55.5 ± 19.9 | 54.1 ± 20.7 | - |
6 months | 59.2 ± 24.2 | 60.4 ± 23.9 | 0.36 |
12 months | 63.7 ± 23.5 | 66.0 ± 19.3 | 0.36 |
Treatment Satisfaction at 12 months | |||
Global satisfaction | 69.9 ± 22.8 | 61.7 ± 26.9 | 0.013 |
Secondary Outcomes | |||
Quality of life (EQ-5D-5L) | No difference | No difference | 0.992 |
Cardiovascular events | 16/115 (13.9%) | 11/116 (9.5%) | 0.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, A.; Patel, R.; Khalique, O.K. Coronary Microvascular Dysfunction: Bridging the Diagnosis–Treatment Divide in Women with INOCA—A Review. J. Clin. Med. 2025, 14, 6054. https://doi.org/10.3390/jcm14176054
Agarwal A, Patel R, Khalique OK. Coronary Microvascular Dysfunction: Bridging the Diagnosis–Treatment Divide in Women with INOCA—A Review. Journal of Clinical Medicine. 2025; 14(17):6054. https://doi.org/10.3390/jcm14176054
Chicago/Turabian StyleAgarwal, Alaukika, Ronak Patel, and Omar K. Khalique. 2025. "Coronary Microvascular Dysfunction: Bridging the Diagnosis–Treatment Divide in Women with INOCA—A Review" Journal of Clinical Medicine 14, no. 17: 6054. https://doi.org/10.3390/jcm14176054
APA StyleAgarwal, A., Patel, R., & Khalique, O. K. (2025). Coronary Microvascular Dysfunction: Bridging the Diagnosis–Treatment Divide in Women with INOCA—A Review. Journal of Clinical Medicine, 14(17), 6054. https://doi.org/10.3390/jcm14176054