Radiomic Analysis Based on Abdominal CT-Scan to Predict Strangulation in Adhesive Small Bowel Obstruction: Preliminary Results
Abstract
1. Introduction
2. Materials and Methods
2.1. Population Definition and Inclusion Process
- The patient was diagnosed with ASBO.
- The patient was admitted at the IRCCS Humanitas Research Hospital, Rozzano, Milan.
- The patient underwent a diagnostic contrast-enhanced CT scan before being treated.
- The patient was 18 years old or older.
- The patient received a successful conservative management or underwent surgery with bowel resection and histological evidence of bowel ischemia.
- The presence of either bowel malignancy, hernia, inflammatory bowel disease (IBD), functional causes of SBO.
- Patients who underwent surgery without bowel resection
2.2. Dataset and Statistical Method
3. Results
3.1. Population Characteristics
3.2. Radiomics
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SBO | Small Bowel Obstruction |
CT | Computed Tomography |
WBC | White Blood Cells |
ED | Emergency Department |
IRCCS | Istituto di Ricovero e Cura a Carattere Scientifico |
IBD | Inflammatory Bowel Disease |
CM | Conservative management |
OM | Operative Management |
ROI | Region-Of-Interest |
CRP | C-Reactive Protein |
ASA | American Society of Anesthesiology |
BMI | Body Mass Index |
CFS | Clinical Frailty Score |
OA | Open Abdomen |
VLS | Laparoscopic Surgery |
CD | Claviend–Dindo |
GLCM | Gray Level Co-occurrence Matrix |
GLRLM | Gray Level Run Length Matrix |
References
- Maung, A.A.; Johnson, D.C.; Piper, G.L.; Barbosa, R.R.; Rowell, S.E.; Bokhari, F.; Collins, J.N.; Gordon, J.R.; Ra, J.H.; Kerwin, A.J. Evaluation and management of small-bowel obstruction: An Eastern Association for the Surgery of Trauma practice management guideline. J. Trauma Acute Care Surg. 2012, 73, S362–S369. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Robertson, J.; Koyfman, A. Emergency Medicine Evaluation and Management of Small Bowel Obstruction: Evidence-Based Recommendations. J. Emerg. Med. 2019, 56, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Catena, F.; De Simone, B.; Coccolini, F.; Di Saverio, S.; Sartelli, M.; Ansaloni, L. Bowel obstruction: A narrative review for all physicians. World J. Emerg. Surg. 2019, 14, 20. [Google Scholar] [CrossRef]
- Ten Broek, R.P.G.; Krielen, P.; Di Saverio, S.; Coccolini, F.; Biffl, W.L.; Ansaloni, L.; Velmahos, G.C.; Sartelli, M.; Fraga, G.P.; Kelly, M.D.; et al. Bologna guidelines for diagnosis and management of adhesive small bowel obstruction (ASBO): 2017 update of the evidence-based guidelines from the world society of emergency surgery ASBO working group. World J. Emerg. Surg. 2018, 13, 24. [Google Scholar] [CrossRef]
- Catena, F.; Di Saverio, S.; Coccolini, F.; Ansaloni, L.; De Simone, B.; Sartelli, M.; Van Goor, H. Adhesive small bowel adhesions obstruction: Evolutions in diagnosis, management and prevention. World J. Gastrointest. Surg. 2016, 8, 222. [Google Scholar] [CrossRef]
- Long, B.; Gottlieb, M. Accuracy of Ultrasonography for the Diagnosis of Small Bowel Obstruction. Am. Fam. Physician 2021, 104, 135–136. [Google Scholar] [PubMed]
- Kim, J.H.; Ha, H.K.; Kim, J.K.; Eun, H.W.; Park, K.B.; Kim, B.S.; Kim, T.K.; Kim, J.C.; Auh, Y.H. Usefulness of Known Computed Tomography and Clinical Criteria for Diagnosing Strangulation in Small-Bowel Obstruction: Analysis of True and False Interpretation Groups in Computed Tomography. World J. Surg. 2004, 28, 63–68. [Google Scholar] [CrossRef]
- Zamary, K.; Spain, D.A. Small Bowel Obstruction: The Sun Also Rises? J. Gastrointest. Surg. 2020, 24, 1922–1928. [Google Scholar] [CrossRef]
- Nicolaou, S.; Kai, B.; Ho, S.; Su, J.; Ahamed, K. Imaging of Acute Small-Bowel Obstruction. Am. J. Roentgenol. 2005, 185, 1036–1044. [Google Scholar] [CrossRef]
- Millet, I.; Taourel, P.; Ruyer, A.; Molinari, N. Value of CT findings to predict surgical ischemia in small bowel obstruction: A systematic review and meta-analysis. Eur. Radiol. 2015, 25, 1823–1835. [Google Scholar] [CrossRef] [PubMed]
- Aka, A.A.; Wright, J.P.; DeBeche-Adams, T. Small Bowel Obstruction. Clin. Colon Rectal Surg. 2021, 34, 219–226. [Google Scholar] [CrossRef]
- Guerrini, J.; Zugna, D.; Poretti, D.; Samà, L.; Costa, G.; Mei, S.; Ceolin, M.; Biloslavo, A.; Zago, M.; Viganò, L.; et al. Adhesive small bowel obstruction: Single band or matted adhesions? A predictive model based on computed tomography scan. J. Trauma Acute Care Surg. 2021, 90, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, N.; Hu, C.; Lin, Y.; Li, J.; Li, Z.; Cui, E.; Shi, L.; Zhuang, X.; Li, J.; et al. CT-based radiomics signature of visceral adipose tissue for prediction of disease progression in patients with Crohn’s disease: A multicentre cohort study. eClinicalMedicine 2023, 56, 101805. [Google Scholar] [CrossRef] [PubMed]
- Khurana, B. The Whirl Sign. Radiology 2003, 226, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Zins, M.; Millet, I.; Taourel, P. Adhesive Small Bowel Obstruction: Predictive Radiology to Improve Patient Management. Radiology 2020, 296, 480–492. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Yoon, J.-H.; Lee, H.-J.; Lim, Y.-J.; Yi, J.; Jung, W.B. Non-strangulated adhesive small bowel obstruction: CT findings predicting outcome of conservative treatment. Eur. Radiol. 2021, 31, 1597–1607. [Google Scholar] [CrossRef]
- Kim, H.R.; Lee, Y.; Kim, J.; Baek, T.W.; Kim, H.; Son, J.H.; Park, E.J.; Kim, S.H. Closed loop obstruction of small bowel: CT signs predicting successful non-surgical treatment. Eur. J. Radiol. 2023, 161, 110716. [Google Scholar] [CrossRef]
- Paisant, A.; Burgmaier, J.; Calame, P.; Loison, M.; Molière, S.; Brigand, C.; Belabbas, D.; Duchalais, E.; Regimbeau, J.; Yzet, T.; et al. The Angers CT Score is a Risk Factor for the Failure of the Conservative Management of Adhesive Small Bowel Obstruction: A Prospective Observational Multicentric Study. World J. Surg. 2023, 47, 975–984. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Zeynalova, A.; Kocak, B.; Durmaz, E.S.; Comunoglu, N.; Ozcan, K.; Ozcan, G.; Turk, O.; Tanriover, N.; Kocer, N.; Kizilkilic, O.; et al. Preoperative evaluation of tumour consistency in pituitary macroadenomas: A machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology 2019, 61, 767–774. [Google Scholar] [CrossRef]
- Savadjiev, P.; Chong, J.; Dohan, A.; Vakalopoulou, M.; Reinhold, C.; Paragios, N.; Gallix, B. Demystification of AI-driven medical image interpretation: Past, present and future. Eur. Radiol. 2019, 29, 1616–1624. [Google Scholar] [CrossRef]
- Mannil, M.; Von Spiczak, J.; Muehlematter, U.J.; Thanabalasingam, A.; Keller, D.I.; Manka, R.; Alkadhi, H. Texture analysis of myocardial infarction in CT: Comparison with visual analysis and impact of iterative reconstruction. Eur. J. Radiol. 2019, 113, 245–250. [Google Scholar] [CrossRef]
- Yang, L.; Yang, J.; Zhou, X.; Huang, L.; Zhao, W.; Wang, T.; Zhuang, J.; Tian, J. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients. Eur. Radiol. 2019, 29, 2196–2206. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, R.; Liu, S.; Sun, B.; Xie, W.; Wang, D.; Lu, Y. A computed tomography-based radiomic model for the prediction of strangulation risk in patients with acute intestinal obstruction. Intell. Med. 2024, 4, 33–42. [Google Scholar] [CrossRef]
- Desiato, E.; Lucia, A.M.A.; Giudici, S.; Ammirabile, A.; Francone, M.; Lanza, E.; Del Fabbro, D. Prognostic value of CT findings for conservative treatment failure in adhesive small bowel obstruction. Emerg. Radiol. 2024, 32, 33–40. [Google Scholar] [CrossRef]
- Lafata, K.J.; Wang, Y.; Konkel, B.; Yin, F.-F.; Bashir, M.R. Radiomics: A primer on high-throughput image phenotyping. Abdom. Radiol. 2021, 47, 2986–3002. [Google Scholar] [CrossRef]
- McCague, C.; Ramlee, S.; Reinius, M.; Selby, I.; Hulse, D.; Piyatissa, P.; Bura, V.; Crispin-Ortuzar, M.; Sala, E.; Woitek, R. Introduction to radiomics for a clinical audience. Clin. Radiol. 2023, 78, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA A Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed]
- Jancelewicz, T.; Vu, L.T.; Shawo, A.E.; Yeh, B.; Gasper, W.J.; Harris, H.W. Predicting Strangulated Small Bowel Obstruction: An Old Problem Revisited. J. Gastrointest. Surg. 2009, 13, 93–99. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, R.; Ali, N.S.; Leshchinskiy, S.; Cherukuri, A.R.; Tam, J.K. Small bowel obstruction and the gastrografin challenge. Abdom. Radiol. 2018, 43, 2945–2954. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo Classification of Surgical Complications: Five-Year Experience. Ann. Surg. 2009, 250, 187–196. Available online: https://journals.lww.com/annalsofsurgery/Fulltext/2009/08000/The_Clavien_Dindo_Classification_of_Surgical.2.aspx (accessed on 21 January 2025). [CrossRef] [PubMed]
- Rami Reddy, S.R.; Cappell, M.S. A Systematic Review of the Clinical Presentation, Diagnosis, and Treatment of Small Bowel Obstruction. Curr. Gastroenterol. Rep. 2017, 19, 28. [Google Scholar] [CrossRef]
- Andersen, P.; Jensen, K.K.; Erichsen, R.; Frøslev, T.; Krarup, P.-M.; Madsen, M.R.; Laurberg, S.; Iversen, L.H. Nationwide population-based cohort study to assess risk of surgery for adhesive small bowel obstruction following open or laparoscopic rectal cancer resection: Surgery for adhesive small bowel obstruction after rectal cancer resection. BJS Open 2017, 1, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.B.; Olafson, S.N.; Krupp, J.; Parsikia, A.; Kaplan, M.J.; Moran, B.; Leung, P.S. Timing of Gastrografin administration in the management of adhesive small bowel obstruction (ASBO): Does it matter? Surgery 2021, 170, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Liao, T.; Shangguan, X.; Ouyang, M.; Chen, Z.; Zheng, E.; Lin, B.; Chen, X. A multi-analysis of nomogram model for the identification of banded adhesions and matted adhesions in adhesive small bowel obstruction. Eur. J. Trauma Emerg. Surg. 2023, 49, 2277–2285. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Guo, Y.; Shen, M.; Yang, G.-Z. Application of artificial intelligence in surgery. Front. Med. 2020, 14, 417–430. [Google Scholar] [CrossRef]
Conservative Management (CM) | Operative Management (OM) | p-Values | |
---|---|---|---|
N = 27 | N = 28 | ||
Preoperative Variables | |||
Males n (%) | 16 (59) | 11 (39) | 0.19 |
Age mean (95%IC) | 68.750 (41.6–88.4) | 68.957 (40.5–89.7) | 0.96 |
1st Episode n (%) | 16 (59) | 25 (89) | 0.03 |
Colostomy n (%) | 3 (11) | 0.0 | 1.00 |
Ileostomy n (%) | 0.0 | 0.0 | 1.00 |
Hypertension n (%) | 13 (48) | 8 (29) | 0.46 |
Diabetes n(%) | 2 (7) | 6 (21) | 0.17 |
More than 5 medication intake n(%) | 6 (22) | 11 (39) | 0.47 |
CRF n(%) | 0.0 | 3 (11) | 0.45 |
Cardiopathy n(%) | 4 (15) | 8 (29) | 0.25 |
Previous Abdominal surgery n (%) | 22 (81) | 21 (75) | 1.00 |
Previous laparotomies mean (95%IC) | 1.19 (0.80,1.58) | 0.64 (0.30,0.98) | 0.09 |
Hb mean (95%IC) | 14.16 (8.6–18.38) | 14.57 (11.23–17.44) | 0.55 |
PLT mean (95%IC) | 297.13 (170.68–628.55) | 282.39 (116.90–525.45) | 0.92 |
WBC mean (95%IC) | 10.84 (5.36–19.73) | 12.26 (6.58–18.61) | 0.21 |
CPR mean (95%IC) | 1.87 (0.09–10.12) | 6.06 (0.08–25.99) | 0.86 |
Bil Tot mean (95%IC) | 1.26 (0.45–3.38) | 1.27 (0.31–4.87) | 0.53 |
Urea mean (95%IC) | 56.51 (22.56–149.16) | 59.65 (10.08–171.79) | 0.98 |
Sodium mean (95%IC) | 137.25 (130.88–141.85) | 137.0 (131.0–143.35) | 0.81 |
Potassium mean (95%IC) | 3.935 (3.03–4.60) | 4.13 (3.35–5.19) | 0.32 |
Creatinine mean (95%IC) | 0.98 (0.65–1.70) | 1.36 (0.57–4.75) | 0.44 |
Lactate mean (95%IC) | 2.16 (0.93–3.00) | 2.42 (1.33–3.84) | 0.68 |
Charlson index mean (95%IC) | 0.67 (0.12–1.22) | 2.18 (1.41–2.95) | 0.08 |
Charlson index percentage mean (95%IC) | 39.7 (29.61–49.79) | 17.18 (4.51–29.85) | 0.06 |
CFS mean (95%IC) | 3.20 (2.25–4.15) | 2.46 (1.97–2.95) | 0.34 |
ASA median (95%IC) | 2 (1.5–2.0) | 2 (1.0–3.0) | 0.81 |
BMI mean (95%IC) | 20.65 (18.73–23.78) | 25.01 (18.75–36.98) | 0.09 |
Conservative Management (CM) | Operative Management (OM) | p-Values | |
---|---|---|---|
N = 27 | N = 28 | ||
Abdominal US n (%) | 9 (33) | 9 (32) | 0.61 |
Complete SBO n (%) | 9 (33) | 14 (50) | 0.41 |
Small bowel faces sign n (%) | 25 (93) | 14 (50) | 0.00 |
Pneumatosis n (%) | 1 (4) | 11 (39) | 0.22 |
Single transition zone n (%) | 22 (81) | 22 (79) | 1.00 |
Double transition zone n (%) | 4 (15) | 10 (36) | 1.00 |
Whirls Sign n (%) | 5 (18) | 6 (21) | 1.00 |
Beak sign n (%) | 3 (11) | 7 (25) | 1.00 |
Fat Notch sign n (%) | 4 (15) | 7 (25) | 0.65 |
Reduced wall enhancement n (%) | 1 (4) | 18 (64) | 0.00 |
Peritoineal fluid n (%) | 15 (16) | 11 (39) | 0.95 |
Conservative Management (CM) | Operative Management (OM) | ||
---|---|---|---|
N = 27 | N = 28 | ||
Conservative management n (%) | 27 (100) | 18 (64) | 0 |
Conservative managmenet failure n (%) | 1 (4) | 18 (64) | 0.35 |
Surgical procedure after failure n (%) | 1 (4) | 18 (64) | 0.46 |
Surgical intervention n (%) | 1 (4) | 28 (100) | 0 |
Bowel resection n (%) | Na | 28 (100) | 1 |
Bowel perforation n (%) | Na | 6 (21) | 1 |
Single band sdhesion n (%) | Na | 17 (61) | 1 |
Mattox adhesions n (%) | Na | 8 (29) | 1 |
Laparoscopic approach n (%) | Na | 9 (32) | 1 |
Laparotomy n (%) | Na | 18 (64) | 1 |
Open Abdomen n (%) | Na | 5 (18) | 1 |
Conversion from VLS to LPT n (%) | Na | 18.0 | 1 |
Stoma n (%) | Na | 0.0 | 1 |
Complications n (%) | 0.0 | 13 (46) | 0.34 |
Clavien dindo ≥ 3 n (%) | 0.0 | 4 (14) | 1 |
Mortality n (%) | 0.0 | 0.0 | 0.98 |
Discharged from the ED n (%) | 20 (74) | 0.0 | 0 |
New ED access within 5 days n (%) | 1 (4) | 3 (11) | 0.57 |
Feature | Conservative Management (CM) | Operative Management (OM) | p-Values | OR–95%CI | p-Value |
---|---|---|---|---|---|
Univariate | Multivariate | ||||
Firstorder_Entropy | 3.26 (2.32–4.46) | 2.70 (1.94–3.76) | 0.01 | 0.33 (0.13–0.81) | 0.02 |
Firstorder_Minimum | −940.96 (−1024.00–−572.00) | −627.13 (−1024.00–−32.45) | 0.02 | 2.79 (1.10–7.08) | 0.03 |
Firstorder_Uniformity | 0.16 (0.07–0.27) | 0.22 (0.12–0.34) | 0.01 | 3.41 (1.36–8.54) | 0.01 |
Glcm_Autocorrelation | 1409.25 (590.33–1774.64) | 851.86 (14.00–1770.97) | 0.03 | 0.45 (0.20–1.00) | 0.05 |
Glcm_Clustershade | −10,938.70 (−36,164.72–739.90) | −3914.69 (−34,569.41–12,015.40) | 0.01 | 2.69 (0.98–7.42) | 0.06 |
Glcm_Correlation | 0.71 (0.37–0.93) | 0.59 (0.35–0.94) | 0.03 | 0.47 (0.22–1.02) | 0.06 |
Glcm_Difference entropy | 2.43 (1.77–3.38) | 2.04 (1.38–3.43) | 0.01 | 0.45 (0.20–1.02) | 0.06 |
Glcm_Imc2 | 0.76 (0.52–0.94) | 0.64 (0.42–0.91) | 0.01 | 0.43 (0.19–0.96) | 0.04 |
Glcm_Joint average | 36.15 (23.40–41.95) | 24.49 (3.55–41.76) | 0.04 | 0.40 (0.17–0.93) | 0.03 |
Glcm_Joint energy | 0.05 (0.01–0.10) | 0.07 (0.03–0.16) | 0.01 | 3.36 (1.21–9.32) | 0.02 |
Glcm_Joint entropy | 5.91 (4.27–7.95) | 4.94 (3.42–7.25) | 0.01 | 0.35 (0.15–0.86) | 0.02 |
Glcm_Maximum probability | 0.12 (0.04–0.24) | 0.17 (0.08–0.33) | 0.06 | 2.79 (1.11–6.96) | 0.03 |
Glcm_Sum average | 72.29 (46.80–83.90) | 48.98 (7.10–83.52) | 0.04 | 0.40 (0.17–0.93) | 0.03 |
Glcm_Sum entropy | 4.10 (2.91–5.51) | 3.44 (2.54–5.10) | 0.01 | 0.38 (0.16–0.87) | 0.02 |
Gldm_Dependence entropy | 6.91 (6.12–7.86) | 6.43 (5.87–7.49) | 0.01 | 0.32 (0.13–0.78) | 0.01 |
Gldm_High gray level emphasis | 1429.80 (589.43–1782.48) | 871.06 (15.57–1765.87) | 0.03 | 0.45 (0.20–1.01) | 0.05 |
Gldm_Small dependence emphasis | 0.10 (0.06–0.19) | 0.08 (0.04–0.15) | 0.03 | 0.38 (0.15–0.98) | 0.04 |
Gldm_Small dependence high gray level emphasis | 124.16 (33.24–207.78) | 69.26 (1.21–161.38) | 0.01 | 0.34 (0.14–0.84) | 0.02 |
Glrlm_Gray level non uniformity normalized | 0.14 (0.06–0.22) | 0.19 (0.09–0.28) | 0.01 | 3.21 (1.29–7.96) | 0.01 |
Glrlm_High gray level run emphasis | 1424.63 (590.46–1775.01) | 870.73 (16.23–1755.96) | 0.02 | 0.44 (0.20–1.00) | 0.05 |
Glrlm_Long run emphasis | 2.65 (1.78–3.63) | 3.27 (2.05–6.11) | 0.10 | 2.64 (1.01–6.89) | 0.05 |
Glrlm_Run entropy | 4.50 (3.74–5.54) | 4.04 (3.35–5.28) | 0.01 | 0.38 (0.16–0.91) | 0.03 |
Glrlm_Short run high gray level emphasis | 1148.09 (453.31–1405.24) | 698.33 (13.42–1430.10) | 0.03 | 0.44 (0.19–0.99) | 0.05 |
Glszm_Gray level non uniformity normalized | 0.06 (0.03–0.13) | 0.11 (0.03–0.21) | 0.01 | 2.91 (1.18–7.16) | 0.02 |
Glszm_Low gray level zone emphasis | 0.01 (0.00–0.02) | 0.03 (0.00–0.20) | 0.06 | 24.36 (0.98–608.45) | 0.05 |
Glszm_Size zone non uniformity | 2673.05 (571.60–5480.80) | 1657.94 (214.35–5560.23) | 0.01 | 0.46 (0.21–1.00) | 0.05 |
Glszm_Size zone non uniformity normalized | 0.403 (0.334–0.504) | 0.35 (0.22–0.48) | 0.01 | 0.31 (0.11–0.85) | 0.02 |
Glszm_Small area emphasis | 0.658 (0.598–0.737) | 0.60 (0.47–0.72) | 0.01 | 0.29 (0.10–0.83) | 0.02 |
Glszm_Zone entropy | 6.539 (5.436–7.194) | 6.06 (5.12–7.42) | 0.01 | 0.45 (0.20–0.97) | 0.04 |
Glszm_Zone percentage | 0.099 (0.046–0.202) | 0.07 (0.02–0.16) | 0.03 | 0.41 (0.16–1.02) | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunino, F.M.; Lanza, E.; Sellaro, G.; Levi, R.; Zulian, D.; Giudici, S.; Del Fabbro, D. Radiomic Analysis Based on Abdominal CT-Scan to Predict Strangulation in Adhesive Small Bowel Obstruction: Preliminary Results. J. Clin. Med. 2025, 14, 6286. https://doi.org/10.3390/jcm14176286
Bunino FM, Lanza E, Sellaro G, Levi R, Zulian D, Giudici S, Del Fabbro D. Radiomic Analysis Based on Abdominal CT-Scan to Predict Strangulation in Adhesive Small Bowel Obstruction: Preliminary Results. Journal of Clinical Medicine. 2025; 14(17):6286. https://doi.org/10.3390/jcm14176286
Chicago/Turabian StyleBunino, Francesca Margherita, Ezio Lanza, Gianluca Sellaro, Riccardo Levi, Davide Zulian, Simone Giudici, and Daniele Del Fabbro. 2025. "Radiomic Analysis Based on Abdominal CT-Scan to Predict Strangulation in Adhesive Small Bowel Obstruction: Preliminary Results" Journal of Clinical Medicine 14, no. 17: 6286. https://doi.org/10.3390/jcm14176286
APA StyleBunino, F. M., Lanza, E., Sellaro, G., Levi, R., Zulian, D., Giudici, S., & Del Fabbro, D. (2025). Radiomic Analysis Based on Abdominal CT-Scan to Predict Strangulation in Adhesive Small Bowel Obstruction: Preliminary Results. Journal of Clinical Medicine, 14(17), 6286. https://doi.org/10.3390/jcm14176286