Influence of Different Implantoplasty Designs on the Fatigue Resistance of Dental Implants: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Research Question
- Population: Dental implants with peri-implantitis
- Intervention: Implantoplasty
- Comparison: Untreated dental implant
- Outcome: Fracture resistance
2.3. Outcome Measures
2.4. Eligibility Criteria
- Inclusion criteria: In vitro studies involving dental implants subjected to implantoplasty, and studies performing fatigue tests without limitation of diameter and length of dental implants.
- Exclusion criteria: In vivo studies, Randomized clinical trials, in silico studies, orthodontic implants, case reports.
2.5. Information Sources and Search Strategy
2.6. Study Selection
2.7. Data Extraction
2.8. Risk of Bias
3. Results
3.1. Development of the Study Selection
3.2. Quality Assesment
3.3. Study Characteristics
3.4. Fracture Resistance Results
3.5. Cyclic Loading Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Smeets, R.; Henningsen, A.; Jung, O.; Heiland, M.; Hammächer, C.; Stein, J.M. Definition, etiology, prevention and treatment of peri-implantitis—A review. Head Face Med. 2014, 10, 34. [Google Scholar] [CrossRef]
- Berglundh, T.; Jepsen, S.; Stadlinger, B.; Terheyden, H. Peri-implantitis and its prevention. Clin. Oral Implants Res. 2019, 30, 150–155. [Google Scholar] [CrossRef]
- Dreyer, H.; Grischke, J.; Tiede, C.; Eberhard, J.; Schweitzer, A.; Toikkanen, S.E.; Glöckner, S.; Krause, G.; Stiesch, M. Epidemiology and risk factors of peri-implantitis: A systematic review. J. Periodontal Res. 2018, 53, 657–681. [Google Scholar] [CrossRef] [PubMed]
- Diaz, P.; Gonzalo, E.; Gil Villagra, L.J.; Miegimolle, B.; Suarez, M.J. What is the prevalence of peri-implantitis? A systematic review and meta-analysis. BMC Oral Health 2022, 22, 449. [Google Scholar] [CrossRef] [PubMed]
- Khoury, F.; Keeve, P.L.; Ramanauskaite, A.; Schwarz, F.; Koo, K.-T.; Sculean, A.; Romanos, G. Surgical treatment of peri-implantitis—Consensus report of working group 4. Int. Dent. J. 2019, 69, 18–22. [Google Scholar] [CrossRef]
- Stavropoulos, A.; Bertl, K.; Isidor, F.; von Steyern, P.V. Implantoplasty and the risk of fracture of narrow implants with advanced bone loss: A laboratory study. Clin. Oral Implants Res. 2023, 34, 1038–1046. [Google Scholar] [CrossRef]
- Bianchini, M.; Galarraga-Vinueza, M.; Bedoya, K.; Correa, B.; Magini, R.d.S.; Schwarz, F. Implantoplasty Enhancing Peri-implant Bone Stability Over a 3-Year Follow-up: A Case Series. Int. J. Periodontics Restor. Dent. 2020, 40, e1–e8. [Google Scholar] [CrossRef]
- Costa-Berenguer, X.; García-García, M.; Sánchez-Torres, A.; Sanz-Alonso, M.; Figueiredo, R.; Valmaseda-Castellon, E. Effect of implantoplasty on fracture resistance and surface roughness of standard diameter dental implants. Clin. Oral Implants Res. 2018, 29, 46–54. [Google Scholar] [CrossRef]
- Tsampli, A.; Rues, S.; Kappel, H.; Rammelsberg, P.; Kappel, S. In vitro pilot study comparing a novel implantoplasty sonic instrumentation protocol with a conventional protocol using burs. Clin. Oral Implants Res. 2024, 35, 340–349. [Google Scholar] [CrossRef]
- De Souza Júnior, J.M.; De Souza, J.G.O.; Neto, A.L.P.; Iaculli, F.; Piattelli, A.; Bianchini, M.A. Analysis of effectiveness of different rotational instruments in implantoplasty: An in vitro study. Implant Dent. 2016, 25, 341–347. [Google Scholar] [CrossRef]
- Sahrmann, P.; Luso, S.; Mueller, C.; Ender, A.; Attin, T.; Stawarczyk, B.; Schmidlin, P. Titanium Implant Characteristics After Implantoplasty: An In Vitro Study on Two Different Kinds of Instrumentation. Int. J. Oral Maxillofac. Implants 2019, 34, 1299–1305. [Google Scholar] [CrossRef]
- Ramel, C.F.; Lüssi, A.; Özcan, M.; Jung, R.E.; Hämmerle, C.H.F.; Thoma, D.S. Surface roughness of dental implants and treatment time using six different implantoplasty procedures. Clin. Oral Implants Res. 2016, 27, 776–781. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, D.; Banerjee, S.; Parasrampuria, N.; Pal, D. Efficacy of implantoplasty in management of peri-implantitis: A systematic review. J. Indian Prosthodont. Soc. 2023, 23, 210–217. [Google Scholar] [CrossRef]
- Keeve, P.L.; Koo, K.T.; Ramanauskaite, A.; Romanos, G.; Schwarz, F.; Sculean, A.; Khoury, F. Surgical Treatment of Periimplantitis with Non-Augmentative Techniques. Implant Dent. 2019, 28, 177–186. [Google Scholar] [CrossRef]
- Sharon, E.; Shapira, L.; Wilensky, A.; Abu-Hatoum, R.; Smidt, A. Efficiency and Thermal Changes during Implantoplasty in Relation to Bur Type. Clin. Implant Dent. Relat. Res. 2013, 15, 292–296. [Google Scholar] [CrossRef]
- Lozano, P.; Peña, M.; Herrero-Climent, M.; Rios-Santos, J.V.; Rios-Carrasco, B.; Brizuela, A.; Gil, J. Corrosion Behavior of Titanium Dental Implants with Implantoplasty. Materials 2022, 15, 1563. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- UNI EN ISO 14801:2016; Dentistry—Implants—Dynamic Loading Test for Endosseous Dental Implants. Asociación Española de Normalización: Génova, Italy; Madrid, Spain, 2017.
- Bertl, K.; Isidor, F.; von Steyern, P.V.; Stavropoulos, A. Does implantoplasty affect the failure strength of narrow and regular diameter implants? A laboratory study. Clin. Oral Investig. 2021, 25, 2203–2211. [Google Scholar] [CrossRef]
- Chan, H.-L.; Oh, W.-S.; Ong, H.S.; Fu, J.-H.; Steigmann, M.; Sierraalta, M.; Wang, H.-L. Impact of Implantoplasty on Strength of the Implant-Abutment Complex. Int. J. Oral Maxillofac. Implants 2013, 28, 1530–1535. [Google Scholar] [CrossRef]
- Camps-Font, O.; González-Barnadas, A.; Mir-Mari, J.; Figueiredo, R.; Gay-Escoda, C.; Valmaseda-Castellón, E. Fracture resistance after implantoplasty in three implant-abutment connection designs. Med. Oral Patol. Oral Y Cirugia Bucal 2020, 25, E691–E699. [Google Scholar] [CrossRef]
- Leitão-Almeida, B.; Camps-Font, O.; Correia, A.; Mir-Mari, J.; Figueiredo, R.; Valmaseda-Castellón, E. Effect of crown to implant ratio and implantoplasty on the fracture resistance of narrow dental implants with marginal bone loss: An in vitro study. BMC Oral Health 2020, 20, 329. [Google Scholar] [CrossRef]
- Gehrke, S.; Junior, J.; Dedavid, B.; Shibli, J. Analysis of Implant Strength After Implantoplasty in Three Implant-Abutment Connection Designs: An In Vitro Study. Int. J. Oral Maxillofac. Implants 2016, 31, e65–e70. [Google Scholar] [CrossRef] [PubMed]
- Diéguez-Pereira, M.; Chávarri-Prado, D.; Viteri-Agustín, I.; Montalban-Vadillo, O.; Pérez-Pevida, E.; Brizuela-Velasco, A. Effect of implantoplasty on the elastic limit of dental implants of different diameters. Int. J. Implant. Dent. 2021, 7, 88. [Google Scholar] [CrossRef] [PubMed]
- Jorio, I.C.; Stawarczyk, B.; Attin, T.; Schmidlin, P.R.; Sahrmann, P. Reduced fracture load of dental implants after implantoplasty with different instrumentation sequences. An in vitro study. Clin. Oral Implants Res. 2021, 32, 881–892. [Google Scholar] [CrossRef]
- Leitão-Almeida, B.; Camps-Font, O.; Correia, A.; Mir-Mari, J.; Figueiredo, R.; Valmaseda-Castellón, E. Effect of bone loss on the fracture resistance of narrow dental implants after implantoplasty. An in vitro study. Med. Oral Patol. Oral Cir. Bucal 2021, 26, e611–e618. [Google Scholar] [CrossRef]
- Sivolella, S.; Brunello, G.; Michelon, F.; Concheri, G.; Graiff, L.; Meneghello, R. Implantoplasty: Carbide burs vs diamond sonic tips. An in vitro study. Clin. Oral Implants Res. 2021, 32, 324–336. [Google Scholar] [CrossRef]
- Camps-Font, O.; Toledano-Serrabona, J.; Juiz-Camps, A.; Gil, J.; Sánchez-Garcés, M.A.; Figueiredo, R.; Gay-Escoda, C.; Valmaseda-Castellón, E. Effect of Implantoplasty on Roughness, Fatigue and Corrosion Behavior of Narrow Diameter Dental Implants. J. Funct. Biomater. 2023, 14, 61. [Google Scholar] [CrossRef]
- Fonseca, D.; de Tapia, B.; Pons, R.; Aparicio, C.; Guerra, F.; Messias, A.; Gil, J. The Effect of Implantoplasty on the Fatigue Behavior and Corrosion Resistance in Titanium Dental Implants. Materials 2024, 17, 2944. [Google Scholar] [CrossRef]
- Goh, R.; Li, K.C.; Atieh, M.A.; Ma, S.; Oliver, A.; Giraldo, D.; Tawse-Smith, A. The Effect of Implantoplasty on Fracture Resistance and Implant Surface Changes: An In Vitro and Finite Element Analysis Study. Clin. Implant Dent. Relat. Res. 2024, 27, e13409. [Google Scholar] [CrossRef]
- Graf, T.; Güth, J.-F.; Schweiger, J.; Erdelt, K.-J.; Edelhoff, D.; Stimmelmayr, M. Biomechanical behavior of implants with different diameters in relation to simulated bone loss—An in vitro study. Clin. Oral Investig. 2023, 27, 5887–5894. [Google Scholar] [CrossRef]
- Shah, S.D.; Zheng, F.; Seghi, R.R.; Lee, D.J. Strength of titanium-zirconium alloy implants with a conical connection after implantoplasty. J. Prosthet. Dent. 2022, 132, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Toledano-Serrabona, J.; Bosch, B.M.; Díez-Tercero, L.; Gil, F.J.; Camps-Font, O.; Valmaseda-Castellón, E.; Gay-Escoda, C.; Sánchez-Garcés, M.Á. Evaluation of the inflammatory and osteogenic response induced by titanium particles released during implantoplasty of dental implants. Sci. Rep. 2022, 12, 15790. [Google Scholar] [CrossRef] [PubMed]
CRITERIA | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||||
STUDY | Clearly stated aims/objectives | Detailed explanation of sample size calculation | Detailed explanation of sampling technique | Details of comparison group | Detailed explanation of methodology | Operator details | Randomization | Method of measurement of outcome | Outcome assessor details | Blinding | Statistical analysis | Presentation of results | SCORE | % | Risk of BIAS | |
1 | Bertl, 2021 [19] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
2 | Chan, 2013 [20] | 2 | 0 | 2 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 15 | 62.50 | Medium |
3 | Costa-Berenguer, 2018 [8] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
4 | Camps—Font, 2020 [21] | 2 | 0 | 2 | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 0 | 2 | 13 | 54.17 | Medium |
5 | Leitao-Almeida, 2020 [22] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
6 | Gehrke, 2016 [23] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
7 | Dieguez-Pereira, 2021 [24] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
8 | Jorio, 2021 [25] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
9 | Leitao-Almeida, 2021 [26] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
10 | Sivolella, 2021 [27] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
11 | Camps—Font, 2023 [28] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
12 | Fonseca, 2024 [29] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 1 | 15 | 62.50 | Medium |
13 | Goh, 2024 [30] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
14 | Graf, 2023 [31] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
15 | Shah, 2024 [32] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
16 | Stavropoulos, 2023 [6] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
17 | Tsampli, 2024 [9] | 2 | 0 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 16 | 66.67 | Medium |
Author/Year | Sample Size (n) | Implant Brand | Titanium Grade | Implant Dimensions | Connection Type | Prosthetic Hex Diameter |
---|---|---|---|---|---|---|
Chan, 2013 [20] | 32 | TRI-Vent implants (TRI Dental Implants) | Not specified | 3.75 × 10 mm | Internal hexagon | 1.5 mm depth; |
(Narrow); 4.7 × 10 mm (Wide) | 2.5 mm hexagon | |||||
Gehrke, 2016 [23] | 60 | Implacil Bortoli | Not specified | 4 × 11 mm | External hex; | Not specified |
Internal hex; | ||||||
Morse taper | ||||||
Costa-Berenguer, 2018 [8] | 20 | Titamax Smart Cortical, Neodent, Curitiba, Brazil | Grade 4 | 4 × 13 mm | External hex | 4.1 mm platform, 2 mm screw |
Camps-Font, 2020 [21] | 48 | Biomimetic Ocean®, Avinent®, Spain | Grade 5 | 3.5 × 10 mm | External hex; | 3.5 mm |
Internal hex; | ||||||
Conical connection | ||||||
Shah, 2024 [32] | 28 | Roxolid Bone Level Implant (Straumann) | TiZr (85% Ti, 15% Zr) | 4.1 × 10 mm | Not specified | 4.1 mm |
Camps-Font, 2023 [28] | 20 | Biomimetic Ocean®, Avinent®, Spain | Grade 5 | 3.5 × 10 mm | Internal hex | Not specified |
Fonseca, 2024 [29] | 120 | Klockner Implant System, Andorra | Grade 3 | N/A | Not specified | Not specified |
Dieguez-Pereira, 2021 [24] | 315 | Klockner Essential Cone, Andorra | — | 3.5 × 10 mm; | Internal hex | 2.7–3.4 mm |
4 × 10 mm | ||||||
Goh, 2024 [30] | 80 | AstraTech EV, Dentsply Sirona, USA | Grade 4 | 4.2 × 13 mm | Conical connection | Not specified |
Stavropoulos, 2023 [6] | N/A | Straumann AG, Basel, CH | Grade 4 Ti | 3.3 × 10 mm | Internal hex | Not specified |
Ti and Zr | ||||||
Jorio, 2021 [25] | 30 | TRI-Vent Bone-Level Implant, TRI Dental Implants, Switzerland | Grade 5 | 4.1 × 11 mm | Not specified | Not specified |
Leitao-Almeida, 2020 [22] | 48 | Ocean E.C., Avinent, Spain | Grade 5 | 3.5 × 15 mm | External hex | Not specified |
Leitao-Almeida, 2021 [26] | 32 | Ocean E.C., Avinent Implants System S.L., Santpedor, Spain | Grade 5 | 3.5 × 15 mm | External Hex | Not specified |
Bertl, 2021 [19] | 112 | Straumann AG, Switzerland | Ti | 3.3 × 10 mm | Internal hex | Not specified |
TiZr | 4.1 × 10 mm | |||||
Graf, 2023 [31] | 90 | Conelog SCREW-LINE, Camlog, Switzerland | N/A | 3.3 × 13 mm | Internal hex | Not specified |
3.8 × 13 mm | ||||||
4.3 × 13 mm | ||||||
Sivolella, 2021 [27] | 18 | Osseotite® Hybrid, Zimmer Biomet, USA | — | 4 × 13 mm | External hex | Not specified |
Tsampli, 2024 [9] | 30 | Premium, Medentis Medical, Germany | Grade 4 | 4.1 × 10 mm | Internal hex | Not specified |
Author/Year | Implantoplasty Height/Length | Operator | Instruments Used | Handpieces Used | Polishing Instruments | Magnification Used |
---|---|---|---|---|---|---|
Chan, 2013 [20] | 5 mm | Periodontist | Diamond bur 30–15 µm oval (Henry Schein) | 15,000 rpm | Arkansas stones | ×2.5 (Design for Vision) |
Fine silicone polishers (Henry Schein) | ||||||
Gehrke, 2016 [23] | 5 mm | Machined | Tungsten carbide conical burs on machine (Model BV-20 Ferrari), wear rate 0.050 µm/min without irrigation | 20,000 rpm | Not specified | Not specified |
Costa-Berenguer, 2018 [8] | 6 mm | Expert clinician | Tungsten carbide oval burs (H379 314 023; Komet Dental, Germany) | High-speed handpiece (SUPER torque 660, KaVo, Germany) with copious irrigation | Two-step silicone polishers (9618 314 030 and 9608 314 030, Komet)—new set per implant | ×2.5 (Heine dental loupes) |
Camps-Font, 2020 [21] | 5 mm | Experienced clinician | Followed Costa-Berenguer protocol | High-speed handpiece (GENTLE silence LUX 8000B, KaVo) | Followed Costa-Berenguer protocol | ×2.8 (Galilean HD, ExamVision) |
Shah, 2024 [32] | 5 mm | Expert clinician | Ball-shaped diamond burs: coarse (107 µm), medium (46 µm), fine (25 µm)—Komet | Electric high-speed handpiece (Bien-Air) at 200,000 rpm | Silicone polishers at 20,000 rpm (brown, green, and supergreen; Shofu Corp.) | Not specified |
Camps-Font, 2023 [28] | 5 mm | Expert clinician | Costa-Berenguer protocol | High-speed handpiece: Gentle Silence 8000B (KaVo) | Costa-Berenguer protocol | ×2.8 (Galilean HD, ExamVision) |
Fonseca, 2024 [29] | Not specified | Not specified | Fine-grain tungsten carbide bur (H379.314, KOMET) | High-speed turbine (GENTLE silence LUX 8000B, KaVo) | Coarse to fine polishing burs; Carbon polishers (9608.314.030 and 9618.314.030, KOMET) | Not specified |
Dieguez-Pereira, 2021 [24] | 3 mm (bone level), 1.5 mm (tissue level) | Expert clinician | Costa-Berenguer protocol; 3 mm of exposed threads removed with oval tungsten carbide bur (H379 314 023; Komet Dental, Lemgo, Germany) | High-speed turbine (Panamax 2, NSK) | Costa-Berenguer; the surface was polished according to that methodology using two silicone polishers (9618 314 030 and 9608 314 030; Komet Dental). Additionally, controlled reduction was performed using an industrial machine (Deco 2000, Tornos Technologies Iberica, Granollers, Spain). | ×2.5 (Zeiss) |
3 mmm tissue level and bone level | ||||||
Goh, 2024 [30] | 3 mm | Single operator | Tungsten carbide burs (Meisinger, Germany) | High-speed handpiece (Dentsply Sirona) at 40,000 rpm with illumination and irrigation | Tungsten carbide burs (Meisinger) | ×2.5 (ZEISS EyeMag Smart) |
5 mm | ||||||
Stavropoulos, 2023 [6] | 5 mm apically from (a) the implant neck in bone-level implants and (b) from the machined roughness in tissue-level (TL) implants. The implant diameter was reduced by 0.13 mm in bone-level implants and 0.15 mm in tissue-level implants. | High-precision Tornos (Schaublin, 180-CCN—BL 3267, SCHAUBLIN MACHINES SA, Bévilard, CH, USA) | Not specified | Not specified | Not specified | Not specified |
Jorio, 2021 [25] | 5 mm | A single right-handed operator, trained and calibrated according to the protocols of references. | Based on prior studies (Ramel, Sahrmann, Chan) | According to cited studies | According to cited studies | ×2.7 (Galilean HD, ExamVision) |
Leitao-Almeida, 2020 [22] | 7.5 mm | Experienced surgeon | Oval tungsten carbide bur (H379 314 023; Komet Dental, Lemgo, Germany) | High-speed handpiece (Bora blackline LED, Bien-Air) | Two-step silicone polishers (9618 314 030 and 9608 314 030; Komet) | ×2.8 (Galilean HD, ExamVision) |
Leitão-Almeida, 2021 [26] | 3 mm and 7.5 mm | Experienced surgeon | Costa-Berenguer; Oval carbide bur ((H379 314 023; Komet Dental, Lemgo, Germany) | Not specified | Two-step silicone polishers (9618 314 030 and 9608 314 030; Komet Dental, Lemgo, Germany) | ×2.8 (Galilean HD, ExamVision) |
Bertl, 2021 [19] | Extended implantoplasty 3 mm apically from the implant neck in bone-level implants and from the machined surface in tissue-level implants. The diameter was reduced by 0.13 to 0.16 mm (i.e., narrow BL: 0.13 mm; narrow TL: 0.15 mm; regular BL: 0.14 mm; regular TL: 0.16 mm). | Computer-controlled lathe (Tornos-Schaublin, 180-CCN—BL 3267, SCHAUBLIN MACHINES SA, Bévilard, Switzerland) | Not specified | Not specified | Not specified | Not specified |
Graf, 2023 [31] | 1.5 mm | Not specified | Not specified | Not specified | Not specified | Not specified |
3.0 mm | ||||||
4.5 mm | ||||||
Sivolella, 2021 [27] | 6 mm | Experienced clinician | Two oval tungsten carbide burs (H379.310.023 and H379UF.310.023, Komet Dental, Lemgo, Germany) | Both groups were treated with Arkansas stones (Dura-White Stones FL2 FG 0.244, Shofu, Kyoto, Japan) (BUR + A and SONIC + A, respectively). | Not specified | |
A sequence of two torpedo-shaped diamond burs (SF878K.000.018 and SF8878K.000.018, Komet Dental) | Air scaler (SF1LM, Komet Dental) (SONIC) | |||||
Tsampli, 2024 [9] | 4 mm | First phase: Universal testing machine (Z005, Zwick/Roell, Ulm, Germany) with 3D-printed elements holding either the air scaler or the NSK surgical handpiece. A sequence of two torpedo-shaped diamond burs (SF878K.000.018 and SF8878K.000.018, Komet Dental) was used. | A sequence of two torpedo-shaped diamond burs (SF878K.000.018 and SF8878K.000.018, Komet Dental). Two oval tungsten carbide burs (H379.310.023 and H379UF.310.023, Komet Dental, Lemgo, Germany), used with progressively finer polishers and abrasives mounted on the NSK surgical handpiece (X-SG 93, 1:3 ratio, NSK, Funck, dental-medizin, Heidelberg, Germany). Only one bur was used per implant (no reuse), operating at 60,000 rpm. | Not specified | Not specified | Not specified |
Second hase: dentist | AIRSCALER group: The implants were treated using precision tungsten carbide tips (diameter: 2.5 mm, grade: G10, material: TC2, and hardness: HV 1400–1500) soldered to a stainless steel shaft. These tips were custom-made on a precision machine at the University of Heidelberg as part of a self-funded research initiative. The air scaler (SONICflex 2003L, KAVO Dental, Biberach/Riß, Germany) operated at 4.2 bar pressure. The active part of the tips had a diameter of 2.5 mm. Five passes were performed, removing 0.1 mm of material. |
Author/Year | Sample Size | Implant | Dimensions | Prosthetic Connection | Testing Machine | Chewing Simulator | Compression Test Speed | Cyclic Speed | Measurement Software | Control Group (SD) [N] | Fracture Resistance (SD) [N] |
---|---|---|---|---|---|---|---|---|---|---|---|
Gehrke, 2016 [23] | 60 | Implacil De Bortoli | 4 × 11 mm | External hex | Universal testing machine (AME-5 kN) | N/A | 1 mm/min | N/A | N/A | HE = 773.1 (13.16) | 487.1 (93.72) |
Costa-Berenguer, 2018 [8] | 20 | Titamax Smart Cortical, Neodent | 4 × 13 mm | External hex | Universal servo-hydraulic mechanical testing machine (BIONIX 370, MTS) | N/A | 1 mm/min | N/A | N/A | 880 (193.7) | 896 (121.1) |
Camps-Font, 2020 [21] | 48 | Biomimetic Ocean®, Avinent® | 3.5 × 10 mm | External hex | MTS Bionix 370 Load Frame | N/A | 1 mm/min | N/A | TestStar II® | 1211.90 (89.85) | HE = 873.11 (92.37) |
Leitao-Almeida, 2020 [22] | 48 | Ocean E.C., Avinent® | 3.5 × 15 mm | External hex | Universal servo-hydraulic mechanical testing machine (MTS Bionix 370) | N/A | 1 mm/min | N/A | MTS Flextest 40 | 2:1 = 1276.16 (169.75) | 1211.70 (281.64) |
2.5:1 = 815.22 (185.58) | 621.68 (186.28) | ||||||||||
3:1 = 606.55 (111.48) | 465.95 (68.57) | ||||||||||
Leitão-Almeida, 2021 [26] | 32 | Ocean E.C., Avinent® | 3.5 × 15 mm | External hex | Universal mechanical testing machine (MTS Bionix 370) | N/A | N/A | N/A | MTS Flextest 40 | C = 854.37 (195.08) | 752.12 (186.13) |
C = 548.82 (80.02) | 593.69 (111.07) | ||||||||||
Sivolella, 2021 [27] | 18 | Osseotite® Hybrid, Zimmer Biomet | 4 × 13 mm | External hex | MTS Acumen 3 Electrodynamic Test System | N/A | 1 mm/min | N/A | MTS Testsuite | 166,000 (38,000) | Bur = 151,000 (17,000); |
Sonic = 165,000 (24,000) |
Author/Year | Sample Size | Implant | Dimensions | Prosthetic Connection | Testing Machine | Chewing Simulator | Compression Test Speed | Cyclic Speed | Measurement Software | Control Group (SD) [N] | Fracture Resistance (SD) [N] | Fracture Resistance in Machined Implants |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chan, 2013 [20] | 32 | TRI-Vent implants (TRI Dental Implants) | 3.75 × 10 mm (N) | Internal hex | Universal testing machine (Instron 5565) | N/A | 0.5 mm/min | N/A | Merlin Software (Instron Corp.) | C = 3325 (20.7) | W = 430, 4 (26.8) | N/A |
4.7 × 10 mm (W) | N = 321, 7(214) | |||||||||||
Gehrke, 2016 [23] | 60 | Implacil De Bortoli | 4 × 11 mm | Internal hex | Universal testing machine (model AME-5 kN, Tecnica Industrial Oswaldo Filizola) | N/A | 1 mm/min | N/A | N/A | HI = 829.4 | 495.7 (85.24) | N/A |
Camps-Font, 2020 [21] | 48 | Biomimetic Ocean®, Avi- nent® Implant System, Santpedor, Spain | 3.5 × 10 mm | Internal hex | MTS Bionix 370 Load Frame universal servo-hydraulic mechanical testing machine (MTS®, Eden Prairie, USA) | N/A | 1 mm/min | N/A | TestStar II® software (MTS®, Eden Prairie, USA) | 918.41 (97.19) | HI = 661.29 (58.03) | N/A |
Tsampli, 2024 [9] | 30 | Premium, Medentis Medical, Bad Neuenahr- Ahrweiler, Germany | 4.1 × 10 mm | Internal hex | universal testing device (Z005, Zwick/Roell, Ulm, Germany). | N/A | 1 mm/min | N/A | N/A | 812 (30) | N/A | Bur = 665 (26) |
Airscaler = 739 (34) |
Author/Year | Sample Size | Implant | Dimensions | Prosthetic Connection | Testing Machine | Chewing Simulator | Compression Test Speed | Cyclic Speed | Measurement Software | Control Group (SD) [N] | Fracture Resistance (SD) [N] |
---|---|---|---|---|---|---|---|---|---|---|---|
Gehrke, 2016 [23] | 60 | Implacil De Bortoli | 4 × 11 mm | Morse taper | Universal testing machine (model AME-5 kN, Tecnica Industrial Oswaldo Filizola) | N/A | 1 mm/min | N/A | N/A | CM = 898.1 (19.25) | 717.6 (77.25) |
Camps-Font, 2020 [21] | 48 | Biomimetic Ocean®, Avi- nent® Implant System, Santpedor, Spain | 3.5 × 10 mm | Conical connection | MTS Bionix 370 Load Frame universal servo-hydraulic mechanical testing machine (MTS®, Eden Prairie, USA) | N/A | 1 mm/min | N/A | TestStar II® software (MTS®, Eden Prairie, USA) | 1058.67 (114.05) | CC = 747.32 (90.05) |
Goh, 2024 [30] | 80 | AstraTech Implant System EV, Dentsply Sirona | 4.2 × 13 mm | Conical connection | Universal mechanical testing machine (Instron 3369, Instron Ltd., High Wycombe, UK) | N/A | 1 mm/min | It is calculated by subtracting 0.5 from the fracture load, and the elastic limit is then determined | N/A | 3 mm = 2466.64 (173.36) | 3 mm = 2349.18 (142.51); |
5 mm = 1797.76 (119.86) | 5 mm = 1431.84 (1887.78); | ||||||||||
D.V. 3 mm = 2659.06 (123.19); | D.V. 3 mm = 2395.32 (144.99); | ||||||||||
D.V. 5 mm = 2296.78 (147.46) | D.V. 5 mm = 1866.29 (164.26) | ||||||||||
Graf, 2023 [31] | 90 | Conelog implants (CONELOG SCREW-LINE implant, Promote plus, Camlog Biotechnologies AG, Basel, Switzerland) | 3.3 × 13 mm | Conical connection | Zwick UPM 1445; Zwick GmbH & Co. KG, Ulm, Germany) | Chewing simulator (CS-4 chewing simulator; SD Mechatronik, Feldkirchen-Westerham, Germany) | 0.5 mm/min | 1,200,000 cycles at 50 N | N/A | D3.3 = 348.3 (50.3) | D3.3–15 = 382.1 (59.2) |
3.8 × 13 mm | D3.8 = 507.9 (40.7) | D3.3–30 = 347.0 (35.7); | |||||||||
4.3 × 13 mm | D4.3 = 690.1 (53.4) | D3.3–45 = 315.9 (30.9) | |||||||||
D3.8–15 = 531.4 (36.2) | |||||||||||
D3.8–30 = 514.5 (40.8) | |||||||||||
D3.8–45 = 477.9 (26.3) | |||||||||||
D4.3–15 = 710.1 (38.2) | |||||||||||
D4.3–30 = 697.9 (65.2) | |||||||||||
D4.3–45 = 662.2 (45.9) |
Author/Year | Sample Size | Implant | Dimensions | Prosthetic Connection | Testing Machine | Chewing Simulator | Compression Test Speed | Cyclic Speed | Measurement Software | Control Group (SD) [N] | Fracture Resistance (SD) [N] | Fracture Resistance in Maquinated Implants | Results After Cycles |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shah, 2024 [32] | 28 | Roxolid Bone Level Implant Regular CrossFit SLA; Institut Straumann AG) | 4.1 × 10 mm | Internal hex | 4204 tensile tester (Instron) | N/A | 1 mm/min | 2,000,000 cycles at 2 Hz frequency with a compressive load of 250 N by a plastic ball. The 2,000,000 cycles used in this study were approximately equivalent to 2 years of function | N/A | No cycles = 1465.2 (86.4) | No cycles = 1299.3 (123.8); | N/A | N/A |
Cycles = 1480.7 (64.1) | Cycles = 1252.1 (85.7) | N/A | |||||||||||
Stavropoulos, 2023 [6] | N/A | Straumann AG | 3.3 × 10 mm | Internal hex | Universal testing machine (Instron 4465; Instron Co., Ltd. | Pre- load device to sim- ulate mastication. | 1 mm/min | All implants were subjected to 2,000,000 cycles of loading with 23–226 N at 2 Hz, at room temperature and in a moist environment | N/A | BL = 435.2–550.6 N | BL = 400.9–495.3 N | N/A | |
TL = 389.5–495.8 N | TL = 353.0 N | ||||||||||||
Jorio, 2021 [25] | 30 | TRI- Vent BoneLevel Dental Implants Int. AG, Switzerland | 4.1 × 11 mm | Internal hex | Zwick. 1445 RetroLine, Zwick, | Computer- controlled masticator. During this experiment, suffered thermocycling. | N/A | 1.2 million cycles, 49 N, thermal cycling | N/A | C(cycles) = 2299 (127) | IP1 = 1642 (51) | After 1.2 million cycles and 10,000 temperature changes, no fractures observed | |
IP2 = 1792 (47) | |||||||||||||
IP3 = 1777 (49) | |||||||||||||
C(w/cycles) = 2724 (70) | |||||||||||||
Bertl, 2021 [19] | 112 | (Institut Straumann AG, Basel, CH) | 3.3 × 10 mm (Narrow: bone level and tissue level) | Internal hex | Universal testing machine (Instron 4465, Instron Co., Ltd., Norwood, MA, USA) | MTI Engineering. To simulate mastication. Implants were loaded for 2,000,000 cycles at 2 Hz. The mean max- imum failure strength of 3 narrow diameter Ti TL implants not subjected to IP. | 1 mm/min | 2,000,000 cycles at 2 Hz with 23 to 226 N ambient temperature, corresponding to 10 and 50% of the failure of 3 narrow implants without IP | N/A | Narrow; B.L; Ti = 564.03 (529.13–621.22 | Narrow; B.L; Ti = 540.41 (518.13–541.75) | N/A | |
Narrow; B.L; TiZr = 569.91 (530.33–577.32) | Narrow; B.L; TiZr = 477.32 (459.34–506.72) | ||||||||||||
Narrow; T.L; Ti = 472.76 (462.02–481.08) | Narrow; T.L; Ti = 363.90 (362.56–366.85) | ||||||||||||
Narrow; T.L; TiZr = 476.78 (473.90–481.08) | Narrow; T.L; TiZr = 398.26 (397.45–408.86) | ||||||||||||
4.1 × 10 mm (Regular: Bone level and tissue level) | Regular, B.L; Ti = 938.53 (921.07–982.90) | Regular, B.L; Ti = 870.34 (857.72–876.38) | |||||||||||
Regular, B.L; TiZr = 986.58 (967.45–1000.34) | Regular, B.L; TiZr = 863.90 (848.06–882.43) | ||||||||||||
Regular, T.L; Ti = 785.24 (771.82–786.18) | Regular, T.L; Ti = 695.04 (689.27–705.64) | ||||||||||||
Regular, T.L; TiZr = 794.10 (779.74–795.04) | Regular, T.L; TiZr = 713.56 (693.69–726.98) |
Author/Year | Sample Size | Implant | Dimensions | Prosthetic Connection | Testing Machine | Chewing Simulator | Compression Test Speed | Cyclic Speed | Measurement Software | Results After Cycles | Control After Cycles |
---|---|---|---|---|---|---|---|---|---|---|---|
Camps-Font, 2023 [28] | 20 | Biomimetic Ocean®, Avinent® Implant System, Santpedor, Spain | 3.5 × 10 mm | Internal hex | MTS Bionix 370, MTS®, Eden Prairie, MN, USA | N/A | N/A | 5 × 106 cycles, 15 Hz | TestStar II® software (MTS®, Eden Prairie, MN, USA) | 95%: 628 N, 5 × 106–102,360 | 80% = 735 N; 36,364–66,690 |
90% = 628 N, 279,251–5 × 106 | 70% = 643 N; 38,830–68,519 | ||||||||||
85% = 562 N, 318,799–5 × 106 | 65% = 597 N; 112,481–85,644 | ||||||||||
80% = 529 N, 5 × 106 | 60% = 551 N; 5 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velastegui, M.L.; Agustín-Panadero, R.; Rico-Coderch, A.; Amengual-Lorenzo, J.; Labaig-Rueda, C.; Solá-Ruiz, M.F. Influence of Different Implantoplasty Designs on the Fatigue Resistance of Dental Implants: A Systematic Review. J. Clin. Med. 2025, 14, 6103. https://doi.org/10.3390/jcm14176103
Velastegui ML, Agustín-Panadero R, Rico-Coderch A, Amengual-Lorenzo J, Labaig-Rueda C, Solá-Ruiz MF. Influence of Different Implantoplasty Designs on the Fatigue Resistance of Dental Implants: A Systematic Review. Journal of Clinical Medicine. 2025; 14(17):6103. https://doi.org/10.3390/jcm14176103
Chicago/Turabian StyleVelastegui, Manuel León, Rubén Agustín-Panadero, Aitana Rico-Coderch, José Amengual-Lorenzo, Carlos Labaig-Rueda, and María Fernanda Solá-Ruiz. 2025. "Influence of Different Implantoplasty Designs on the Fatigue Resistance of Dental Implants: A Systematic Review" Journal of Clinical Medicine 14, no. 17: 6103. https://doi.org/10.3390/jcm14176103
APA StyleVelastegui, M. L., Agustín-Panadero, R., Rico-Coderch, A., Amengual-Lorenzo, J., Labaig-Rueda, C., & Solá-Ruiz, M. F. (2025). Influence of Different Implantoplasty Designs on the Fatigue Resistance of Dental Implants: A Systematic Review. Journal of Clinical Medicine, 14(17), 6103. https://doi.org/10.3390/jcm14176103