A Comprehensive Review of Fluid Resuscitation Strategies in Traumatic Brain Injury
Abstract
1. Introduction
2. Methods
2.1. Pathophysiological Issues
2.1.1. Blood–Brain Barrier Disruption
2.1.2. Cerebral Autoregulation
2.1.3. Arterial Blood Pressure and Central Venous Pressure
3. Fluid Management in Patients with TBI
3.1. Goals of Fluid Resuscitation
3.1.1. Arterial Blood Pressure
3.1.2. Volume Status
3.1.3. CPP and ICP
3.2. Monitoring
3.2.1. Hemodynamic Monitoring
3.2.2. Neuromonitoring
4. Fluid Administration in TBI
4.1. Types of Fluids
4.1.1. Colloids vs. Crystalloids
4.1.2. Albumin vs. Crystalloids
4.1.3. Balanced Crystalloids vs. Isotonic Saline
4.1.4. Hypertonic Saline
5. Transfusion Strategies in Patients with TBI
6. Conclusions
7. Key Take-Home Points
- Key elements of TBI management are mainly ICP monitoring and maintenance of CPP to avoid or minimize secondary brain injury, limit cerebral edema, and reduce primary neuronal damage.
- Current guidelines recommend an ICP threshold of <22 mmHg and a CPP of 60–70 mmHg, personalized according to CPPopt when available.
- The goal of fluid resuscitation is to maintain normotensive blood pressure and euvolemia.
- Both hypotension and hypertension, as well as hypovolemia and hypervolemia, can have harmful effects.
- Crystalloid administration based on hemodynamic and multimodal neuromonitoring is the therapy of choice, while hypertonic solutions may be considered in patients with intracranial hypertension.
- Balanced crystalloids are generally not recommended, as their use could theoretically contribute to the development or worsening of cerebral edema.
- Transfusion strategies in patients with severe TBI should be tailored to individual systemic and cerebral physiological parameters.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2019, 130, 1080–1097. [Google Scholar] [CrossRef]
- Thapa, K.; Khan, H.; Singh, T.G.; Kaur, A. Traumatic Brain Injury: Mechanistic Insight on Pathophysiology and Potential Therapeutic Targets. J. Mol. Neurosci. 2021, 71, 1725–1742. [Google Scholar] [CrossRef]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef]
- Jin, G.; DeMoya, M.A.; Duggan, M.; Knightly, T.; Mejaddam, A.Y.; Hwabejire, J.; Lu, J.; Smith, W.M.; Kasotakis, G.; Velmahos, G.C.; et al. Traumatic brain injury and hemorrhagic shock: Evaluation of different resuscitation strategies in a large animal model of combined insults. Shock 2012, 38, 49–56. [Google Scholar] [CrossRef]
- Wiegers, E.J.A.; Lingsma, H.F.; Huijben, J.A.; Cooper, D.J.; Citerio, G.; Frisvold, S.; Helbok, R.; Maas, A.I.R.; Menon, D.K.; Moore, E.M.; et al. Fluid balance and outcome in critically ill patients with traumatic brain injury (CENTER-TBI and OzENTER-TBI): A prospective, multicentre, comparative effectiveness study. Lancet Neurol. 2021, 20, 627–638. [Google Scholar] [CrossRef]
- McHugh, G.S.; Engel, D.C.; Butcher, I.; Steyerberg, E.W.; Lu, J.; Mushkudiani, N.; Hernandez, A.V.; Marmarou, A.; Maas, A.I.; Murray, G.D. Prognostic value of secondary insults in traumatic brain injury: Results from the IMPACT study. J. Neurotrauma 2007, 24, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Manley, G.; Knudson, M.M.; Morabito, D.; Damron, S.; Erickson, V.; Pitts, L. Hypotension, hypoxia, and head injury: Frequency, duration, and consequences. Arch. Surg. 2001, 136, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Wang, W.; Rezk, A.; Mohammed, A.; Macabudbud, K.; Englesakis, M.; Lele, A.; Zeiler, F.A.; Chowdhury, T. Hypotension and Adverse Outcomes in Moderate to Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2024, 7, e2444465. [Google Scholar] [CrossRef] [PubMed]
- Ziaka, M.; Exadaktylos, A. Brain-lung interactions and mechanical ventilation in patients with isolated brain injury. Crit. Care 2021, 25, 358. [Google Scholar] [CrossRef]
- Krishnamoorthy, V.; Rowhani-Rahbar, A.; Gibbons, E.F.; Rivara, F.P.; Temkin, N.R.; Pontius, C.; Luk, K.; Graves, M.; Lozier, D.; Chaikittisilpa, N.; et al. Early Systolic Dysfunction Following Traumatic Brain Injury: A Cohort Study. Crit. Care Med. 2017, 45, 1028–1036. [Google Scholar] [CrossRef]
- Krishnamoorthy, V.; Rowhani-Rahbar, A.; Chaikittisilpa, N.; Gibbons, E.F.; Rivara, F.P.; Temkin, N.R.; Quistberg, A.; Vavilala, M.S. Association of Early Hemodynamic Profile and the Development of Systolic Dysfunction Following Traumatic Brain Injury. Neurocrit. Care 2017, 26, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Samuels, M.A. The brain-heart connection. Circulation 2007, 116, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Bentzer, P.; Grande, P.O. Isolated Brain Trauma in Cats Triggers Rapid Onset of Hypovolemia. Neurocrit. Care 2017, 26, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, D.; Rajesh, K.; Priya, S.M.; Abhinov, T.; Devendra Prasad, K.J. Prediction of Outcome Based on Trauma and Injury Severity Score, IMPACT and CRASH Prognostic Models in Moderate-to-Severe Traumatic Brain Injury in the Elderly. Asian J. Neurosurg. 2021, 16, 500–506. [Google Scholar] [CrossRef]
- Rice, A.D.; Hu, C.; Spaite, D.W.; Barnhart, B.J.; Chikani, V.; Gaither, J.B.; Denninghoff, K.R.; Bradley, G.H.; Howard, J.T.; Keim, S.M.; et al. Correlation between prehospital and in-hospital hypotension and outcomes after traumatic brain injury. Am. J. Emerg. Med. 2023, 65, 95–103. [Google Scholar] [CrossRef]
- Becker, A.; Hershkovitz, Y.; Peleg, K.; Dubose, J.; Adi, G.; Aala, Z.; Kessel, B. Hypotension on admission in patients with isolated traumatic brain injury: Contemporary examination of the incidence and outcomes using a national registry. Brain Inj. 2020, 34, 1422–1426. [Google Scholar] [CrossRef]
- Di Filippo, S.; Messina, A.; Pelosi, P.; Robba, C. Eight rules for the haemodynamic management of traumatic brain-injured patients. Eur. J. Anaesthesiol. Intensive Care 2023, 2, e0029. [Google Scholar] [CrossRef]
- Oddo, M.; Poole, D.; Helbok, R.; Meyfroidt, G.; Stocchetti, N.; Bouzat, P.; Cecconi, M.; Geeraerts, T.; Martin-Loeches, I.; Quintard, H.; et al. Fluid therapy in neurointensive care patients: ESICM consensus and clinical practice recommendations. Intensive Care Med. 2018, 44, 449–463. [Google Scholar] [CrossRef]
- Stahle, L.; Nilsson, A.; Hahn, R.G. Modelling the volume of expandable body fluid spaces during i.v. fluid therapy. Br. J. Anaesth. 1997, 78, 138–143. [Google Scholar] [CrossRef]
- Balakumar, V.; Murugan, R.; Sileanu, F.E.; Palevsky, P.; Clermont, G.; Kellum, J.A. Both Positive and Negative Fluid Balance May Be Associated with Reduced Long-Term Survival in the Critically Ill. Crit. Care Med. 2017, 45, e749–e757. [Google Scholar] [CrossRef]
- Pepe, P.E.; Dutton, R.P.; Fowler, R.L. Preoperative resuscitation of the trauma patient. Curr. Opin. Anaesthesiol. 2008, 21, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Rezende-Neto, J.B.; Rizoli, S.B.; Andrade, M.V.; Ribeiro, D.D.; Lisboa, T.A.; Camargos, E.R.; Martins, P.; Cunha-Melo, J.R. Permissive hypotension and desmopressin enhance clot formation. J. Trauma 2010, 68, 42–50; discussion 50–51. [Google Scholar] [CrossRef] [PubMed]
- Bilkovski, R.N.; Rivers, E.P.; Horst, H.M. Targeted resuscitation strategies after injury. Curr. Opin. Crit. Care 2004, 10, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Geeraedts, L.M., Jr.; Kaasjager, H.A.; van Vugt, A.B.; Frolke, J.P. Exsanguination in trauma: A review of diagnostics and treatment options. Injury 2009, 40, 11–20. [Google Scholar] [CrossRef]
- Duchesne, J.C.; Hunt, J.P.; Wahl, G.; Marr, A.B.; Wang, Y.Z.; Weintraub, S.E.; Wright, M.J.; McSwain, N.E., Jr. Review of current blood transfusions strategies in a mature level I trauma center: Were we wrong for the last 60 years? J. Trauma 2008, 65, 272–276; discussion 276–278. [Google Scholar] [CrossRef]
- Kudo, D.; Yoshida, Y.; Kushimoto, S. Permissive hypotension/hypotensive resuscitation and restricted/controlled resuscitation in patients with severe trauma. J. Intensive Care 2017, 5, 11. [Google Scholar] [CrossRef]
- Bansch, P.; Statkevicius, S.; Bentzer, P. Plasma volume expansion with 5% albumin compared to Ringer’s acetate during normal and increased microvascular permeability in the rat. Anesthesiology 2014, 121, 817–824. [Google Scholar] [CrossRef]
- McIlroy, D.R.; Kharasch, E.D. Acute intravascular volume expansion with rapidly administered crystalloid or colloid in the setting of moderate hypovolemia. Anesth. Analg. 2003, 96, 1572–1577. [Google Scholar] [CrossRef]
- Sekhon, M.S.; Dhingra, V.K.; Sekhon, I.S.; Henderson, W.R.; McLean, N.; Griesdale, D.E. The safety of synthetic colloid in critically ill patients with severe traumatic brain injuries. J. Crit. Care 2011, 26, 357–362. [Google Scholar] [CrossRef]
- The SAFE Study Investigators. Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N. Engl. J. Med. 2007, 357, 874–884. [Google Scholar] [CrossRef]
- Ibrahim, G.M.; Macdonald, R.L. The effects of fluid balance and colloid administration on outcomes in patients with aneurysmal subarachnoid hemorrhage: A propensity score-matched analysis. Neurocrit. Care 2013, 19, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M.Y.; Hutchinson, P.J.; Kirkpatrick, P.J. Effects of fluid therapy following aneurysmal subarachnoid haemorrhage: A prospective clinical study. Br. J. Neurosurg. 2008, 22, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Jensen, L.; Nahirniak, S.; Gibney, R.T. Anemia and blood transfusion practices in the critically ill: A prospective cohort review. Heart Lung 2010, 39, 217–225. [Google Scholar] [CrossRef]
- Napolitano, L.M. Understanding Anemia in the ICU to Develop Future Treatment Strategies. Am. J. Respir. Crit. Care Med. 2018, 198, 554–555. [Google Scholar] [CrossRef]
- Hill, G.E.; Frawley, W.H.; Griffith, K.E.; Forestner, J.E.; Minei, J.P. Allogeneic blood transfusion increases the risk of postoperative bacterial infection: A meta-analysis. J. Trauma 2003, 54, 908–914. [Google Scholar] [CrossRef]
- Taylor, R.W.; Manganaro, L.; O’Brien, J.; Trottier, S.J.; Parkar, N.; Veremakis, C. Impact of allogenic packed red blood cell transfusion on nosocomial infection rates in the critically ill patient. Crit. Care Med. 2002, 30, 2249–2254. [Google Scholar] [CrossRef]
- Vlaar, A.P.; Oczkowski, S.; de Bruin, S.; Wijnberge, M.; Antonelli, M.; Aubron, C.; Aries, P.; Duranteau, J.; Juffermans, N.P.; Meier, J.; et al. Transfusion strategies in non-bleeding critically ill adults: A clinical practice guideline from the European Society of Intensive Care Medicine. Intensive Care Med. 2020, 46, 673–696. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.I.; Craswell, A.; Thom, O.; Fung, Y.L. Outcomes of restrictive versus liberal transfusion strategies in older adults from nine randomised controlled trials: A systematic review and meta-analysis. Lancet Haematol. 2017, 4, e465–e474. [Google Scholar] [CrossRef]
- Carson, J.L.; Stanworth, S.J.; Roubinian, N.; Fergusson, D.A.; Triulzi, D.; Doree, C.; Hebert, P.C. Transfusion thresholds and other strategies for guiding allogeneic red blood cell transfusion. Cochrane Database Syst. Rev. 2016, 10, CD002042. [Google Scholar] [CrossRef]
- Kuriakose, M.; Rama Rao, K.V.; Younger, D.; Chandra, N. Temporal and Spatial Effects of Blast Overpressure on Blood-Brain Barrier Permeability in Traumatic Brain Injury. Sci. Rep. 2018, 8, 8681. [Google Scholar] [CrossRef]
- van Vliet, E.A.; Ndode-Ekane, X.E.; Lehto, L.J.; Gorter, J.A.; Andrade, P.; Aronica, E.; Grohn, O.; Pitkanen, A. Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury. Neurobiol. Dis. 2020, 145, 105080. [Google Scholar] [CrossRef]
- Saatman, K.E.; Duhaime, A.C.; Bullock, R.; Maas, A.I.; Valadka, A.; Manley, G.T.; Workshop Scientific Team; Advisory Panel Members. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 2008, 25, 719–738. [Google Scholar] [CrossRef]
- Price, L.; Wilson, C.; Grant, G. Blood-Brain Barrier Pathophysiology following Traumatic Brain Injury. In Translational Research in Traumatic Brain Injury; Laskowitz, D., Grant, G., Eds.; NIH: Boca Raton, FL, USA, 2016. [Google Scholar]
- Winkler, E.A.; Minter, D.; Yue, J.K.; Manley, G.T. Cerebral Edema in Traumatic Brain Injury: Pathophysiology and Prospective Therapeutic Targets. Neurosurg. Clin. N. Am. 2016, 27, 473–488. [Google Scholar] [CrossRef]
- Badaut, J.; Ashwal, S.; Obenaus, A. Aquaporins in cerebrovascular disease: A target for treatment of brain edema? Cerebrovasc. Dis. 2011, 31, 521–531. [Google Scholar] [CrossRef]
- Jha, R.M.; Kochanek, P.M.; Simard, J.M. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2019, 145 Pt B, 230–246. [Google Scholar] [CrossRef]
- Hudak, A.M.; Peng, L.; de la Plata, C.M.; Thottakara, J.; Moore, C.; Harper, C.; McColl, R.; Babcock, E.; Diaz-Arrastia, R. Cytotoxic and vasogenic cerebral oedema in traumatic brain injury: Assessment with FLAIR and DWI imaging. Brain Inj. 2014, 28, 1602–1609. [Google Scholar] [CrossRef]
- Stokum, J.A.; Gerzanich, V.; Simard, J.M. Molecular pathophysiology of cerebral edema. J. Cereb. Blood Flow. Metab. 2016, 36, 513–538. [Google Scholar] [CrossRef]
- Shlosberg, D.; Benifla, M.; Kaufer, D.; Friedman, A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol. 2010, 6, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Alves, J.L. Blood-brain barrier and traumatic brain injury. J. Neurosci. Res. 2014, 92, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Kimelberg, H.K. Water homeostasis in the brain: Basic concepts. Neuroscience 2004, 129, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.M. Transport Across the Blood-Brain Barrier. Adv. Exp. Med. Biol. 2018, 1097, 235–259. [Google Scholar] [CrossRef]
- Kozler, P.; Riljak, V.; Pokorny, J. Both water intoxication and osmotic BBB disruption increase brain water content in rats. Physiol. Res. 2013, 62 (Suppl. S1), S75–S80. [Google Scholar] [CrossRef]
- Olson, J.E.; Banks, M.; Dimlich, R.V.; Evers, J. Blood-brain barrier water permeability and brain osmolyte content during edema development. Acad. Emerg. Med. 1997, 4, 662–673. [Google Scholar] [CrossRef]
- Overgaard-Steensen, C.; Stodkilde-Jorgensen, H.; Larsson, A.; Broch-Lips, M.; Tonnesen, E.; Frokiaer, J.; Ring, T. Regional differences in osmotic behavior in brain during acute hyponatremia: An in vivo MRI-study of brain and skeletal muscle in pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R521–R532. [Google Scholar] [CrossRef]
- Melton, J.E.; Nattie, E.E. Brain and CSF water and ions during dilutional and isosmotic hyponatremia in the rat. Am. J. Physiol. 1983, 244, R724–R732. [Google Scholar] [CrossRef]
- Hochwald, G.M.; Wald, A.; Malhan, C. The sink action of cerebrospinal fluid volume flow. Effect on brain water content. Arch. Neurol. 1976, 33, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Nattie, E.E.; Edwards, W.H. Brain and CSF water and ions in newborn puppies during acute hypo- and hypernatremia. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 51, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Arieff, A.I.; Guisado, R. Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney Int. 1976, 10, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Holliday, M.A.; Kalayci, M.N.; Harrah, J. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia. J. Clin. Investig. 1968, 47, 1916–1928. [Google Scholar] [CrossRef]
- Gankam Kengne, F.; Decaux, G. Hyponatremia and the Brain. Kidney Int. Rep. 2018, 3, 24–35. [Google Scholar] [CrossRef]
- Ertmer, C.; Van Aken, H. Fluid therapy in patients with brain injury: What does physiology tell us? Crit. Care 2014, 18, 119. [Google Scholar] [CrossRef]
- Saw, M.M.; Chamberlain, J.; Barr, M.; Morgan, M.P.; Burnett, J.R.; Ho, K.M. Differential disruption of blood-brain barrier in severe traumatic brain injury. Neurocrit. Care 2014, 20, 209–216. [Google Scholar] [CrossRef]
- Chodobski, A.; Zink, B.J.; Szmydynger-Chodobska, J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl. Stroke Res. 2011, 2, 492–516. [Google Scholar] [CrossRef]
- Lassen, N.A. Cerebral blood flow and oxygen consumption in man. Physiol. Rev. 1959, 39, 183–238. [Google Scholar] [CrossRef]
- Tan, C.O.; Taylor, J.A. Integrative physiological and computational approaches to understand autonomic control of cerebral autoregulation. Exp. Physiol. 2014, 99, 3–15. [Google Scholar] [CrossRef]
- Drummond, J.C. The lower limit of autoregulation: Time to revise our thinking? Anesthesiology 1997, 86, 1431–1433. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Carpenter, K.L.; Hutchinson, P.J.; Smielewski, P.; Helmy, A. Candidate neuroinflammatory markers of cerebral autoregulation dysfunction in human acute brain injury. J. Cereb. Blood Flow. Metab. 2023, 43, 1237–1253. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, W.M. On the local reactions of the arterial wall to changes of internal pressure. J. Physiol. 1902, 28, 220–231. [Google Scholar] [CrossRef]
- Fog, M. The Relationship between the Blood Pressure and the Tonic Regulation of the Pial Arteries. J. Neurol. Psychiatry 1938, 1, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.C.; Wang, Z.; Britz, G. Regulation of cerebral blood flow. Int. J. Vasc. Med. 2011, 2011, 823525. [Google Scholar] [CrossRef]
- Osol, G.; Halpern, W. Myogenic properties of cerebral blood vessels from normotensive and hypertensive rats. Am. J. Physiol. 1985, 249 Pt 2, H914–H921. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.O.; Hamner, J.W.; Taylor, J.A. The role of myogenic mechanisms in human cerebrovascular regulation. J. Physiol. 2013, 591, 5095–5105. [Google Scholar] [CrossRef]
- Willie, C.K.; Tzeng, Y.C.; Fisher, J.A.; Ainslie, P.N. Integrative regulation of human brain blood flow. J. Physiol. 2014, 592, 841–859. [Google Scholar] [CrossRef]
- Wei, E.P.; Raper, A.J.; Kontos, H.A.; Patterson, J.L., Jr. Determinants of response of pial arteries to norepinephrine and sympathetic nerve stimulation. Stroke 1975, 6, 654–658. [Google Scholar] [CrossRef]
- Busija, D.W.; Heistad, D.D.; Marcus, M.L. Effects of sympathetic nerves on cerebral vessels during acute, moderate increases in arterial pressure in dogs and cats. Circ. Res. 1980, 46, 696–702. [Google Scholar] [CrossRef]
- Lee, T.J.; Hume, W.R.; Su, C.; Bevan, J.A. Neurogenic vasodilation of cat cerebral arteries. Circ. Res. 1978, 42, 535–542. [Google Scholar] [CrossRef]
- Nordstrom, C.H.; Messeter, K.; Sundbarg, G.; Schalen, W.; Werner, M.; Ryding, E. Cerebral blood flow, vasoreactivity, and oxygen consumption during barbiturate therapy in severe traumatic brain lesions. J. Neurosurg. 1988, 68, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Sjoberg, F.; Gustafsson, U.; Eintrei, C. Specific blood flow reducing effects of hyperoxaemia on high flow capillaries in the pig brain. Acta Physiol. Scand. 1999, 165, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Kety, S.S.; Schmidt, C.F. The Effects of Altered Arterial Tensions of Carbon Dioxide and Oxygen on Cerebral Blood Flow and Cerebral Oxygen Consumption of Normal Young Men. J. Clin. Investig. 1948, 27, 484–492. [Google Scholar] [CrossRef]
- Menzel, M.; Doppenberg, E.M.; Zauner, A.; Soukup, J.; Reinert, M.M.; Clausen, T.; Brockenbrough, P.B.; Bullock, R. Cerebral oxygenation in patients after severe head injury: Monitoring and effects of arterial hyperoxia on cerebral blood flow, metabolism and intracranial pressure. J. Neurosurg. Anesthesiol. 1999, 11, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Wettervik, T.S.; Engquist, H.; Howells, T.; Lenell, S.; Rostami, E.; Hillered, L.; Enblad, P.; Lewen, A. Arterial Oxygenation in Traumatic Brain Injury-Relation to Cerebral Energy Metabolism, Autoregulation, and Clinical Outcome. J. Intensive Care Med. 2021, 36, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Bouma, G.J.; Muizelaar, J.P.; Bandoh, K.; Marmarou, A. Blood pressure and intracranial pressure-volume dynamics in severe head injury: Relationship with cerebral blood flow. J. Neurosurg. 1992, 77, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Rosengarten, B.; Ruskes, D.; Mendes, I.; Stolz, E. A sudden arterial blood pressure decrease is compensated by an increase in intracranial blood volume. J. Neurol. 2002, 249, 538–541. [Google Scholar] [CrossRef]
- Haubrich, C.; Czosnyka, Z.; Lavinio, A.; Smielewski, P.; Diehl, R.R.; Pickard, J.D.; Czosnyka, M. Is there a direct link between cerebrovascular activity and cerebrospinal fluid pressure-volume compensation? Stroke 2007, 38, 2677–2680. [Google Scholar] [CrossRef]
- Claassen, J.; Thijssen, D.H.J.; Panerai, R.B.; Faraci, F.M. Regulation of cerebral blood flow in humans: Physiology and clinical implications of autoregulation. Physiol. Rev. 2021, 101, 1487–1559. [Google Scholar] [CrossRef]
- Brassard, P.; Labrecque, L.; Smirl, J.D.; Tymko, M.M.; Caldwell, H.G.; Hoiland, R.L.; Lucas, S.J.E.; Denault, A.Y.; Couture, E.J.; Ainslie, P.N. Losing the dogmatic view of cerebral autoregulation. Physiol. Rep. 2021, 9, e14982. [Google Scholar] [CrossRef]
- Svedung Wettervik, T.; Howells, T.; Enblad, P.; Lewen, A. Temporal Neurophysiological Dynamics in Traumatic Brain Injury: Role of Pressure Reactivity and Optimal Cerebral Perfusion Pressure for Predicting Outcome. J. Neurotrauma 2019, 36, 1818–1827. [Google Scholar] [CrossRef]
- Adams, H.; Donnelly, J.; Czosnyka, M.; Kolias, A.G.; Helmy, A.; Menon, D.K.; Smielewski, P.; Hutchinson, P.J. Temporal profile of intracranial pressure and cerebrovascular reactivity in severe traumatic brain injury and association with fatal outcome: An observational study. PLoS Med. 2017, 14, e1002353. [Google Scholar] [CrossRef]
- Rangel-Castilla, L.; Gasco, J.; Nauta, H.J.; Okonkwo, D.O.; Robertson, C.S. Cerebral pressure autoregulation in traumatic brain injury. Neurosurg. Focus 2008, 25, E7. [Google Scholar] [CrossRef]
- Zeiler, F.A.; Aries, M.; Czosnyka, M.; Smielewski, P. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine. J. Neurotrauma 2022, 39, 1477–1494. [Google Scholar] [CrossRef] [PubMed]
- Svedung Wettervik, T.; Fahlstrom, M.; Enblad, P.; Lewen, A. Cerebral Pressure Autoregulation in Brain Injury and Disorders-A Review on Monitoring, Management, and Future Directions. World Neurosurg. 2022, 158, 118–131. [Google Scholar] [CrossRef]
- Leone, M.; Asfar, P.; Radermacher, P.; Vincent, J.L.; Martin, C. Optimizing mean arterial pressure in septic shock: A critical reappraisal of the literature. Crit. Care 2015, 19, 101. [Google Scholar] [CrossRef]
- van der Jagt, M. Fluid management of the neurological patient: A concise review. Crit. Care 2016, 20, 126. [Google Scholar] [CrossRef]
- Hariri, R.J.; Firlick, A.D.; Shepard, S.R.; Cohen, D.S.; Barie, P.S.; Emery, J.M., 3rd; Ghajar, J.B. Traumatic brain injury, hemorrhagic shock, and fluid resuscitation: Effects on intracranial pressure and brain compliance. J. Neurosurg. 1993, 79, 421–427. [Google Scholar] [CrossRef]
- Luce, J.M.; Huseby, J.S.; Kirk, W.; Butler, J. A Starling resistor regulates cerebral venous outflow in dogs. J. Appl. Physiol. 1982, 53, 1496–1503. [Google Scholar] [CrossRef]
- Rosner, M.J.; Rosner, S.D.; Johnson, A.H. Cerebral perfusion pressure: Management protocol and clinical results. J. Neurosurg. 1995, 83, 949–962. [Google Scholar] [CrossRef]
- Cao, F.; Liu, X.F.; Chen, R.L.; Wang, X.C. Effect of positive end-expiratory pressure on central venous pressure and common iliac venous pressure in mechanically ventilated patients. Chin. Crit. Care Med. 2008, 20, 341–344. [Google Scholar]
- Li, H.P.; Lin, Y.N.; Cheng, Z.H.; Qu, W.; Zhang, L.; Li, Q.Y. Intracranial-to-central venous pressure gap predicts the responsiveness of intracranial pressure to PEEP in patients with traumatic brain injury: A prospective cohort study. BMC Neurol. 2020, 20, 234. [Google Scholar] [CrossRef] [PubMed]
- Boone, M.D.; Jinadasa, S.P.; Mueller, A.; Shaefi, S.; Kasper, E.M.; Hanafy, K.A.; O’Gara, B.P.; Talmor, D.S. The Effect of Positive End-Expiratory Pressure on Intracranial Pressure and Cerebral Hemodynamics. Neurocrit. Care 2017, 26, 174–181. [Google Scholar] [CrossRef]
- Chen, H.; Menon, D.K.; Kavanagh, B.P. Impact of Altered Airway Pressure on Intracranial Pressure, Perfusion, and Oxygenation: A Narrative Review. Crit. Care Med. 2019, 47, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Caricato, A.; Conti, G.; Della Corte, F.; Mancino, A.; Santilli, F.; Sandroni, C.; Proietti, R.; Antonelli, M. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: The role of respiratory system compliance. J. Trauma 2005, 58, 571–576. [Google Scholar] [CrossRef]
- Robba, C.; Ball, L.; Nogas, S.; Battaglini, D.; Messina, A.; Brunetti, I.; Minetti, G.; Castellan, L.; Rocco, P.R.M.; Pelosi, P. Effects of Positive End-Expiratory Pressure on Lung Recruitment, Respiratory Mechanics, and Intracranial Pressure in Mechanically Ventilated Brain-Injured Patients. Front. Physiol. 2021, 12, 711273. [Google Scholar] [CrossRef]
- Robba, C.; Ball, L.; Battaglini, D.; Iannuzzi, F.; Brunetti, I.; Fiaschi, P.; Zona, G.; Taccone, F.S.; Messina, A.; Mongodi, S.; et al. Effects of positive end-expiratory pressure on lung ultrasound patterns and their correlation with intracranial pressure in mechanically ventilated brain injured patients. Crit. Care 2022, 26, 31. [Google Scholar] [CrossRef]
- Rossi, S.; Picetti, E.; Zoerle, T.; Carbonara, M.; Zanier, E.R.; Stocchetti, N. Fluid Management in Acute Brain Injury. Curr. Neurol. Neurosci. Rep. 2018, 18, 74. [Google Scholar] [CrossRef]
- Calviello, L.A.; Donnelly, J.; Zeiler, F.A.; Thelin, E.P.; Smielewski, P.; Czosnyka, M. Cerebral autoregulation monitoring in acute traumatic brain injury: What’s the evidence? Minerva Anestesiol. 2017, 83, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Chesnut, R.M.; Marshall, L.F.; Klauber, M.R.; Blunt, B.A.; Baldwin, N.; Eisenberg, H.M.; Jane, J.A.; Marmarou, A.; Foulkes, M.A. The role of secondary brain injury in determining outcome from severe head injury. J. Trauma 1993, 34, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Gaitanidis, A.; Breen, K.A.; Maurer, L.R.; Saillant, N.N.; Kaafarani, H.M.A.; Velmahos, G.C.; Mendoza, A.E. Systolic Blood Pressure < 110 mm Hg as a Threshold of Hypotension in Patients with Isolated Traumatic Brain Injuries. J. Neurotrauma 2021, 38, 879–885. [Google Scholar] [CrossRef]
- Shibahashi, K.; Sugiyama, K.; Okura, Y.; Tomio, J.; Hoda, H.; Hamabe, Y. Defining Hypotension in Patients with Severe Traumatic Brain Injury. World Neurosurg. 2018, 120, e667–e674. [Google Scholar] [CrossRef]
- Spahn, D.R.; Bouillon, B.; Cerny, V.; Duranteau, J.; Filipescu, D.; Hunt, B.J.; Komadina, R.; Maegele, M.; Nardi, G.; Riddez, L.; et al. The European guideline on management of major bleeding and coagulopathy following trauma: Fifth edition. Crit. Care 2019, 23, 98. [Google Scholar] [CrossRef] [PubMed]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef]
- Geeraerts, T.; Velly, L.; Abdennour, L.; Asehnoune, K.; Audibert, G.; Bouzat, P.; Bruder, N.; Carrillon, R.; Cottenceau, V.; Cotton, F.; et al. Management of severe traumatic brain injury (first 24 h). Anaesth. Crit. Care Pain. Med. 2018, 37, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Caplan, H.W.; Cox, C.S. Resuscitation Strategies for Traumatic Brain Injury. Curr. Surg. Rep. 2019, 7, 14. [Google Scholar] [CrossRef]
- Rizoli, S.B.; Jaja, B.N.; Di Battista, A.P.; Rhind, S.G.; Neto, A.C.; da Costa, L.; Inaba, K.; da Luz, L.T.; Nascimento, B.; Perez, A.; et al. Catecholamines as outcome markers in isolated traumatic brain injury: The COMA-TBI study. Crit. Care 2017, 21, 37. [Google Scholar] [CrossRef]
- Butcher, I.; Maas, A.I.; Lu, J.; Marmarou, A.; Murray, G.D.; Mushkudiani, N.A.; McHugh, G.S.; Steyerberg, E.W. Prognostic value of admission blood pressure in traumatic brain injury: Results from the IMPACT study. J. Neurotrauma 2007, 24, 294–302. [Google Scholar] [CrossRef]
- Ley, E.J.; Singer, M.B.; Clond, M.A.; Gangi, A.; Mirocha, J.; Bukur, M.; Brown, C.V.; Salim, A. Elevated admission systolic blood pressure after blunt trauma predicts delayed pneumonia and mortality. J. Trauma 2011, 71, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Grande, P.O. Critical Evaluation of the Lund Concept for Treatment of Severe Traumatic Head Injury, 25 Years after Its Introduction. Front. Neurol. 2017, 8, 315. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, C.H.; Koskinen, L.O.; Olivecrona, M. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Front. Neurol. 2017, 8, 274. [Google Scholar] [CrossRef]
- Ziaka, M.; Exadaktylos, A. Acute Respiratory Distress Syndrome: Pathophysiological Insights, Subphenotypes, and Clinical Implications-A Comprehensive Review. J. Clin. Med. 2025, 14, 5184. [Google Scholar] [CrossRef]
- Sakr, Y.; Vincent, J.L.; Reinhart, K.; Groeneveld, J.; Michalopoulos, A.; Sprung, C.L.; Artigas, A.; Ranieri, V.M.; Sepsis Occurence in Acutely Ill Patients, I. High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 2005, 128, 3098–3108. [Google Scholar] [CrossRef]
- Vignon, P.; Evrard, B.; Asfar, P.; Busana, M.; Calfee, C.S.; Coppola, S.; Demiselle, J.; Geri, G.; Jozwiak, M.; Martin, G.S.; et al. Fluid administration and monitoring in ARDS: Which management? Intensive Care Med. 2020, 46, 2252–2264. [Google Scholar] [CrossRef]
- Alsous, F.; Khamiees, M.; DeGirolamo, A.; Amoateng-Adjepong, Y.; Manthous, C.A. Negative fluid balance predicts survival in patients with septic shock: A retrospective pilot study. Chest 2000, 117, 1749–1754. [Google Scholar] [CrossRef]
- Rivers, E.; Nguyen, B.; Havstad, S.; Ressler, J.; Muzzin, A.; Knoblich, B.; Peterson, E.; Tomlanovich, M.; Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2001, 345, 1368–1377. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network; Wiedemann, H.P.; Wheeler, A.P.; Bernard, G.R.; Thompson, B.T.; Hayden, D.; de Boisblanc, B.; Connors, A.F., Jr.; Hite, R.D.; Harabin, A.L. Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med. 2006, 354, 2564–2575. [Google Scholar] [CrossRef]
- Fletcher, J.J.; Bergman, K.; Blostein, P.A.; Kramer, A.H. Fluid balance, complications, and brain tissue oxygen tension monitoring following severe traumatic brain injury. Neurocrit. Care 2010, 13, 47–56. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, D.; Jia, Y.; Tian, Y.; Wang, Y.; Wei, Y.; Zhang, J.; Jiang, R. Analysis of the association of fluid balance and short-term outcome in traumatic brain injury. J. Neurol. Sci. 2016, 364, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Meyfroidt, G.; Bouzat, P.; Casaer, M.P.; Chesnut, R.; Hamada, S.R.; Helbok, R.; Hutchinson, P.; Maas, A.I.R.; Manley, G.; Menon, D.K.; et al. Management of moderate to severe traumatic brain injury: An update for the intensivist. Intensive Care Med. 2022, 48, 649–666. [Google Scholar] [CrossRef] [PubMed]
- Joannes-Boyau, O.; Le Conte, P.; Bonnet, M.P.; Cesareo, E.; Chousterman, B.; Chaiba, D.; Douay, B.; Futier, E.; Harrois, A.; Huraux, C.; et al. Guidelines for the choice of intravenous fluids for vascular filling in critically ill patients, 2021. Anaesth. Crit. Care Pain Med. 2022, 41, 101058. [Google Scholar] [CrossRef]
- Partington, T.; Farmery, A. Intracranial pressure and cerebral blood flow. Physiology 2014, 15, 189–194. [Google Scholar] [CrossRef]
- Nagao, S.; Sunami, N.; Tsutsui, T.; Honma, Y.; Momma, F.; Nishiura, T.; Nishimoto, A. Acute intracranial hypertension and brain-stem blood flow. An experimental study. J. Neurosurg. 1984, 60, 566–571. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Tsuru, M.; Yada, K. Site and mechanism for compression of the venous system during experimental intracranial hypertension. J. Neurosurg. 1974, 41, 427–434. [Google Scholar] [CrossRef]
- Yan, A.; Torpey, A.; Morrisroe, E.; Andraous, W.; Costa, A.; Bergese, S. Clinical Management in Traumatic Brain Injury. Biomedicines 2024, 12, 781. [Google Scholar] [CrossRef]
- Steiner, L.A.; Czosnyka, M.; Piechnik, S.K.; Smielewski, P.; Chatfield, D.; Menon, D.K.; Pickard, J.D. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit. Care Med. 2002, 30, 733–738. [Google Scholar] [CrossRef]
- Beqiri, E.; Ercole, A.; Aries, M.J.H.; Placek, M.M.; Tas, J.; Czosnyka, M.; Stocchetti, N.; Smielewski, P.; CENTER-TBI High Resolution (HR ICU) Sub-Study Participants and Investigators. Towards autoregulation-oriented management after traumatic brain injury: Increasing the reliability and stability of the CPPopt algorithm. J. Clin. Monit. Comput. 2023, 37, 963–976. [Google Scholar] [CrossRef]
- Sorrentino, E.; Diedler, J.; Kasprowicz, M.; Budohoski, K.P.; Haubrich, C.; Smielewski, P.; Outtrim, J.G.; Manktelow, A.; Hutchinson, P.J.; Pickard, J.D.; et al. Critical thresholds for cerebrovascular reactivity after traumatic brain injury. Neurocrit. Care 2012, 16, 258–266. [Google Scholar] [CrossRef]
- Aries, M.J.; Czosnyka, M.; Budohoski, K.P.; Steiner, L.A.; Lavinio, A.; Kolias, A.G.; Hutchinson, P.J.; Brady, K.M.; Menon, D.K.; Pickard, J.D.; et al. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit. Care Med. 2012, 40, 2456–2463. [Google Scholar] [CrossRef]
- Riemann, L.; Beqiri, E.; Smielewski, P.; Czosnyka, M.; Stocchetti, N.; Sakowitz, O.; Zweckberger, K.; Unterberg, A.; Younsi, A.; CENTER-TBI High Resolution ICU (HR ICU) Sub-Study Participants and Investigators; et al. Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: A CENTER-TBI study. Crit. Care 2020, 24, 266. [Google Scholar] [CrossRef] [PubMed]
- Petkus, V.; Preiksaitis, A.; Chaleckas, E.; Chomskis, R.; Zubaviciute, E.; Vosylius, S.; Rocka, S.; Rastenyte, D.; Aries, M.J.; Ragauskas, A.; et al. Optimal Cerebral Perfusion Pressure: Targeted Treatment for Severe Traumatic Brain Injury. J. Neurotrauma 2020, 37, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.; Silva, M.J.; Pereira, E.; Monteiro, E.; Maia, I.; Barbosa, S.; Silva, S.; Honrado, T.; Cerejo, A.; Aries, M.J.; et al. Optimal Cerebral Perfusion Pressure Management at Bedside: A Single-Center Pilot Study. Neurocrit. Care 2015, 23, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Aries, M.J.; Czosnyka, M.; Budohoski, K.P.; Kolias, A.G.; Radolovich, D.K.; Lavinio, A.; Pickard, J.D.; Smielewski, P. Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit. Care 2012, 17, 67–76. [Google Scholar] [CrossRef]
- Tas, J.; Beqiri, E.; van Kaam, R.C.; Czosnyka, M.; Donnelly, J.; Haeren, R.H.; van der Horst, I.C.C.; Hutchinson, P.J.; van Kuijk, S.M.J.; Liberti, A.L.; et al. Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized Controlled Clinical Trial. J. Neurotrauma 2021, 38, 2790–2800. [Google Scholar] [CrossRef]
- Bogli, S.Y.; Olakorede, I.; Beqiri, E.; Chen, X.; Lavinio, A.; Hutchinson, P.; Smielewski, P. Cerebral perfusion pressure targets after traumatic brain injury: A reappraisal. Crit. Care 2025, 29, 207. [Google Scholar] [CrossRef]
- Pelah, A.I.; Kazimierska, A.; Czosnyka, M.; Hawryluk, G.W.J. Optimal Cerebral Perfusion Pressure in Brain Injury: Physiological Relationships and Outcome. Neurosurgery 2025. [Google Scholar] [CrossRef]
- Klein, S.P.; Depreitere, B.; Meyfroidt, G. How I monitor cerebral autoregulation. Crit. Care 2019, 23, 160. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.S.; Valadka, A.B.; Hannay, H.J.; Contant, C.F.; Gopinath, S.P.; Cormio, M.; Uzura, M.; Grossman, R.G. Prevention of secondary ischemic insults after severe head injury. Crit. Care Med. 1999, 27, 2086–2095. [Google Scholar] [CrossRef]
- Huang, C.C.; Fu, J.Y.; Hu, H.C.; Kao, K.C.; Chen, N.H.; Hsieh, M.J.; Tsai, Y.H. Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Crit. Care Med. 2008, 36, 2810–2816. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Georges, D.; de Courson, H.; Lanchon, R.; Sesay, M.; Nouette-Gaulain, K.; Biais, M. End-expiratory occlusion maneuver to predict fluid responsiveness in the intensive care unit: An echocardiographic study. Crit. Care 2018, 22, 32. [Google Scholar] [CrossRef]
- Messina, A.; Uryga, A.; Giardina, A.; Ciliberti, P.; Battaglini, D.; Patroniti, N.; Czosnyka, M.; Monnet, X.; Cecconi, M.; Robba, C. The effect of passive leg raising test on intracranial pressure and cerebral autoregulation in brain injured patients: A physiological observational study. Crit. Care 2024, 28, 23. [Google Scholar] [CrossRef] [PubMed]
- Cherpanath, T.G.; Hirsch, A.; Geerts, B.F.; Lagrand, W.K.; Leeflang, M.M.; Schultz, M.J.; Groeneveld, A.B. Predicting Fluid Responsiveness by Passive Leg Raising: A Systematic Review and Meta-Analysis of 23 Clinical Trials. Crit. Care Med. 2016, 44, 981–991. [Google Scholar] [CrossRef]
- Monnet, X.; Teboul, J.L. Passive leg raising. Intensive Care Med. 2008, 34, 659–663. [Google Scholar] [CrossRef]
- Ziaka, M.; Exadaktylos, A. Fluid management strategies in critically ill patients with ARDS: A narrative review. Eur. J. Med. Res. 2025, 30, 401. [Google Scholar] [CrossRef]
- Monnet, X.; Teboul, J.L. Assessment of fluid responsiveness: Recent advances. Curr. Opin. Crit. Care 2018, 24, 190–195. [Google Scholar] [CrossRef]
- Marik, P.E.; Cavallazzi, R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit. Care Med. 2013, 41, 1774–1781. [Google Scholar] [CrossRef]
- Osman, D.; Ridel, C.; Ray, P.; Monnet, X.; Anguel, N.; Richard, C.; Teboul, J.L. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit. Care Med. 2007, 35, 64–68. [Google Scholar] [CrossRef]
- Marik, P.E.; Cavallazzi, R.; Vasu, T.; Hirani, A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: A systematic review of the literature. Crit. Care Med. 2009, 37, 2642–2647. [Google Scholar] [CrossRef]
- Cook, A.M.; Morgan Jones, G.; Hawryluk, G.W.J.; Mailloux, P.; McLaughlin, D.; Papangelou, A.; Samuel, S.; Tokumaru, S.; Venkatasubramanian, C.; Zacko, C.; et al. Guidelines for the Acute Treatment of Cerebral Edema in Neurocritical Care Patients. Neurocrit. Care 2020, 32, 647–666. [Google Scholar] [CrossRef] [PubMed]
- La Via, L.; Vasile, F.; Perna, F.; Zawadka, M. Prediction of fluid responsiveness in critical care: Current evidence and future perspective. Trends Anaesth. Crit. Care 2024, 54, 101316. [Google Scholar] [CrossRef]
- Coudray, A.; Romand, J.A.; Treggiari, M.; Bendjelid, K. Fluid responsiveness in spontaneously breathing patients: A review of indexes used in intensive care. Crit. Care Med. 2005, 33, 2757–2762. [Google Scholar] [CrossRef]
- Cecconi, M.; De Backer, D.; Antonelli, M.; Beale, R.; Bakker, J.; Hofer, C.; Jaeschke, R.; Mebazaa, A.; Pinsky, M.R.; Teboul, J.L.; et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014, 40, 1795–1815. [Google Scholar] [CrossRef] [PubMed]
- Monnet, X.; Teboul, J.L. Transpulmonary thermodilution: Advantages and limits. Crit. Care 2017, 21, 147. [Google Scholar] [CrossRef]
- Teboul, J.L.; Saugel, B.; Cecconi, M.; De Backer, D.; Hofer, C.K.; Monnet, X.; Perel, A.; Pinsky, M.R.; Reuter, D.A.; Rhodes, A.; et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016, 42, 1350–1359. [Google Scholar] [CrossRef]
- Scheeren, T.W.L.; Ramsay, M.A.E. New Developments in Hemodynamic Monitoring. J. Cardiothorac. Vasc. Anesth. 2019, 33 (Suppl. S1), S67–S72. [Google Scholar] [CrossRef]
- Messina, A.; Villa, F.; Lionetti, G.; Galarza, L.; Meyfroidt, G.; van der Jagt, M.; Monnet, X.; Pelosi, P.; Cecconi, M.; Robba, C. Hemodynamic management of acute brain injury caused by cerebrovascular diseases: A survey of the European Society of Intensive Care Medicine. Intensive Care Med. Exp. 2022, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Tagami, T.; Kuwamoto, K.; Watanabe, A.; Unemoto, K.; Yokobori, S.; Matsumoto, G.; Yokota, H.; SAH PiCCO Study Group. Optimal range of global end-diastolic volume for fluid management after aneurysmal subarachnoid hemorrhage: A multicenter prospective cohort study. Crit. Care Med. 2014, 42, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, P.; Helbok, R.; Ko, S.B.; Claassen, J.; Schmidt, J.M.; Fernandez, L.; Stuart, R.M.; Connolly, E.S.; Badjatia, N.; Mayer, S.A.; et al. Fluid responsiveness and brain tissue oxygen augmentation after subarachnoid hemorrhage. Neurocrit. Care 2014, 20, 247–254. [Google Scholar] [CrossRef]
- Mutoh, T.; Kazumata, K.; Ajiki, M.; Ushikoshi, S.; Terasaka, S. Goal-directed fluid management by bedside transpulmonary hemodynamic monitoring after subarachnoid hemorrhage. Stroke 2007, 38, 3218–3224. [Google Scholar] [CrossRef] [PubMed]
- Lazaridis, C.; Foreman, B. Management Strategies Based on Multi-Modality Neuromonitoring in Severe Traumatic Brain Injury. Neurotherapeutics 2023, 20, 1457–1471. [Google Scholar] [CrossRef]
- Makarenko, S.; Griesdale, D.E.; Gooderham, P.; Sekhon, M.S. Multimodal neuromonitoring for traumatic brain injury: A shift towards individualized therapy. J. Clin. Neurosci. 2016, 26, 8–13. [Google Scholar] [CrossRef]
- Hawryluk, G.W.J.; Citerio, G.; Hutchinson, P.; Kolias, A.; Meyfroidt, G.; Robba, C.; Stocchetti, N.; Chesnut, R. Intracranial pressure: Current perspectives on physiology and monitoring. Intensive Care Med. 2022, 48, 1471–1481. [Google Scholar] [CrossRef]
- Launey, Y.; Fryer, T.D.; Hong, Y.T.; Steiner, L.A.; Nortje, J.; Veenith, T.V.; Hutchinson, P.J.; Ercole, A.; Gupta, A.K.; Aigbirhio, F.I.; et al. Spatial and Temporal Pattern of Ischemia and Abnormal Vascular Function Following Traumatic Brain Injury. JAMA Neurol. 2020, 77, 339–349. [Google Scholar] [CrossRef]
- Hermanides, J.; Hong, Y.T.; Trivedi, M.; Outtrim, J.; Aigbirhio, F.; Nestor, P.J.; Guilfoyle, M.; Winzeck, S.; Newcombe, V.F.J.; Das, T.; et al. Metabolic derangements are associated with impaired glucose delivery following traumatic brain injury. Brain 2021, 144, 3492–3504. [Google Scholar] [CrossRef]
- Bratton, S.L.; Chestnut, R.M.; Ghajar, J.; McConnell Hammond, F.F.; Harris, O.A.; Hartl, R.; Manley, G.T.; Nemecek, A.; Newell, D.W.; Rosenthal, G.; et al. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J. Neurotrauma 2007, 24 (Suppl. S1), S37. [Google Scholar] [CrossRef]
- Shen, Y.; Wen, D.; Liang, Z.; Wan, L.; Jiang, Q.; He, H.; He, M. Brain tissue oxygen partial pressure monitoring and prognosis of patients with traumatic brain injury: A meta-analysis. Neurosurg. Rev. 2024, 47, 222. [Google Scholar] [CrossRef]
- Robba, C.; Graziano, F.; Rebora, P.; Elli, F.; Giussani, C.; Oddo, M.; Meyfroidt, G.; Helbok, R.; Taccone, F.S.; Prisco, L.; et al. Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): An international, prospective observational cohort study. Lancet Neurol. 2021, 20, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Godoy, D.A.; Badenes, R.; Murillo-Cabezas, F. Ten physiological commandments for severe head injury. Rev. Española Anestesiol. Reanim. (Engl. Ed.) 2021, 68, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, C.; Raj, R.; Zeiler, F.A.; Thelin, E.P. Current state of high-fidelity multimodal monitoring in traumatic brain injury. Acta Neurochir. 2022, 164, 3091–3100. [Google Scholar] [CrossRef]
- Santana, L.S.; Diniz, J.B.C.; Solla, D.J.F.; Neville, I.S.; Figueiredo, E.G.; Mota Telles, J.P. Brain tissue oxygen combined with intracranial pressure monitoring versus isolated intracranial pressure monitoring in patients with traumatic brain injury: An updated systematic review and meta-analysis. Neurol. Sci. 2024, 45, 3051–3059. [Google Scholar] [CrossRef]
- Shanahan, R.; Avsar, P.; Watson, C.; Moore, Z.; Patton, D.; McEvoy, N.L.; Curley, G.; O’Connor, T. The impact of brain tissue oxygenation monitoring on the Glasgow Outcome Scale/Glasgow Outcome Scale Extended in patients with moderate to severe traumatic brain injury: A systematic review. Nurs. Crit. Care 2024, 29, 1460–1469. [Google Scholar] [CrossRef]
- Hirschi, R.; Hawryluk, G.W.J.; Nielson, J.L.; Huie, J.R.; Zimmermann, L.L.; Saigal, R.; Ding, Q.; Ferguson, A.R.; Manley, G. Analysis of high-frequency PbtO2 measures in traumatic brain injury: Insights into the treatment threshold. J. Neurosurg. 2019, 131, 1216–1226. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, P.; Menon, D.K.; Citerio, G.; Vespa, P.; Bader, M.K.; Brophy, G.M.; Diringer, M.N.; Stocchetti, N.; Videtta, W.; Armonda, R.; et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: A statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit. Care 2014, 21 (Suppl. S2), 1–26. [Google Scholar] [CrossRef]
- Hays, L.M.C.; Udy, A.; Adamides, A.A.; Anstey, J.R.; Bailey, M.; Bellapart, J.; Byrne, K.; Cheng, A.; Jamie Cooper, D.; Drummond, K.J.; et al. Effects of brain tissue oxygen (PbtO2) guided management on patient outcomes following severe traumatic brain injury: A systematic review and meta-analysis. J. Clin. Neurosci. 2022, 99, 349–358. [Google Scholar] [CrossRef]
- Adamides, A.A.; Cooper, D.J.; Rosenfeldt, F.L.; Bailey, M.J.; Pratt, N.; Tippett, N.; Vallance, S.; Rosenfeld, J.V. Focal cerebral oxygenation and neurological outcome with or without brain tissue oxygen-guided therapy in patients with traumatic brain injury. Acta Neurochir. 2009, 151, 1399–1409. [Google Scholar] [CrossRef]
- Meixensberger, J.; Jaeger, M.; Vath, A.; Dings, J.; Kunze, E.; Roosen, K. Brain tissue oxygen guided treatment supplementing ICP/CPP therapy after traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 2003, 74, 760–764. [Google Scholar] [CrossRef]
- Okonkwo, D.O.; Shutter, L.A.; Moore, C.; Temkin, N.R.; Puccio, A.M.; Madden, C.J.; Andaluz, N.; Chesnut, R.M.; Bullock, M.R.; Grant, G.A.; et al. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial. Crit. Care Med. 2017, 45, 1907–1914. [Google Scholar] [CrossRef]
- Hawryluk, G.W.J.; Aguilera, S.; Buki, A.; Bulger, E.; Citerio, G.; Cooper, D.J.; Arrastia, R.D.; Diringer, M.; Figaji, A.; Gao, G.; et al. A management algorithm for patients with intracranial pressure monitoring: The Seattle International Severe Traumatic Brain Injury Consensus Conference (SIBICC). Intensive Care Med. 2019, 45, 1783–1794. [Google Scholar] [CrossRef]
- American College of Surgeons. Best Practices Guidelines: The Management of Traumatic Brain Injury. 2024. Available online: https://www.facs.org/media/vgfgjpfk/best-practices-guidelines-traumatic-brain-injury.pdf (accessed on 14 July 2025).
- Rass, V.; Solari, D.; Ianosi, B.; Gaasch, M.; Kofler, M.; Schiefecker, A.J.; Miroz, J.P.; Morelli, P.; Thome, C.; Beer, R.; et al. Protocolized Brain Oxygen Optimization in Subarachnoid Hemorrhage. Neurocrit. Care 2019, 31, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.J.; Steiner, L.A.; Coles, J.P.; Chatfield, D.A.; Fryer, T.D.; Smielewski, P.; Hutchinson, P.J.; O’Connell, M.T.; Al-Rawi, P.G.; Aigbirihio, F.I.; et al. Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit. Care Med. 2005, 33, 189–195; discussion 187–255. [Google Scholar] [CrossRef] [PubMed]
- Kunapaisal, T.; Lele, A.V.; Gomez, C.; Moore, A.; Theard, M.A.; Vavilala, M.S. Effect of Increasing Blood Pressure on Brain Tissue Oxygenation in Adults After Severe Traumatic Brain Injury. Crit. Care Med. 2024, 52, e332–e340. [Google Scholar] [CrossRef] [PubMed]
- Bernard, F.; Barsan, W.; Diaz-Arrastia, R.; Merck, L.H.; Yeatts, S.; Shutter, L.A. Brain Oxygen Optimization in Severe Traumatic Brain Injury (BOOST-3): A multicentre, randomised, blinded-endpoint, comparative effectiveness study of brain tissue oxygen and intracranial pressure monitoring versus intracranial pressure alone. BMJ Open 2022, 12, e060188. [Google Scholar] [CrossRef]
- Tisdall, M.M.; Smith, M. Cerebral microdialysis: Research technique or clinical tool. Br. J. Anaesth. 2006, 97, 18–25. [Google Scholar] [CrossRef]
- Hutchinson, P.J.; Jalloh, I.; Helmy, A.; Carpenter, K.L.; Rostami, E.; Bellander, B.M.; Boutelle, M.G.; Chen, J.W.; Claassen, J.; Dahyot-Fizelier, C.; et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015, 41, 1517–1528. [Google Scholar] [CrossRef] [PubMed]
- Guilfoyle, M.R.; Helmy, A.; Donnelly, J.; Stovell, M.G.; Timofeev, I.; Pickard, J.D.; Czosnyka, M.; Smielewski, P.; Menon, D.K.; Carpenter, K.L.H.; et al. Characterising the dynamics of cerebral metabolic dysfunction following traumatic brain injury: A microdialysis study in 619 patients. PLoS ONE 2021, 16, e0260291. [Google Scholar] [CrossRef]
- Carpenter, K.L.; Young, A.M.; Hutchinson, P.J. Advanced monitoring in traumatic brain injury: Microdialysis. Curr. Opin. Crit. Care 2017, 23, 103–109. [Google Scholar] [CrossRef]
- Casey, J.D.; Brown, R.M.; Semler, M.W. Resuscitation fluids. Curr. Opin. Crit. Care 2018, 24, 512–518. [Google Scholar] [CrossRef]
- Vincent, J.L. Fluid management in the critically ill. Kidney Int. 2019, 96, 52–57. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic Society. Evidence-based colloid use in the critically ill: American Thoracic Society Consensus Statement. Am. J. Respir. Crit. Care Med. 2004, 170, 1247–1259. [Google Scholar] [CrossRef]
- Sharma, D.; Vavilala, M.S. Lund concept for the management of traumatic brain injury: A physiological principle awaiting stronger evidence. J. Neurosurg. Anesthesiol. 2011, 23, 363–367. [Google Scholar] [CrossRef]
- Tomita, H.; Ito, U.; Tone, O.; Masaoka, H.; Tominaga, B. High colloid oncotic therapy for contusional brain edema. Acta Neurochir. 1994, 60, 547–549. [Google Scholar] [CrossRef]
- Gantner, D.; Moore, E.M.; Cooper, D.J. Intravenous fluids in traumatic brain injury: What’s the solution? Curr. Opin. Crit. Care 2014, 20, 385–389. [Google Scholar] [CrossRef]
- Kuwabara, K.; Fushimi, K.; Matsuda, S.; Ishikawa, K.B.; Horiguchi, H.; Fujimori, K. Association of early post-procedure hemodynamic management with the outcomes of subarachnoid hemorrhage patients. J. Neurol. 2013, 260, 820–831. [Google Scholar] [CrossRef] [PubMed]
- Suarez, J.I.; Shannon, L.; Zaidat, O.O.; Suri, M.F.; Singh, G.; Lynch, G.; Selman, W.R. Effect of human albumin administration on clinical outcome and hospital cost in patients with subarachnoid hemorrhage. J. Neurosurg. 2004, 100, 585–590. [Google Scholar] [CrossRef]
- Palesch, Y.Y.; Hill, M.D.; Ryckborst, K.J.; Tamariz, D.; Ginsberg, M.D. The ALIAS Pilot Trial: A dose-escalation and safety study of albumin therapy for acute ischemic stroke—II: Neurologic outcome and efficacy analysis. Stroke 2006, 37, 2107–2114. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Belayev, L.; Zhao, W.; Busto, R.; Belayev, A.; Ginsberg, M.D. Neuroprotective effect of treatment with human albumin in permanent focal cerebral ischemia: Histopathology and cortical perfusion studies. Eur. J. Pharmacol. 2001, 428, 193–201. [Google Scholar] [CrossRef]
- Belayev, L.; Busto, R.; Zhao, W.; Clemens, J.A.; Ginsberg, M.D. Effect of delayed albumin hemodilution on infarction volume and brain edema after transient middle cerebral artery occlusion in rats. J. Neurosurg. 1997, 87, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Belayev, L.; Liu, Y.; Zhao, W.; Busto, R.; Ginsberg, M.D. Human albumin therapy of acute ischemic stroke: Marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke 2001, 32, 553–560. [Google Scholar] [CrossRef]
- Belayev, L.; Zhao, W.; Pattany, P.M.; Weaver, R.G.; Huh, P.W.; Lin, B.; Busto, R.; Ginsberg, M.D. Diffusion-weighted magnetic resonance imaging confirms marked neuroprotective efficacy of albumin therapy in focal cerebral ischemia. Stroke 1998, 29, 2587–2599. [Google Scholar] [CrossRef]
- Ginsberg, M.D.; Palesch, Y.Y.; Hill, M.D.; Martin, R.H.; Moy, C.S.; Barsan, W.G.; Waldman, B.D.; Tamariz, D.; Ryckborst, K.J.; ALIAS; et al. High-dose albumin treatment for acute ischaemic stroke (ALIAS) Part 2: A randomised, double-blind, phase 3, placebo-controlled trial. Lancet Neurol. 2013, 12, 1049–1058. [Google Scholar] [CrossRef]
- Arabi, Y.M.; Belley-Cote, E.; Carsetti, A.; De Backer, D.; Donadello, K.; Juffermans, N.P.; Hammond, N.; Laake, J.H.; Liu, D.; Maitland, K.; et al. European Society of Intensive Care Medicine clinical practice guideline on fluid therapy in adult critically ill patients. Part 1: The choice of resuscitation fluids. Intensive Care Med. 2024, 50, 813–831. [Google Scholar] [CrossRef] [PubMed]
- Young, P.; Bailey, M.; Beasley, R.; Henderson, S.; Mackle, D.; McArthur, C.; McGuinness, S.; Mehrtens, J.; Myburgh, J.; Psirides, A.; et al. Effect of a Buffered Crystalloid Solution vs Saline on Acute Kidney Injury Among Patients in the Intensive Care Unit: The SPLIT Randomized Clinical Trial. JAMA 2015, 314, 1701–1710. [Google Scholar] [CrossRef]
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Young, J.B.; Utter, G.H.; Schermer, C.R.; Galante, J.M.; Phan, H.H.; Yang, Y.; Anderson, B.A.; Scherer, L.A. Saline versus Plasma-Lyte A in initial resuscitation of trauma patients: A randomized trial. Ann. Surg. 2014, 259, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Yunos, N.M.; Bellomo, R.; Hegarty, C.; Story, D.; Ho, L.; Bailey, M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 2012, 308, 1566–1572. [Google Scholar] [CrossRef]
- Krajewski, M.L.; Raghunathan, K.; Paluszkiewicz, S.M.; Schermer, C.R.; Shaw, A.D. Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br. J. Surg. 2015, 102, 24–36. [Google Scholar] [CrossRef]
- Malbrain, M.; Langer, T.; Annane, D.; Gattinoni, L.; Elbers, P.; Hahn, R.G.; De Laet, I.; Minini, A.; Wong, A.; Ince, C.; et al. Intravenous fluid therapy in the perioperative and critical care setting: Executive summary of the International Fluid Academy (IFA). Ann. Intensive Care 2020, 10, 64. [Google Scholar] [CrossRef]
- Lobo, D.N.; Awad, S. Should chloride-rich crystalloids remain the mainstay of fluid resuscitation to prevent ‘pre-renal’ acute kidney injury?:Con. Kidney Int. 2014, 86, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, S.; Smith, M.C.; Semler, M.W.; Wang, L.; Dear, M.L.; Lindsell, C.J.; Freundlich, R.E.; Guillamondegui, O.D.; Self, W.H.; Rice, T.W.; et al. Balanced Crystalloid versus Saline in Adults with Traumatic Brain Injury: Secondary Analysis of a Clinical Trial. J. Neurotrauma 2022, 39, 1159–1167. [Google Scholar] [CrossRef]
- Thomas, R.; Ghio, M.; Pappalardo, L.; Shammassian, B.H. Fluids, Electrolytes, and Nutrition in the Critically Ill Patient with Neurotrauma. Neurosurg. Clin. N. Am. 2025, 36, 387–400. [Google Scholar] [CrossRef]
- Diz, J.C.; Luna-Rojas, P.; Diaz-Vidal, P.; Fernandez-Vazquez, U.; Gil-Casado, C.; Diz-Ferreira, E. Effect of Treatment With Balanced Crystalloids Versus Normal Saline on the Mortality of Critically Ill Patients with and Without Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Anesth. Analg. 2025, 141, 152–161. [Google Scholar] [CrossRef]
- Roquilly, A.; Loutrel, O.; Cinotti, R.; Rosenczweig, E.; Flet, L.; Mahe, P.J.; Dumont, R.; Marie Chupin, A.; Peneau, C.; Lejus, C.; et al. Balanced versus chloride-rich solutions for fluid resuscitation in brain-injured patients: A randomised double-blind pilot study. Crit. Care 2013, 17, R77. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Fox, E.E.; del Junco, D.J.; Cotton, B.A.; Podbielski, J.M.; Matijevic, N.; Cohen, M.J.; Schreiber, M.A.; Zhang, J.; Mirhaji, P.; et al. Coordination and management of multicenter clinical studies in trauma: Experience from the PRospective Observational Multicenter Major Trauma Transfusion (PROMMTT) Study. Resuscitation 2012, 83, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Rowell, S.E.; Fair, K.A.; Barbosa, R.R.; Watters, J.M.; Bulger, E.M.; Holcomb, J.B.; Cohen, M.J.; Rahbar, M.H.; Fox, E.E.; Schreiber, M.A. The Impact of Pre-Hospital Administration of Lactated Ringer’s Solution versus Normal Saline in Patients with Traumatic Brain Injury. J. Neurotrauma 2016, 33, 1054–1059. [Google Scholar] [CrossRef]
- Semler, M.W.; Self, W.H.; Wanderer, J.P.; Ehrenfeld, J.M.; Wang, L.; Byrne, D.W.; Stollings, J.L.; Kumar, A.B.; Hughes, C.G.; Hernandez, A.; et al. Balanced Crystalloids versus Saline in Critically Ill Adults. N. Engl. J. Med. 2018, 378, 829–839. [Google Scholar] [CrossRef]
- Hammond, N.E.; Zampieri, F.G.; Di Tanna, G.L.; Garside, T.; Adigbli, D.; Cavalcanti, A.B.; Machado, F.R.; Micallef, S.; Myburgh, J.; Ramanan, M.; et al. Balanced Crystalloids versus Saline in Critically Ill Adults—A Systematic Review with Meta-Analysis. NEJM Evid. 2022, 1, EVIDoa2100010. [Google Scholar] [CrossRef] [PubMed]
- Bala, R.; Bansal, T.; Mundra, A.; Kamal, K. Comparison and evaluation of two different crystalloids—Normal saline and plasmalyte in patients of traumatic brain injury undergoing craniotomy. Brain Circ. 2022, 8, 200–206. [Google Scholar] [CrossRef]
- Chaussard, M.; Depret, F.; Saint-Aubin, O.; Benyamina, M.; Coutrot, M.; Jully, M.; Oueslati, H.; Fratani, A.; Cupaciu, A.; Poniard, A.; et al. Physiological response to fluid resuscitation with Ringer lactate versus Plasmalyte in critically ill burn patients. J. Appl. Physiol. 2020, 128, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Messmer, A.S.; Zingg, C.; Muller, M.; Gerber, J.L.; Schefold, J.C.; Pfortmueller, C.A. Fluid Overload and Mortality in Adult Critical Care Patients-A Systematic Review and Meta-Analysis of Observational Studies. Crit. Care Med. 2020, 48, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Gunning, S.; Kutuby, F.; Rose, R.; Trevino, S.; Song, T.; Koyner, J.L. Fluid Overload and Mortality in Patients with Severe Acute Kidney Injury and Extracorporeal Membrane Oxygenation. Kidney360 2020, 1, 232–240. [Google Scholar] [CrossRef]
- Bright, T.V.; Johnson, D.W.; Humanez, J.C.; Husty, T.D.; Crandall, M.; Shald, E.A. Impact of Fluid Balance on Intensive Care Unit Length of Stay in Critically Ill Trauma Patients. Am. Surg. 2023, 89, 3379–3384. [Google Scholar] [CrossRef]
- Hayashi, Y.; Shimazui, T.; Tomita, K.; Shimada, T.; Miura, R.E.; Nakada, T.A. Associations between fluid overload and outcomes in critically ill patients with acute kidney injury: A retrospective observational study. Sci. Rep. 2023, 13, 17410. [Google Scholar] [CrossRef]
- van Mourik, N.; Metske, H.A.; Hofstra, J.J.; Binnekade, J.M.; Geerts, B.F.; Schultz, M.J.; Vlaar, A.P.J. Cumulative fluid balance predicts mortality and increases time on mechanical ventilation in ARDS patients: An observational cohort study. PLoS ONE 2019, 14, e0224563. [Google Scholar] [CrossRef]
- Ahuja, S.; de Grooth, H.J.; Paulus, F.; van der Ven, F.L.; Serpa Neto, A.; Schultz, M.J.; Tuinman, P.R.; PRoVENT-COVID Study Collaborative Group* ‘PRactice of VENTilation in COVID–19’. Association between early cumulative fluid balance and successful liberation from invasive ventilation in COVID-19 ARDS patients—Insights from the PRoVENT-COVID study: A national, multicenter, observational cohort analysis. Crit. Care 2022, 26, 157. [Google Scholar] [CrossRef]
- Woodward, C.W.; Lambert, J.; Ortiz-Soriano, V.; Li, Y.; Ruiz-Conejo, M.; Bissell, B.D.; Kelly, A.; Adams, P.; Yessayan, L.; Morris, P.E.; et al. Fluid Overload Associates with Major Adverse Kidney Events in Critically Ill Patients with Acute Kidney Injury Requiring Continuous Renal Replacement Therapy. Crit. Care Med. 2019, 47, e753–e760. [Google Scholar] [CrossRef]
- Kozek-Langenecker, S.A. Fluids and coagulation. Curr. Opin. Crit. Care 2015, 21, 285–291. [Google Scholar] [CrossRef]
- Subeq, Y.M.; Hsu, B.G.; Lin, N.T.; Yang, F.L.; Chao, Y.F.; Peng, T.C.; Kuo, C.H.; Lee, R.P. Hypothermia caused by slow and limited-volume fluid resuscitation decreases organ damage by hemorrhagic shock. Cytokine 2012, 60, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Kilic, O.; Gultekin, Y.; Yazici, S. The Impact of Intravenous Fluid Therapy on Acid-Base Status of Critically Ill Adults: A Stewart Approach-Based Perspective. Int. J. Nephrol. Renov. Dis. 2020, 13, 219–230. [Google Scholar] [CrossRef]
- Han, J.; Ren, H.Q.; Zhao, Q.B.; Wu, Y.L.; Qiao, Z.Y. Comparison of 3% and 7.5% Hypertonic Saline in Resuscitation After Traumatic Hypovolemic Shock. Shock 2015, 43, 244–249. [Google Scholar] [CrossRef]
- Pfortmueller, C.A.; Schefold, J.C. Hypertonic saline in critical illness—A systematic review. J. Crit. Care 2017, 42, 168–177. [Google Scholar] [CrossRef]
- Tyagi, R.; Donaldson, K.; Loftus, C.M.; Jallo, J. Hypertonic saline: A clinical review. Neurosurg. Rev. 2007, 30, 277–289; discussion 289–290. [Google Scholar] [CrossRef] [PubMed]
- Adamides, A.A.; Winter, C.D.; Lewis, P.M.; Cooper, D.J.; Kossmann, T.; Rosenfeld, J.V. Current controversies in the management of patients with severe traumatic brain injury. ANZ J. Surg. 2006, 76, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Hinson, H.E.; Stein, D.; Sheth, K.N. Hypertonic saline and mannitol therapy in critical care neurology. J. Intensive Care Med. 2013, 28, 3–11. [Google Scholar] [CrossRef]
- Chen, H.; Song, Z.; Dennis, J.A. Hypertonic saline versus other intracranial pressure-lowering agents for people with acute traumatic brain injury. Cochrane Database Syst. Rev. 2020, 1, CD010904. [Google Scholar] [CrossRef] [PubMed]
- Gharizadeh, N.; Ghojazadeh, M.; Naseri, A.; Dolati, S.; Tarighat, F.; Soleimanpour, H. Hypertonic saline for traumatic brain injury: A systematic review and meta-analysis. Eur. J. Med. Res. 2022, 27, 254. [Google Scholar] [CrossRef] [PubMed]
- Mangat, H.S. Hypertonic saline infusion for treating intracranial hypertension after severe traumatic brain injury. Crit. Care 2018, 22, 37. [Google Scholar] [CrossRef]
- Tsaousi, G.; Stazi, E.; Cinicola, M.; Bilotta, F. Cardiac output changes after osmotic therapy in neurosurgical and neurocritical care patients: A systematic review of the clinical literature. Br. J. Clin. Pharmacol. 2018, 84, 636–648. [Google Scholar] [CrossRef]
- Munar, F.; Ferrer, A.M.; de Nadal, M.; Poca, M.A.; Pedraza, S.; Sahuquillo, J.; Garnacho, A. Cerebral hemodynamic effects of 7.2% hypertonic saline in patients with head injury and raised intracranial pressure. J. Neurotrauma 2000, 17, 41–51. [Google Scholar] [CrossRef]
- Strandvik, G.F. Hypertonic saline in critical care: A review of the literature and guidelines for use in hypotensive states and raised intracranial pressure. Anaesthesia 2009, 64, 990–1003. [Google Scholar] [CrossRef] [PubMed]
- Patanwala, A.E.; Amini, A.; Erstad, B.L. Use of hypertonic saline injection in trauma. Am. J. Health Syst. Pharm. 2010, 67, 1920–1928. [Google Scholar] [CrossRef]
- Roquilly, A.; Moyer, J.D.; Huet, O.; Lasocki, S.; Cohen, B.; Dahyot-Fizelier, C.; Chalard, K.; Seguin, P.; Jeantrelle, C.; Vermeersch, V.; et al. Effect of Continuous Infusion of Hypertonic Saline vs. Standard Care on 6-Month Neurological Outcomes in Patients with Traumatic Brain Injury: The COBI Randomized Clinical Trial. JAMA 2021, 325, 2056–2066. [Google Scholar] [CrossRef]
- Carson, J.L.; Brooks, M.M.; Hebert, P.C.; Goodman, S.G.; Bertolet, M.; Glynn, S.A.; Chaitman, B.R.; Simon, T.; Lopes, R.D.; Goldsweig, A.M.; et al. Restrictive or Liberal Transfusion Strategy in Myocardial Infarction and Anemia. N. Engl. J. Med. 2023, 389, 2446–2456. [Google Scholar] [CrossRef]
- Ghiani, A.; Sainis, A.; Sainis, G.; Neurohr, C. Anemia and red blood cell transfusion practice in prolonged mechanically ventilated patients admitted to a specialized weaning center: An observational study. BMC Pulm. Med. 2019, 19, 250. [Google Scholar] [CrossRef]
- Rasmussen, L.; Christensen, S.; Lenler-Petersen, P.; Johnsen, S.P. Anemia and 90-day mortality in COPD patients requiring invasive mechanical ventilation. Clin. Epidemiol. 2010, 3, 1–5. [Google Scholar] [CrossRef]
- Krishnasivam, D.; Trentino, K.M.; Burrows, S.; Farmer, S.L.; Picardo, S.; Leahy, M.F.; Halder, A.; Chamberlain, J.; Swain, S.; Muthucumarana, K.; et al. Anemia in hospitalized patients: An overlooked risk in medical care. Transfusion 2018, 58, 2522–2528. [Google Scholar] [CrossRef] [PubMed]
- Bosboom, J.J.; Klanderman, R.B.; Zijp, M.; Hollmann, M.W.; Veelo, D.P.; Binnekade, J.M.; Geerts, B.F.; Vlaar, A.P.J. Incidence, risk factors, and outcome of transfusion-associated circulatory overload in a mixed intensive care unit population: A nested case-control study. Transfusion 2018, 58, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Blet, A.; McNeil, J.B.; Josse, J.; Cholley, B.; Cinotti, R.; Cotter, G.; Dauvergne, A.; Davison, B.; Duarte, K.; Duranteau, J.; et al. Association between in-ICU red blood cells transfusion and 1-year mortality in ICU survivors. Crit. Care 2022, 26, 307. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.L.; Stanworth, S.J.; Dennis, J.A.; Trivella, M.; Roubinian, N.; Fergusson, D.A.; Triulzi, D.; Doree, C.; Hebert, P.C. Transfusion thresholds for guiding red blood cell transfusion. Cochrane Database Syst. Rev. 2021, 12, CD002042. [Google Scholar] [CrossRef]
- Willems, S.A.; Kranenburg, F.J.; Le Cessie, S.; Marang-van de Mheen, P.J.; Kesecioglu, J.; van der Bom, J.G.; Arbous, M.S. Variation in red cell transfusion practice in the intensive care unit—An international survey. J. Crit. Care 2020, 55, 140–144. [Google Scholar] [CrossRef]
- Taccone, F.S.; Rynkowski, C.B.; Moller, K.; Lormans, P.; Quintana-Diaz, M.; Caricato, A.; Cardoso Ferreira, M.A.; Badenes, R.; Kurtz, P.; Sondergaard, C.B.; et al. Restrictive vs. Liberal Transfusion Strategy in Patients with Acute Brain Injury: The TRAIN Randomized Clinical Trial. JAMA 2024, 332, 1623–1633. [Google Scholar] [CrossRef]
- Hebert, P.C.; Wells, G.; Blajchman, M.A.; Marshall, J.; Martin, C.; Pagliarello, G.; Tweeddale, M.; Schweitzer, I.; Yetisir, E. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N. Engl. J. Med. 1999, 340, 409–417. [Google Scholar] [CrossRef]
- Carson, J.L.; Stanworth, S.J.; Guyatt, G.; Valentine, S.; Dennis, J.; Bakhtary, S.; Cohn, C.S.; Dubon, A.; Grossman, B.J.; Gupta, G.K.; et al. Red Blood Cell Transfusion: 2023 AABB International Guidelines. JAMA 2023, 330, 1892–1902. [Google Scholar] [CrossRef]
- Lelubre, C.; Bouzat, P.; Crippa, I.A.; Taccone, F.S. Anemia management after acute brain injury. Crit. Care 2016, 20, 152. [Google Scholar] [CrossRef]
- Vanhala, H.; Junttila, E.; Kataja, A.; Huhtala, H.; Luostarinen, T.; Luoto, T. Incidence and Associated Factors of Anemia in Patients with Acute Moderate and Severe Traumatic Brain Injury. Neurocrit. Care 2022, 37, 629–637. [Google Scholar] [CrossRef]
- Litofsky, N.S.; Martin, S.; Diaz, J.; Ge, B.; Petroski, G.; Miller, D.C.; Barnes, S.L. The Negative Impact of Anemia in Outcome from Traumatic Brain Injury. World Neurosurg. 2016, 90, 82–90. [Google Scholar] [CrossRef]
- Napolitano, L.M. Anemia and Red Blood Cell Transfusion: Advances in Critical Care. Crit. Care Clin. 2017, 33, 345–364. [Google Scholar] [CrossRef]
- Hayden, S.J.; Albert, T.J.; Watkins, T.R.; Swenson, E.R. Anemia in critical illness: Insights into etiology, consequences, and management. Am. J. Respir. Crit. Care Med. 2012, 185, 1049–1057. [Google Scholar] [CrossRef]
- Vincent, J.L.; Baron, J.F.; Reinhart, K.; Gattinoni, L.; Thijs, L.; Webb, A.; Meier-Hellmann, A.; Nollet, G.; Peres-Bota, D.; Anemia and Blood Transfusion in Critical Care Investigators. Anemia and blood transfusion in critically ill patients. JAMA 2002, 288, 1499–1507. [Google Scholar] [CrossRef]
- Rodriguez, R.M.; Corwin, H.L.; Gettinger, A.; Corwin, M.J.; Gubler, D.; Pearl, R.G. Nutritional deficiencies and blunted erythropoietin response as causes of the anemia of critical illness. J. Crit. Care 2001, 16, 36–41. [Google Scholar] [CrossRef]
- Hare, G.M.; Mazer, C.D.; Hutchison, J.S.; McLaren, A.T.; Liu, E.; Rassouli, A.; Ai, J.; Shaye, R.E.; Lockwood, J.A.; Hawkins, C.E.; et al. Severe hemodilutional anemia increases cerebral tissue injury following acute neurotrauma. J. Appl. Physiol. 2007, 103, 1021–1029. [Google Scholar] [CrossRef]
- Guglielmi, A.; Graziano, F.; Bogossian, E.G.; Turgeon, A.F.; Taccone, F.S.; Citerio, G.; Participants, C.-T.; Investigators. Haemoglobin values, transfusion practices, and long-term outcomes in critically ill patients with traumatic brain injury: A secondary analysis of CENTER-TBI. Crit. Care 2024, 28, 199. [Google Scholar] [CrossRef]
- Gobatto, A.L.N.; Link, M.A.; Solla, D.J.; Bassi, E.; Tierno, P.F.; Paiva, W.; Taccone, F.S.; Malbouisson, L.M. Transfusion requirements after head trauma: A randomized feasibility controlled trial. Crit. Care 2019, 23, 89. [Google Scholar] [CrossRef]
- Robertson, C.S.; Hannay, H.J.; Yamal, J.M.; Gopinath, S.; Goodman, J.C.; Tilley, B.C.; Epo Severe TBI Trial Investigators; Baldwin, A.; Rivera Lara, L.; Saucedo-Crespo, H.; et al. Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: A randomized clinical trial. JAMA 2014, 312, 36–47. [Google Scholar] [CrossRef]
- Turgeon, A.F.; Fergusson, D.A.; Clayton, L.; Patton, M.P.; Neveu, X.; Walsh, T.S.; Docherty, A.; Malbouisson, L.M.; Pili-Floury, S.; English, S.W.; et al. Liberal or Restrictive Transfusion Strategy in Patients with Traumatic Brain Injury. N. Engl. J. Med. 2024, 391, 722–735. [Google Scholar] [CrossRef] [PubMed]
Study | Liberal | Restrictive |
---|---|---|
Guglielmi A. et al. (2024) [270] | 7.5–9.5 g/dL | <7.5 g/dL |
Taccone F.S. et al. (2024) [259] | 9 g/dL | 7 g/dL |
Gobatto A.L.N. et al. (2019) [271] | 9 g/dL | 7 g/dL |
Robertson C.S. et al. (2014) [272] | 10 g/dL | 7 g/dL |
Turgeon A.F. et al. (2024) [273] | 10 g/dL | 7 g/dL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziaka, M.; Hautz, W.; Exadaktylos, A. A Comprehensive Review of Fluid Resuscitation Strategies in Traumatic Brain Injury. J. Clin. Med. 2025, 14, 6289. https://doi.org/10.3390/jcm14176289
Ziaka M, Hautz W, Exadaktylos A. A Comprehensive Review of Fluid Resuscitation Strategies in Traumatic Brain Injury. Journal of Clinical Medicine. 2025; 14(17):6289. https://doi.org/10.3390/jcm14176289
Chicago/Turabian StyleZiaka, Mairi, Wolf Hautz, and Aristomenis Exadaktylos. 2025. "A Comprehensive Review of Fluid Resuscitation Strategies in Traumatic Brain Injury" Journal of Clinical Medicine 14, no. 17: 6289. https://doi.org/10.3390/jcm14176289
APA StyleZiaka, M., Hautz, W., & Exadaktylos, A. (2025). A Comprehensive Review of Fluid Resuscitation Strategies in Traumatic Brain Injury. Journal of Clinical Medicine, 14(17), 6289. https://doi.org/10.3390/jcm14176289