The Role of VEGF in Intervention-Mediated Injuries: Neointimal Hyperplasia and In-Stent Restenosis
Abstract
1. Introduction
2. Methods
Literature Research
3. Results
3.1. VEGF and Vascular Smooth Muscles Cells
3.2. Endogenous VEGF Activity and Arterial Injuries
3.3. VEGF-Based Gene Therapy
3.4. VEGF-Releasing Materials
3.5. Other Members of the VEGF Family
4. Discussion
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Leung, D.W.; Cachianes, G.; Kuang, W.J.; Goeddel, D.V.; Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989, 246, 1306–1309. [Google Scholar] [CrossRef]
- Olofsson, B.; Pajusola, K.; Kaipainen, A.; von Euler, G.; Joukov, V.; Saksela, O.; Orpana, A.; Pettersson, R.F.; Alitalo, K.; Eriksson, U. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc. Natl. Acad. Sci. USA 1996, 93, 2576–2581. [Google Scholar] [CrossRef]
- Joukov, V.; Pajusola, K.; Kaipainen, A.; Chilov, D.; Lahtinen, I.; Kukk, E.; Saksela, O.; Kalkkinen, N.; Alitalo, K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996, 15, 290–298. [Google Scholar] [CrossRef]
- Achen, M.G.; Jeltsch, M.; Kukk, E.; Mäkinen, T.; Vitali, A.; Wilks, A.F.; Alitalo, K.; Stacker, S.A. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc. Natl. Acad. Sci. USA 1998, 95, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Ylä-Herttuala, S.; Rissanen, T.T.; Vajanto, I.; Hartikainen, J. Vascular endothelial growth factors: Biology and current status of clinical applications in cardiovascular medicine. J. Am. Coll. Cardiol. 2007, 49, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Oku, A.; Sawano, A.; Yamaguchi, S.; Yazaki, Y.; Shibuya, M. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J. Biol. Chem. 1998, 273, 31273–31282. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Takani, K.; Atoda, H.; Morita, T. Snake venom vascular endothelial growth factors (VEGFs) exhibit potent activity through their specific recognition of KDR (VEGF receptor 2). J. Biol. Chem. 2003, 278, 51985–51988. [Google Scholar] [CrossRef]
- Bates, D.O.; Harper, S.J. Regulation of vascular permeability by vascular endothelial growth factors. Vascul. Pharmacol. 2002, 39, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Rissanen, T.T.; Vajanto, I.; Hiltunen, M.O.; Rutanen, J.; Kettunen, M.I.; Niemi, M.; Leppänen, P.; Turunen, M.P.; Markkanen, J.E.; Arve, K.; et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am. J. Pathol. 2002, 160, 1393–1403. [Google Scholar] [CrossRef]
- Shweiki, D.; Itin, A.; Soffer, D.; Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992, 359, 843–845. [Google Scholar] [CrossRef]
- Ferrara, N. VEGF as a therapeutic target in cancer. Oncology 2005, 69 (Suppl. S3), 11–16. [Google Scholar] [CrossRef] [PubMed]
- Pepper, M.S.; Ferrara, N.; Orci, L.; Montesano, R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 1992, 189, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Alon, T.; Hemo, I.; Itin, A.; Pe’ER, J.; Stone, J.; Keshet, E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat. Med. 1995, 1, 1024–1028. [Google Scholar] [CrossRef]
- Carmeliet, P. VEGF as a Key Mediator of Angiogenesis in Cancer. Oncology 2005, 69, 4–10. [Google Scholar] [CrossRef]
- Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.M. Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. J. Clin. Med. 2019, 9, 84. [Google Scholar] [CrossRef]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Subbotin, V.M. Analysis of arterial intimal hyperplasia: Review and hypothesis. Theor. Biol. Med. Model. 2007, 4, 41. [Google Scholar] [CrossRef]
- Mause, S.F.; Ritzel, E.; Deck, A.; Vogt, F.; Liehn, E.A. Endothelial Progenitor Cells Modulate the Phenotype of Smooth Muscle Cells and Increase Their Neointimal Accumulation Following Vascular Injury. Thromb. Haemost. 2022, 122, 456–469. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Pawlas, N.; Cieślar, G.; Stanek, A. Pathogenesis and Clinical Significance of In-Stent Restenosis in Patients with Diabetes. Int. J. Environ. Res. Public Health 2021, 18, 11970. [Google Scholar] [CrossRef] [PubMed]
- Dutzmann, J.; Daniel, J.; Korte, L.; Kloss, F.J.; Knöpp, K.; Kalies, K.; Croce, K.J.; Herbst, T.J.; Huibregtse, B.; Vogt, F.J.; et al. Adventitial Fibroblasts Release Interleukin 6 After Vascular Injury and Induce Smooth Muscle Cell Proliferation and Neointima Formation. J. Am. Heart Assoc. 2025, 14, e040143. [Google Scholar] [CrossRef]
- Pashova, A.; Work, L.M.; Nicklin, S.A. The role of extracellular vesicles in neointima formation post vascular injury. Cell. Signal. 2020, 76, 109783. [Google Scholar] [CrossRef]
- Buccheri, D.; Piraino, D.; Andolina, G.; Cortese, B. Understanding and managing in-stent restenosis: A review of clinical data, from pathogenesis to treatment. J. Thorac. Dis. 2016, 8, E1150–E1162. [Google Scholar] [CrossRef]
- Dinc, R. A review of the current state in neointimal hyperplasia development following endovascular intervention and minor emphasis on new horizons in immunotherapy. Transl. Clin. Pharmacol. 2023, 31, 191–201. [Google Scholar] [CrossRef]
- Sugiura, T.; Agarwal, R.; Tara, S.; Yi, T.; Lee, Y.-U.; Breuer, C.K.; Weiss, A.S.; Shinoka, T. Tropoelastin inhibits intimal hyperplasia of mouse bioresorbable arterial vascular grafts. Acta Biomater. 2017, 52, 74–80. [Google Scholar] [CrossRef]
- Li, C.; Zhen, G.; Chai, Y.; Xie, L.; Crane, J.L.; Farber, E.; Farber, C.R.; Luo, X.; Gao, P.; Cao, X.; et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat. Commun. 2016, 7, 11455. [Google Scholar] [CrossRef] [PubMed]
- Couper, L.L.; Bryant, S.R.; Eldrup-Jørgensen, J.; Bredenberg, C.E.; Lindner, V. Vascular endothelial growth factor increases the mitogenic response to fibroblast growth factor-2 in vascular smooth muscle cells in vivo via expression of fms-like tyrosine kinase-1. Circ. Res. 1997, 81, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Keiser, J.A. Vascular endothelial growth factor upregulates the expression of matrix metalloproteinases in vascular smooth muscle cells: Role of flt-1. Circ. Res. 1998, 83, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Castresana, M.R.; Newman, W.H. Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2001, 285, 669–674. [Google Scholar] [CrossRef]
- Grosskreutz, C.L.; Anand-Apte, B.; Dupláa, C.; Quinn, T.P.; Terman, B.I.; Zetter, B.; D’AMore, P.A. Vascular endothelial growth factor-induced migration of vascular smooth muscle cells in vitro. Microvasc. Res. 1999, 58, 128–136. [Google Scholar] [CrossRef]
- Parenti, A.; Brogelli, L.; Filippi, S.; Donnini, S.; Ledda, F. Effect of hypoxia and endothelial loss on vascular smooth muscle cell responsiveness to VEGF-A: Role of flt-1/VEGF-receptor-1. Cardiovasc. Res. 2002, 55, 201–212. [Google Scholar] [CrossRef]
- Parenti, A.; Bellik, L.; Brogelli, L.; Filippi, S.; Ledda, F. Endogenous VEGF-A is responsible for mitogenic effects of MCP-1 on vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1978–H1984. [Google Scholar] [CrossRef] [PubMed]
- Brizzi, M.F.; Formato, L.; Dentelli, P.; Rosso, A.; Pavan, M.; Garbarino, G.; Pegoraro, M.; Camussi, G.; Pegoraro, L. Interleukin-3 stimulates migration and proliferation of vascular smooth muscle cells: A potential role in atherogenesis. Circulation 2001, 103, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Castresana, M.R.; Newman, W.H. Reactive oxygen species-sensitive p38 MAPK controls thrombin-induced migration of vascular smooth muscle cells. J. Mol. Cell. Cardiol. 2004, 36, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Dorafshar, A.H.; Angle, N.; Bryer-Ash, M.; Huang, D.; Farooq, M.M.; Gelabert, H.A.; Freischlag, J.A. Vascular endothelial growth factor inhibits mitogen-induced vascular smooth muscle cell proliferation. J. Surg. Res. 2003, 114, 179–186. [Google Scholar] [CrossRef]
- Osada-Oka, M.; Ikeda, T.; Imaoka, S.; Akiba, S.; Sato, T. VEGF-enhanced proliferation under hypoxia by an autocrine mechanism in human vascular smooth muscle cells. J. Atheroscler. Thromb. 2008, 15, 26–33. [Google Scholar] [CrossRef]
- Schad, J.F.; Meltzer, K.R.; Hicks, M.R.; Beutler, D.S.; Cao, T.V.; Standley, P.R. Cyclic strain upregulates VEGF and attenuates proliferation of vascular smooth muscle cells. Vasc. Cell 2011, 3, 21. [Google Scholar] [CrossRef]
- Zhao, Q.; Egashira, K.; Hiasa, K.-I.; Ishibashi, M.; Inoue, S.; Ohtani, K.; Tan, C.; Shibuya, M.; Takeshita, A.; Sunagawa, K.; et al. Essential role of vascular endothelial growth factor and Flt-1 signals in neointimal formation after periadventitial injury. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 2284–2289. [Google Scholar] [CrossRef]
- Ohtani, K.; Egashira, K.; Hiasa, K.-I.; Zhao, Q.; Kitamoto, S.; Ishibashi, M.; Usui, M.; Inoue, S.; Yonemitsu, Y.; Sueishi, K.; et al. Blockade of vascular endothelial growth factor suppresses experimental restenosis after intraluminal injury by inhibiting recruitment of monocyte lineage cells. Circulation 2004, 110, 2444–2452. [Google Scholar] [CrossRef]
- Li, X.-D.; Chen, J.; Ruan, C.-C.; Zhu, D.-L.; Gao, P.-J. Vascular endothelial growth factor-induced osteopontin expression mediates vascular inflammation and neointima formation via Flt-1 in adventitial fibroblasts. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2250–2258. [Google Scholar] [CrossRef]
- Koga, J.; Matoba, T.; Egashira, K.; Kubo, M.; Miyagawa, M.; Iwata, E.; Sueishi, K.; Shibuya, M.; Sunagawa, K. Soluble Flt-1 gene transfer ameliorates neointima formation after wire injury in flt-1 tyrosine kinase-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 458–464. [Google Scholar] [CrossRef]
- Shibata, M.; Suzuki, H.; Nakatani, M.; Koba, S.; Geshi, E.; Katagiri, T.; Takeyama, Y. The involvement of vascular endothelial growth factor and flt-1 in the process of neointimal proliferation in pig coronary arteries following stent implantation. Histochem. Cell Biol. 2001, 116, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Feng, M.; Cao, D.; Zou, H.; Bai, F.; Wang, Z.; Pan, S. Endothelial cell-targeted pVEGF165 polyplex plays a pivotal role in inhibiting intimal thickening after vascular injury. Int. J. Nanomed. 2015, 10, 5751–5768. [Google Scholar] [CrossRef]
- Malabanan, K.P.; Kanellakis, P.; Bobik, A.; Khachigian, L.M. Activation transcription factor-4 induced by fibroblast growth factor-2 regulates vascular endothelial growth factor-A transcription in vascular smooth muscle cells and mediates intimal thickening in rat arteries following balloon injury. Circ. Res. 2008, 103, 378–387. [Google Scholar] [CrossRef]
- Katsaros, K.M.; Kastl, S.P.; Krychtiuk, K.A.; Hutter, R.; Zorn, G.; Maurer, G.; Huber, K.; Wojta, J.; Christ, G.; Speidl, W.S. An increase of VEGF plasma levels is associated with restenosis of drug-eluting stents. EuroIntervention 2014, 10, 224–230. [Google Scholar] [CrossRef]
- Yin, J.; Shen, L.; Ji, M.; Wu, Y.; Cai, S.; Chen, J.; Yao, Z.; Ge, J. Inverse Relationship between Serum VEGF Levels and Late In-Stent Restenosis of Drug-Eluting Stents. BioMed Res. Int. 2017, 2017, 8730271. [Google Scholar] [CrossRef] [PubMed]
- Dichtl, W.; Stocker, E.-M.; Mistlberger, K.; Debbage, P.; Yan, Z.-Q.; Alber, H.F.; Frick, M.; Dulak, J.; Pachinger, O.; Weidinger, F. Countervailing effects of rapamycin (sirolimus) on nuclear factor-kappa B activities in neointimal and medial smooth muscle cells. Atherosclerosis 2006, 186, 321–330. [Google Scholar] [CrossRef]
- Lim, S.Y.; Kim, Y.S.; Ahn, Y.; Jeong, M.H.; Rok, L.S.; Kim, J.H.; Kim, K.H.; Park, H.W.; Kim, W.; Cho, J.G.; et al. The effects of granulocyte-colony stimulating factor in bare stent and sirolimus-eluting stent in pigs following myocardial infarction. Int. J. Cardiol. 2007, 118, 304–311. [Google Scholar] [CrossRef]
- Gao, J.Q.; Zheng, J.P.; Jin, H.G.; Zhang, W.Q.; Yan, P.Y.; Chen, T.; Liu, Z.J. A new rapamycin-abluminally coated chitosan/heparin stent system accelerates early re-endothelialisation and improves anti-coagulant properties in porcine coronary artery models. Clin. Investig. Med. Med. Clin. Exp. 2014, 37, E395–E402. [Google Scholar] [CrossRef] [PubMed]
- Kochiadakis, G.E.; Marketou, M.E.; Panutsopulos, D.; Arfanakis, D.A.; Skalidis, E.I.; Igoumenidis, N.E.; Hamilos, M.I.; Sourvinos, G.; Chlouverakis, G.; Spandidos, D.; et al. Vascular endothelial growth factor protein levels and gene expression in peripheral monocytes after stenting: A randomized comparative study of sirolimus: Eluting and bare metal stents. Eur. Heart J. 2008, 29, 733–740. [Google Scholar] [CrossRef]
- Christoph, M.; Pfluecke, C.; Mensch, M.; Augstein, A.; Jellinghaus, S.; Ende, G.; Mierke, J.; Franke, K.; Wielockx, B.; Ibrahim, K.; et al. Myeloid PHD2 deficiency accelerates neointima formation via Hif-1α. Mol. Immunol. 2022, 149, 48–58. [Google Scholar] [CrossRef]
- Kazmierczak, E.; Grajek, S.; Kowal, J.; Chmara, E.; Grygier, M.; Pyda, M.; Bogdanski, P.; Cieślewicz, A.; Jabłecka, A. Prognostic usefulness of IL-6 and VEGF for the occurrence of changes in coronary arteries of patients with stable angina and implanted stents. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2169–2175. [Google Scholar]
- Li, X.-D.; Hong, M.-N.; Chen, J.; Lu, Y.-Y.; Ye, M.-Q.; Ma, Y.; Zhu, D.-L.; Gao, P.-J. Adventitial fibroblast-derived vascular endothelial growth factor promotes vasa vasorum-associated neointima formation and macrophage recruitment. Cardiovasc. Res. 2020, 116, 708–720. [Google Scholar] [CrossRef]
- Wang, J.; Song, C.; Xiao, Y.; Liu, B. In vivo and in vitro analyses of the effects of a novel high-nitrogen low-nickel coronary stent on reducing in-stent restenosis. J. Biomater. Appl. 2018, 33, 64–71. [Google Scholar] [CrossRef]
- Mota, L.; Zhu, M.; Li, J.; Contreras, M.; Aridi, T.; Tomeo, J.N.; Stafford, A.; Mooney, D.J.; Pradhan-Nabzdyk, L.; Ferran, C.; et al. Perivascular CLICK-gelatin delivery of thrombospondin-2 small interfering RNA decreases development of intimal hyperplasia after arterial injury. FASEB J. 2024, 38, e23321. [Google Scholar] [CrossRef] [PubMed]
- Stefanadis, C.; Toutouzas, K.; Tsiamis, E.; Vavuranakis, M.; Stefanadi, E.; Kipshidze, N. First-in-man study with bevacizumab-eluting stent: A new approach for the inhibition of atheromatic plaque neovascularisation. EuroIntervention 2008, 3, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zhang, Q.; Wang, Q.; Wu, Q.; Xu, G.; Chang, P.; Hu, H.; Bai, F. Local delivery of thalidomide to inhibit neointima formation in rat model with artery injury. Pathol. Res. Pract. 2018, 214, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Krasinski, K.; Spyridopoulos, I.; Asahara, T.; van der Zee, R.; Isner, J.M.; Losordo, D.W. Estradiol accelerates functional endothelial recovery after arterial injury. Circulation 1997, 95, 1768–1772. [Google Scholar] [CrossRef]
- Nanobashvili, J.; Prager, M.; Jozkowicz, A.; Neumayer, C.; Fügl, A.; Blumer, R.; Cabaj, A.; Wrba, F.; Polterauer, P.; Huk, I. Positive effect of treatment with synthetic steroid hormone tibolon on intimal hyperplasia and restenosis after experimental endothelial injury of rabbit carotid artery. Eur. Surg. Res. Eur. Chir. Forsch. Rech. Chir. Eur. 2004, 36, 74–82. [Google Scholar] [CrossRef]
- Gao, M.; Gao, X.; Taniguchi, R.; Brahmandam, A.; Matsubara, Y.; Liu, J.; Liu, H.; Zhang, W.; Dardik, A. Sex differences in arterial identity correlate with neointimal hyperplasia after balloon injury. Mol. Biol. Rep. 2022, 49, 8301–8315. [Google Scholar] [CrossRef]
- Osadnik, T.; Lekston, A.; Bujak, K.; Strzelczyk, J.K.; Poloński, L.; Gąsior, M. The Relationship between VEGFA and TGFB1 Polymorphisms and Target Lesion Revascularization after Elective Percutaneous Coronary Intervention. Dis. Markers 2017, 2017, 8165219. [Google Scholar] [CrossRef]
- Osadnik, T.; Strzelczyk, J.K.; Reguła, R.; Bujak, K.; Fronczek, M.; Gonera, M.; Gawlita, M.; Wasilewski, J.; Lekston, A.; Kurek, A.; et al. The Relationships between Polymorphisms in Genes Encoding the Growth Factors TGF-β1, PDGFB, EGF, bFGF and VEGF-A and the Restenosis Process in Patients with Stable Coronary Artery Disease Treated with Bare Metal Stent. PLoS ONE 2016, 11, e0150500. [Google Scholar] [CrossRef] [PubMed]
- Bagyura, Z.; Kiss, L.; Hirschberg, K.; Berta, B.; Széplaki, G.; Lux, Á.; Szelid, Z.; Soós, P.; Merkely, B. Association between VEGF Gene Polymorphisms and In-Stent Restenosis after Coronary Intervention Treated with Bare Metal Stent. Dis. Markers 2017, 2017, 9548612. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, G.; Li, Z.; Luo, H.; Zhou, J.; Cheng, J.; Wang, X.; Huang, X.; Zou, G. Detoxification and Activating Blood Circulation Decoction Promotes Reendothelialization of Damaged Blood Vessels via VEGF Signaling Pathway Activation by miRNA-126. Biol. Pharm. Bull. 2024, 47, 955–964. [Google Scholar] [CrossRef]
- Pei, C.Z.; Liu, B.; Li, Y.T.; Fang, L.; Zhang, Y.; Li, Y.G.; Meng, S. MicroRNA-126 protects against vascular injury by promoting homing and maintaining stemness of late outgrowth endothelial progenitor cells. Stem Cell Res. Ther. 2020, 11, 28. [Google Scholar] [CrossRef]
- Khurana, R.; Zhuang, Z.; Bhardwaj, S.; Murakami, M.; De Muinck, E.; Yla-Herttuala, S.; Ferrara, N.; Martin, J.F.; Zachary, I.; Simons, M. Angiogenesis-dependent and independent phases of intimal hyperplasia. Circulation 2004, 110, 2436–2443. [Google Scholar] [CrossRef]
- Pels, K.; Deiner, C.; Coupland, S.E.; Noutsias, M.; Sutter, A.P.; Schultheiss, H.-P.; Yla-Herttuala, S.; Schwimmbeck, P.L. Effect of adventitial VEGF(165) gene transfer on vascular thickening after coronary artery balloon injury. Cardiovasc. Res. 2003, 60, 664–672. [Google Scholar] [CrossRef]
- Deiner, C.; Schwimmbeck, P.L.; Koehler, I.S.; Loddenkemper, C.; Noutsias, M.; Nikol, S.; Schultheiss, H.-P.; Ylä-Herttuala, S.; Pels, K. Adventitial VEGF165 gene transfer prevents lumen loss through induction of positive arterial remodeling after PTCA in porcine coronary arteries. Atherosclerosis 2006, 189, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Asahara, T.; Chen, D.; Tsurumi, Y.; Kearney, M.; Rossow, S.; Passeri, J.; Symes, J.F.; Isner, J.M. Accelerated restitution of endothelial integrity and endothelium-dependent function after phVEGF165 gene transfer. Circulation 1996, 94, 3291–3302. [Google Scholar] [CrossRef]
- Hytönen, J.P.; Taavitsainen, J.; Laitinen, J.T.; Partanen, A.; Alitalo, K.; Leppänen, O.; Ylä-Herttuala, S. Local adventitial anti-angiogenic gene therapy reduces growth of vasa-vasorum and in-stent restenosis in WHHL rabbits. J. Mol. Cell. Cardiol. 2018, 121, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Van Belle, E.; Tio, F.O.; Chen, D.; Maillard, L.; Chen, D.; Kearney, M.; Isner, J.M. Passivation of metallic stents after arterial gene transfer of phVEGF165 inhibits thrombus formation and intimal thickening. J. Am. Coll. Cardiol. 1997, 29, 1371–1379. [Google Scholar] [CrossRef]
- Walter, D.H.; Cejna, M.; Diaz-Sandoval, L.; Willis, S.; Kirkwood, L.; Stratford, P.W.; Tietz, A.B.; Kirchmair, R.; Silver, M.; Curry, C.; et al. Local gene transfer of phVEGF-2 plasmid by gene-eluting stents: An alternative strategy for inhibition of restenosis. Circulation 2004, 110, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Chen, Y.; Tang, W.; Zhang, N.; Li, Z.; Liu, Z.; Yu, B.; Xu, F.-J. Reduction-Responsive Nucleic Acid Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Appl. Mater. Interfaces 2019, 11, 28307–28316. [Google Scholar] [CrossRef]
- Wei, F.; Geng, Q.; Zhang, B.; Feng, J.; Lin, H.; Jiang, Z.; Yu, X.; Zhou, G. The beneficial effect of phVEGF165 transfer on vascular remodelling after balloon injury and its possible mechanisms. Zhonghua Bing Li Xue Za Zhi 2002, 31, 436–439. [Google Scholar] [PubMed]
- Liu, Q.; Zaiying, L.; Yuankun, Y.; Li, L.; Weidong, Z.; Jin, Y. Experimental study of adenovirus vector mediated-hVEGF165 gene on prevention of restenosis after angioplasty. Curr. Med. Sci. 2004, 24, 132–133, 137. [Google Scholar]
- Gao, F.; Qiu, B.; Kar, S.; Zhan, X.; Hofmann, L.V.; Yang, X. Intravascular magnetic resonance/radiofrequency may enhance gene therapy for prevention of in-stent neointimal hyperplasia. Acad. Radiol. 2006, 13, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Qu, G. Magnetic nanosphere-guided site-specific delivery of vascular endothelial growth factor gene attenuates restenosis in rabbit balloon-injured artery. J. Vasc. Surg. 2016, 63, 226.e1–233.e1. [Google Scholar] [CrossRef]
- Hao, X.; Gai, W.; Ji, F.; Zhao, J.; Sun, D.; Yang, F.; Jiang, H.; Feng, Y. Bovine serum albumin-based biomimetic gene complexes with specificity facilitate rapid re-endothelialization for anti-restenosis. Acta Biomater. 2022, 142, 221–241. [Google Scholar] [CrossRef]
- Dulak, J.; Schwarzacher, S.P.; Zwick, R.H.; Alber, H.; Millonig, G.; Weiss, C.; Hügel, H.; Frick, M.; Jozkowicz, A.; Pachinger, O.; et al. Effects of local gene transfer of VEGF on neointima formation after balloon injury in hypercholesterolemic rabbits. Vasc. Med. Lond. Engl. 2005, 10, 285–291. [Google Scholar] [CrossRef]
- Buchwald, A.B.; Kunze, C.; Waltenberger, J.; Unterberg-Buchwald, C. Transfection of the DNA for the receptor KDR/flk-1 attenuates neointimal proliferation and luminal narrowing in a coronary stent angioplasty model. J. Surg. Res. 2006, 136, 120–124. [Google Scholar] [CrossRef]
- Paul, A.; Shao, W.; Shum-Tim, D.; Prakash, S. The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNA(Ang1+Vegf) nanoparticles. Biomaterials 2012, 33, 7655–7664. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, Y.; Zhang, C.; Chen, Y.-X.; Yang, Z.; Li, Y.; Leng, X.; Kong, D.; Wei, X.-Q.; Sun, H.-F.; et al. The prevention of restenosis in vivo with a VEGF gene and paclitaxel co-eluting stent. Biomaterials 2013, 34, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Yang, J.; Han, Y.; Zhu, X.; Fang, Q. Inhibition of intimal hyperplasia via local delivery of vascular endothelial growth factor cDNA nanoparticles in a rabbit model of restenosis induced by abdominal aorta balloon injury. Exp. Ther. Med. 2015, 10, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Hutter, R.; Carrick, F.E.; Valdiviezo, C.; Wolinsky, C.; Rudge, J.S.; Wiegand, S.J.; Fuster, V.; Badimon, J.J.; Sauter, B.V. Vascular endothelial growth factor regulates reendothelialization and neointima formation in a mouse model of arterial injury. Circulation 2004, 110, 2430–2435. [Google Scholar] [CrossRef] [PubMed]
- Hedman, M.; Hartikainen, J.; Syvänne, M. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: Phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation 2003, 107, 2677–2683. [Google Scholar]
- Mäkinen, K.; Manninen, H.; Hedman, M.; Matsi, P.; Mussalo, H.; Alhava, E.; Ylä-Herttuala, S. Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: A randomized, placebo-controlled, double-blinded phase II study. Mol. Ther. J. Am. Soc. Gene Ther. 2002, 6, 127–133. [Google Scholar] [CrossRef]
- Swanson, N.; Hogrefe, K.; Javed, Q.; Gershlick, A.H. In vitro evaluation of vascular endothelial growth factor (VEGF)-eluting stents. Int. J. Cardiol. 2003, 92, 247–251. [Google Scholar] [CrossRef]
- Swanson, N.; Hogrefe, K.; Javed, Q.; Malik, N.; Gershlick, A.H. Vascular endothelial growth factor (VEGF)-eluting stents: In vivo effects on thrombosis, endothelialization and intimal hyperplasia. J. Invasive Cardiol. 2003, 15, 688–692. [Google Scholar]
- Hu, T.; Lin, S.; Du, R.; Fu, M.; Rao, Q.; Yin, T.; Huang, Y.; Wang, G. Design, preparation and performance of a novel drug-eluting stent with multiple layer coatings. Biomater. Sci. 2017, 5, 1845–1857. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Qin, Y.; Yang, L.; Wan, H.; Yuan, L.; Wang, Y. An organic selenium and VEGF-conjugated bioinspired coating promotes vascular healing. Biomaterials 2022, 287, 121654. [Google Scholar] [CrossRef]
- Wang, J.; An, Q.; Li, D.; Wu, T.; Chen, W.; Sun, B.; Ei-Hamshary, H.; Al-Deyab, S.S.; Zhu, W.; Mo, X. Heparin and Vascular Endothelial Growth Factor Loaded Poly(L-lactide-co-caprolactone) Nanofiber Covered Stent-Graft for Aneurysm Treatment. J. Biomed. Nanotechnol. 2015, 11, 1947–1960. [Google Scholar] [CrossRef]
- Tan, J.; Cui, Y.; Zeng, Z.; Wei, L.; Li, L.; Wang, H.; Hu, H.; Liu, T.; Huang, N.; Chen, J.; et al. Heparin/poly-l-lysine nanoplatform with growth factor delivery for surface modification of cardiovascular stents: The influence of vascular endothelial growth factor loading. J. Biomed. Mater. Res. A 2020, 108, 1295–1304. [Google Scholar] [CrossRef]
- Karaagac, E.; Besir, Y.; Kurus, M.; Gokalp, O.; Iscan, S.; Gokkurt, Y.; Kandemir, C.; Topal, F.E.; Keselik, E.; Eygi, B.; et al. The effect of bovine serum albumin-glutaraldehyde and polyethylene glycol polymer on neointimal hyperplasia in rabbit carotid artery anastomosis. J. Biomater. Appl. 2021, 36, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-X.; Fu, J.-Y.; Wu, S.-F.; Li, R.-Y.; Hu, J.-Q.; Wang, Y.-X.; Martins, M.C.L.; Ren, K.-F.; Ji, J.; Fu, G.-S. A pDNA/rapamycin nanocomposite coating on interventional balloons for inhibiting neointimal hyperplasia. J. Mater. Chem. B 2023, 11, 4882–4889. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Wang, G.; Wu, X.; Li, Z.; Shen, Y.; Lee, J.C.-M.; Yu, Q. The impact of vascular endothelial growth factor-transfected human endothelial cells on endothelialization and restenosis of stainless steel stents. J. Vasc. Surg. 2011, 53, 461–471. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, Y.; Tang, C.; Yin, T.; Du, R.; Tian, J.; Huang, J.; Gregersen, H.; Wang, G. Re-Endothelialization Study on Endovascular Stents Seeded by Endothelial Cells through Up- or Downregulation of VEGF. ACS Appl. Mater. Interfaces 2016, 8, 7578–7589. [Google Scholar] [CrossRef]
- Chang, H.-K.; Kim, P.-H.; Kim, D.W.; Cho, H.-M.; Jeong, M.J.; Kim, D.H.; Joung, Y.K.; Lim, K.S.; Kim, H.B.; Lim, H.C.; et al. Coronary stents with inducible VEGF/HGF-secreting UCB-MSCs reduced restenosis and increased re-endothelialization in a swine model. Exp. Mol. Med. 2018, 50, 114. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Hui, H.; Tong, W.; Wei, Z.; Li, Z.; Zhang, S.; Yang, X.; Tian, J.; Chen, Y. The effect of endothelial progenitor cell transplantation on neointimal hyperplasia and reendothelialisation after balloon catheter injury in rat carotid arteries. Stem Cell Res. Ther. 2021, 12, 99. [Google Scholar] [CrossRef]
- Sun, H.; Morihara, R.; Feng, T.; Bian, Z.; Yu, H.; Hu, X.; Hu, X.; Bian, Y.; Sasaki, R.; Fukui, Y.; et al. Human Cord Blood-Endothelial Progenitor Cells Alleviate Intimal Hyperplasia of Arterial Damage in a Rat Stroke Model. Cell Transplant. 2023, 32, 10. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Roy, H.; Babu, M.; Shibuya, M.; Yla-Herttuala, S. Adventitial gene transfer of VEGFR-2 specific VEGF-E chimera induces MCP-1 expression in vascular smooth muscle cells and enhances neointimal formation. Atherosclerosis 2011, 219, 84–91. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Roy, H.; Heikura, T.; Ylä-Herttuala, S. VEGF-A, VEGF-D and VEGF-D(DeltaNDeltaC) induced intimal hyperplasia in carotid arteries. Eur. J. Clin. Investig. 2005, 35, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Hiltunen, M.O.; Laitinen, M.; Turunen, M.P.; Jeltsch, M.; Hartikainen, J.; Rissanen, T.T.; Laukkanen, J.; Niemi, M.; Kossila, M.; HäkKinen, T.P.; et al. Intravascular adenovirus-mediated VEGF-C gene transfer reduces neointima formation in balloon-denuded rabbit aorta. Circulation 2000, 102, 2262–2268. [Google Scholar] [CrossRef]
- Shiojima, I.; Walsh, K. The role of vascular endothelial growth factor in restenosis: The controversy continues. Circulation 2004, 110, 2283–2286. [Google Scholar] [CrossRef]
- Van Eekeren, R.R.J.P.; Boersma, D.; Holewijn, S.; Vahl, A.; de Vries, J.P.P.; Zeebregts, C.J.; Reijnen, M.M. Mechanochemical endovenous Ablation versus RADiOfrequeNcy Ablation in the treatment of primary great saphenous vein incompetence (MARADONA): Study protocol for a randomized controlled trial. Trials 2014, 15, 121. [Google Scholar] [CrossRef]
- Clowes, A.W.; Reidy, M.A.; Clowes, M.M. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab. Investig. J. Tech. Methods Pathol. 1983, 49, 327–333. [Google Scholar]
- Shi, Y.; O’BRien, J.E.; Fard, A.; Mannion, J.D.; Wang, D.; Zalewski, A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 1996, 94, 1655–1664. [Google Scholar] [CrossRef]
- Bayes-Genis, A.; Campbell, J.H.; Carlson, P.J.; Holmes, D.R.; Schwartz, R.S. Macrophages, myofibroblasts and neointimal hyperplasia after coronary artery injury and repair. Atherosclerosis 2002, 163, 89–98. [Google Scholar] [CrossRef]
- Simons, M. VEGF and restenosis: The rest of the story. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 439–440. [Google Scholar] [CrossRef] [PubMed]
- Bruczko, M.; Wolańska, M.; Małkowski, A.; Sobolewski, K.; Kowalewski, R. Evaluation of Vascular Endothelial Growth Factor and Its Receptors in Human Neointima. Pathobiology 2016, 83, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Kastora, S.L.; Eley, J.; Gannon, M.; Melvin, R.; Munro, E.; Makris, S.A. What Went Wrong with VEGF-A in Peripheral Arterial Disease? A Systematic Review and Biological Insights on Future Therapeutics. J. Vasc. Res. 2022, 59, 381–393. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, A.G. The Role of VEGF in Intervention-Mediated Injuries: Neointimal Hyperplasia and In-Stent Restenosis. J. Clin. Med. 2025, 14, 6184. https://doi.org/10.3390/jcm14176184
Hofmann AG. The Role of VEGF in Intervention-Mediated Injuries: Neointimal Hyperplasia and In-Stent Restenosis. Journal of Clinical Medicine. 2025; 14(17):6184. https://doi.org/10.3390/jcm14176184
Chicago/Turabian StyleHofmann, Amun G. 2025. "The Role of VEGF in Intervention-Mediated Injuries: Neointimal Hyperplasia and In-Stent Restenosis" Journal of Clinical Medicine 14, no. 17: 6184. https://doi.org/10.3390/jcm14176184
APA StyleHofmann, A. G. (2025). The Role of VEGF in Intervention-Mediated Injuries: Neointimal Hyperplasia and In-Stent Restenosis. Journal of Clinical Medicine, 14(17), 6184. https://doi.org/10.3390/jcm14176184