A Detailed Study of Infection Following Custom-Made Porous Hydroxyapatite Cranioplasty: Risk Factors and How to Possibly Avoid Device Explantation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Data Collection
2.3. Definitions and Classification Criteria
- Cranioplasty line of treatment
- First-line treatment: defined as the initial PHA cranioplasty performed after decompressive craniectomy.
- Second-line treatment: referred to cases in which a previous implant (made of a different material) had been removed due to complications and was subsequently replaced with a PHA prosthesis.
- Implant location
- Unilateral fronto-parieto-temporal: involving the frontal, parietal, and temporal bones on one side of the skull
- Bifrontal: involving both frontal bones
- Other: including parietal, occipital, or mixed regions not falling under the main categories.
- Infection onset
- Early infections: defined as those occurring within 2 months after cranioplasty.
- Late infections: defined as those occurring more than 2 months after the procedure.
- Infection Depth
- Superficial infections: Limited to the skin and subcutaneous tissue at the surgical site.
- Deep infections: Involved deeper soft tissues (fascia, muscle layers, joint space, or bone) and required systemic antibiotic therapy and/or surgical debridement.
- Infection Management Strategies
- Antibiotic treatment only: A conservative approach in which systemic antibiotics were administered (intravenously and/or orally) without planned surgical intervention. Explantation was performed only in cases of pharmacological treatment failure.
- Explantation without reimplantation: Permanent implant removal without subsequent replacement.
- Reoperation with a different implant material: Replacement with a new implant of an alternative material, such as titanium or polyetheretherketone (PEEK).
- Reoperation with a backup PHA implant: Reimplantation using a second identical PHA implant delivered at the time of the initial cranioplasty manufacturing and stored for up to one year for potential use in case of explantation.
- Reoperation with a newly manufactured PHA implant: A new implant produced specifically for the patient after explantation.
- Reoperation with the same PHA implant: The original implant was re-sterilized and reimplanted. In every case, reimplantation occurred at least a few months after explantation.
- Other Associated Treatments
- Surgical debridement: removal of infected or necrotic tissue from the surgical site to reduce microbial load and promote healing. This procedure was typically performed in cases of severe or unresponsive infection, often in combination with systemic antibiotic therapy.
- In situ (local) antibiotic therapy: direct application of antimicrobial agents at the surgical site, generally in combination with systemic antibiotic treatment.
- Prolonged Systemic Antibiotic Therapy
2.4. Antibiotic Protocols
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Patient Demographics and Clinical Characteristics
3.2. Incidence and Risk Factors of Post-Cranioplasty Infections
3.3. Infection Characteristics and Treatment Outcomes
3.4. Microbiological Findings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossini, Z.; Franzini, A.; Zaed, I.; Zingaretti, N.; Nicolosi, F.; Zanotti, B. Custom-Made Porous Hydroxyapatite Cranioplasty in Patients with Tumor Versus Traumatic Brain Injury: A Single-Center Case Series. World Neurosurg. 2020, 138, e922–e929. [Google Scholar] [CrossRef] [PubMed]
- Maricevich, J.P.B.R.; Cezar-Junior, A.B.; de Oliveira-Junior, E.X.; Morais e Silva, J.A.; da Silva, J.V.L.; Nunes, A.A.; Almeida, N.S.; Azevedo-Filho, H.R.C. Functional and aesthetic evaluation after cranial reconstruction with polymethyl methacrylate prostheses using low-cost 3D printing templates in patients with cranial defects secondary to decompressive craniectomies: A prospective study. Surg. Neurol. Int. 2019, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Ganau, M.; Cebula, H.; Fricia, M.; Zaed, I.; Todeschi, J.; Scibilia, A.; Gallinaro, P.; Coca, A.; Chaussemy, D.; Ollivier, I.; et al. Surgical preference regarding different materials for custom-made allograft cranioplasty in patients with calvarial defects: Results from an internal audit covering the last 20 years. J. Clin. Neurosci. 2020, 74, 98–103. [Google Scholar] [CrossRef]
- Henry, J.; Amoo, M.; Taylor, J.; O’Brien, D.P. Complications of Cranioplasty in Relation to Material: Systematic Review, Network Meta-Analysis and Meta-Regression. Neurosurgery 2021, 89, 383–394. [Google Scholar] [CrossRef]
- Ashraf, M.; Choudhary, N.; Kamboh, U.A.; Raza, M.A.; Sultan, K.A.; Ghulam, N.; Hussain, S.S.; Ashraf, N. Early experience with patient-specific low-cost 3D-printed polymethylmethacrylate cranioplasty implants in a lower-middle-income-country: Technical note and economic analysis. Surg. Neurol. Int. 2022, 13, 270. [Google Scholar] [CrossRef]
- Policicchio, D.; Casu, G.; Dipellegrini, G.; Doda, A.; Muggianu, G.; Boccaletti, R. Comparison of two different titanium cranioplasty methods: Custom-made titanium prostheses versus precurved titanium mesh. Surg. Neurol. Int. 2020, 11, 148. [Google Scholar] [CrossRef]
- Celik, H.; Kurtulus, A.; Yildirim, M.E.; Tekiner, A.; Erdem, Y.; Kantarci, K.; Kul, H.; Bayar, M.A. The Comparison of Autologous Bone, Methyl-Methacrylate, Porous Polyethylene, and Titanium Mesh in Cranioplasty. Turk. Neurosurg. 2022, 32, 841–844. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, H.B.; Ha, S.K.; Lim, D.J.; Kim, S.D. Predictive Factors of Surgical Site Infection Following Cranioplasty: A Study Including 3D Printed Implants. Front. Neurol. 2021, 12, 745575. [Google Scholar] [CrossRef]
- Di Rienzo, A.; Colasanti, R.; Dobran, M.; Formica, F.; Della Costanza, M.; Carrassi, E.; Aiudi, D.; Iacoangeli, M. Management of infected hydroxyapatite cranioplasty: Is salvage feasible? Brain Spine 2022, 2, 100907. [Google Scholar] [CrossRef]
- Yeap, M.C.; Tu, P.H.; Liu, Z.H.; Hsieh, P.C.; Liu, Y.T.; Lee, C.Y.; Lai, H.Y.; Chen, C.T.; Huang, Y.C.; Wei, K.C.; et al. Long-Term Complications of Cranioplasty Using Stored Autologous Bone Graft, Three-Dimensional Polymethyl Methacrylate, or Titanium Mesh After Decompressive Craniectomy: A Single-Center Experience After 596 Procedures. World Neurosurg. 2019, 128, e841–e850. [Google Scholar] [CrossRef]
- Bečulić, H.; Spahić, D.; Begagić, E.; Pugonja, R.; Skomorac, R.; Jusić, A.; Selimović, E.; Mašović, A.; Pojskić, M. Breaking Barriers in Cranioplasty: 3D Printing in Low and Middle-Income Settings—Insights from Zenica, Bosnia and Herzegovina. Medicina 2023, 59, 1732. [Google Scholar] [CrossRef]
- Mannella, F.C.; Faedo, F.; Fumagalli, M.; Norata, G.D.; Zaed, I.; Servadei, F. Long-Term Follow-Up of Custom-Made Porous Hydroxyapatite Cranioplasties: Analysis of Infections in Adult and Pediatric Patients. J. Clin. Med. 2024, 13, 1133. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Gaynes, R.P.; Martone, W.J.; Jarvis, W.R.; Emori, T.G. CDC definitions of nosocomial surgical site infections, 1992: A modification of CDC definitions of surgical wound infections. Am. J. Infect. Control 1992, 20, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am. J. Infect. Control 1999, 27, 97–132; quiz 133–134; discussion 96. [Google Scholar]
- CDC. National Healthcare Safety Network (NHSN) Surgical Site Infection (SSI) Event. 2023. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf (accessed on 24 July 2025).
- Oliver, J.D.; Banuelos, J.; Abu-Ghname, A.; Vyas, K.S.; Sharaf, B. Alloplastic Cranioplasty Reconstruction: A Systematic Review Comparing Outcomes With Titanium Mesh, Polymethyl Methacrylate, Polyether Ether Ketone, and Norian Implants in 3591 Adult Patients. Ann. Plast. Surg. 2019, 82, S289–S294. [Google Scholar] [CrossRef]
- Chen, K.; Liang, W.; Zhu, Q.; Shen, H.; Yang, Y.; Li, Y.; Li, H.; Wang, Y.; Qian, R. Clinical Outcomes After Cranioplasty With Titanium Mesh, Polyetheretherketone, or Composite Bone Cement: A Retrospective Study. J. Craniofac. Surg. 2023, 34, 2246–2251. [Google Scholar] [CrossRef]
- Fricia, M.; Nicolosi, F.; Ganau, M.; Cebula, H.; Todeschi, J.; des Neiges Santin, M.; Nannavecchia, B.; Morselli, C.; Chibbaro, S. Cranioplasty with Porous Hydroxyapatite Custom-Made Bone Flap: Results from a Multicenter Study Enrolling 149 Patients Over 15 Years. World Neurosurg. 2019, 121, 160–165. [Google Scholar] [CrossRef]
- Wesp, D.; Krenzlin, H.; Jankovic, D.; Ottenhausen, M.; Jägersberg, M.; Ringel, F.; Keric, N. Analysis of PMMA versus CaP titanium-enhanced implants for cranioplasty after decompressive craniectomy: A retrospective observational cohort study. Neurosurg. Rev. 2022, 45, 3647–3655. [Google Scholar] [CrossRef]
- Amendola, F.; Vaienti, L.; Carbonaro, R.; Nataloni, A.; Barbanera, A.; Zingaretti, N.; Pier, C.P.; Zanotti, B. The Antibiotic Immersion of Custom-Made Porous Hydroxyapatite Cranioplasty: A Multicentric Cohort Study. J. Craniofac. Surg. 2022, 33, 1464–1468. [Google Scholar] [CrossRef]
- Messina, R.; Speranzon, L.; de Gennaro, L.; Nigri, E.M.; Dibenedetto, M.; Bozzi, M.T.; Delvecchio, C.; Signorelli, F. Early osteointegration in “one-step” resection and reconstruction using porous hydroxyapatite custom implants for skull-infiltrating tumors: A monocentric prospective series. Acta Neurochir. 2024, 166, 470. [Google Scholar] [CrossRef]
- Pfnür, A.; Tosin, D.; Petkov, M.; Sharon, O.; Mayer, B.; Wirtz, C.R.; Knoll, A.; Pala, A. Exploring complications following cranioplasty after decompressive hemicraniectomy: A retrospective bicenter assessment of autologous, PMMA and CAD implants. Neurosurg. Rev. 2024, 47, 72. [Google Scholar] [CrossRef] [PubMed]
- Bader, E.R.; Kobets, A.J.; Ammar, A.; Goodrich, J.T. Factors predicting complications following cranioplasty. J. Craniomaxillofac. Surg. 2022, 50, 134–139. [Google Scholar] [CrossRef]
- Ebel, F.; Schön, S.; Sharma, N.; Guzman, R.; Mariani, L.; Thieringer, F.M.; Soleman, J. Clinical and patient-reported outcome after patient-specific 3D printer-assisted cranioplasty. Neurosurg. Rev. 2023, 46, 93. [Google Scholar] [CrossRef]
- Zaed, I.; Iaccarino, C.; Faedo, F.; Grillini, L.; Galassi, E.; Dotti, A.; Nataloni, A.; Mannella, F.C.; Cardia, A. Cranioplasty infection in porous hydroxyapatite: Potential antibacterial properties. J. Appl. Biomater. Funct. Mater. 2025, 23, 22808000241311389. [Google Scholar] [CrossRef]
- Carone, G.; Bonada, M.; Belotti, E.G.; D’Angeli, E.; Piccardi, A.; Doniselli, F.M.; Gubertini, G.; Casali, C.; DiMeco, F.; Del Bene, M. Post-craniotomy infections: A point-by-point approach. Brain Spine 2025, 5, 104193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, X.; Tham, Y.C.; Giuffrè, M.; Ranisch, R.; Daher, M.; Lam, K.; Eriksen, A.V.; Hsu, C.W.; Ozaki, A.; Moraes, F.Y.; et al. Reporting guideline for the use of Generative Artificial intelligence tools in MEdical Research: The GAMER Statement. BMJ Evid. Based Med. 2025. [CrossRef]
Number | % | |
---|---|---|
Patients | 984 | 100 |
Sex | ||
Female | 351 | 35.7 |
Male | 633 | 64.3 |
Age | ||
Median age | 41.5 | |
Pediatric (2–13 years) | 85 | 8.6 |
Female | 32 | 37.7 |
Male | 53 | 62.3 |
Adult (14+ years) | 899 | 91.4 |
Female | 319 | 35.5 |
Male | 580 | 64.5 |
Primary diagnosis | ||
Trauma | 562 | 57.1 |
Vascular disease | 205 | 20.8 |
Tumor | 171 | 17.4 |
Malformation | 31 | 3.2 |
Other | 15 | 1.5 |
Line of treatment | ||
First line | 795 | 80.8 |
Second line | 189 | 19.2 |
Location | ||
Fronto-parieto-temporal | 858 | 87.2 |
Bifrontal | 62 | 6.3 |
Other | 64 | 6.5 |
Complications | 128 | 13 |
Infection | 76 | 7.7 |
Fracture | 22 | 2.2 |
Displacement | 8 | 0.8 |
Other | 22 | 2.2 |
Number | % | |
---|---|---|
Infection | 76 | 100 |
Sex | ||
Female | 29 | 38.2 |
Male | 47 | 61.8 |
Age | ||
Median age | 42.5 | |
Pediatric (2–13 years) | 9 | 11.8 |
Female | 2 | 22.2 |
Male | 7 | 77.8 |
Adult (14+ years) | 67 | 88.2 |
Female | 27 | 40.3 |
Male | 40 | 59.7 |
Primary diagnosis | ||
Trauma | 43 | 56.6 |
Vascular disease | 16 | 21 |
Tumor | 11 | 14.5 |
Malformation | 4 | 5.3 |
Other * | 2 | 2.6 |
Line of treatment | ||
First line | 53 | 69.7 |
Second line | 23 | 30.3 |
Location | ||
Fronto-parieto-temporal | 61 | 80.3 |
Bifrontal | 10 | 13.2 |
Other | 5 | 6.6 |
n (%) | Explant, n (%) | |
---|---|---|
Infection site | ||
Deep | 6 (7.9) | 6 (100) |
Superficial | 70 (92.1) | 53 (75.7) |
Infection onset | ||
Early | 47 (61.9) | 38 (80.5) |
Late | 29 (38.2) | 21 (72.4) |
Infection management | ||
Antibiotic treatment only | 18 (23.7) | 2 (11.1) |
Explantation without reimplantation | 6 (7.9) | 6 (100) |
Reoperation with different implant material | 31 (40.8) | 31 (100) |
Reoperation using backup PHA implant | 16 (21) | 16 (100) |
Reoperation with new PHA implant | 4 (5.3) | 4 (100) |
Reoperation with the same PHA implant | 1 (1.3) | - |
Surgical debridement | ||
Yes | 9 (11.8) | 1 (11.1) |
No | 66 (86.8) | 57 (86.4) |
ND | 1 (1.3) | 1 (100) |
Antibiotic treatment in situ | ||
Yes | 13 (17.1) | 3 (23.1) |
No | 63 (82.9) | 56 (88.9) |
n (%) | Explant, n (%) | |
---|---|---|
Wound swab | ||
Yes | 62 (81.6) | 47 (75.8) |
Staphylococcus spp. | 43 (69.3) | 33 (76.7) |
Non-staphylococcal bacteria | 19 (30.7) | 14 (73.7) |
No | 7 (9.2) | 5 (71.4) |
ND | 7 (9.2) | 7 (100) |
Blood culture | ||
Yes | 73 (96.1) | 56 (76.7) |
Staphylococcus spp. | 52 (71.2) | 41 (78.8) |
Non-staphylococcal bacteria | 21 (28.8) | 15 (71.4) |
ND | 3 (3.9) | 3 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannella, F.C.; Faedo, F.; Pallud, J.; Chibbaro, S.; Fumagalli, M.; Norata, G.D.; Zaed, I.; Servadei, F. A Detailed Study of Infection Following Custom-Made Porous Hydroxyapatite Cranioplasty: Risk Factors and How to Possibly Avoid Device Explantation. J. Clin. Med. 2025, 14, 6443. https://doi.org/10.3390/jcm14186443
Mannella FC, Faedo F, Pallud J, Chibbaro S, Fumagalli M, Norata GD, Zaed I, Servadei F. A Detailed Study of Infection Following Custom-Made Porous Hydroxyapatite Cranioplasty: Risk Factors and How to Possibly Avoid Device Explantation. Journal of Clinical Medicine. 2025; 14(18):6443. https://doi.org/10.3390/jcm14186443
Chicago/Turabian StyleMannella, Francesca Carolina, Francesca Faedo, Johan Pallud, Salvatore Chibbaro, Marta Fumagalli, Giuseppe Danilo Norata, Ismail Zaed, and Franco Servadei. 2025. "A Detailed Study of Infection Following Custom-Made Porous Hydroxyapatite Cranioplasty: Risk Factors and How to Possibly Avoid Device Explantation" Journal of Clinical Medicine 14, no. 18: 6443. https://doi.org/10.3390/jcm14186443
APA StyleMannella, F. C., Faedo, F., Pallud, J., Chibbaro, S., Fumagalli, M., Norata, G. D., Zaed, I., & Servadei, F. (2025). A Detailed Study of Infection Following Custom-Made Porous Hydroxyapatite Cranioplasty: Risk Factors and How to Possibly Avoid Device Explantation. Journal of Clinical Medicine, 14(18), 6443. https://doi.org/10.3390/jcm14186443