Early Hematoma Evacuation Can Prevent Infectious Complications in Patients with Spontaneous Intracerebral Hemorrhage
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Ethics
2.2. Study Design and Population
2.3. Surgical Hematoma Evacuation
2.4. Clinical and Radiographic Assessments
2.5. Blood Sampling
2.6. Clinical Outcomes
2.7. Statistical Analysis
3. Results
3.1. Descriptive Statistics and Comparisons Among Patient Groups
3.2. Infectious Complications
4. Discussion
4.1. Benefits of Hematoma Evacuation
4.2. Optimal Timing of Hematoma Evacuation to Prevent Infectious Complications
4.3. Immunosuppression Related to ICH
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caplan, L.R. Intracerebral haemorrhage. Lancet 1992, 339, 656–658. [Google Scholar] [CrossRef] [PubMed]
- Rincon, F.; Mayer, S.A. Intracerebral hemorrhage: Getting ready for effective treatments. Curr. Opin. Neurol. 2010, 23, 59–64. [Google Scholar] [CrossRef]
- Anderson, C.S.; Heeley, E.; Huang, Y.; Wang, J.; Stapf, C.; Delcourt, C.; Lindley, R.; Robinson, T.; Lavados, P.; Neal, B.; et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N. Engl. J. Med. 2013, 368, 2355–2365. [Google Scholar] [CrossRef]
- Mayer, S.A.; Brun, N.C.; Begtrup, K.; Broderick, J.; Davis, S.; Diringer, M.N.; Skolnick, B.E.; Steiner, T.; Investigators, F.T. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N. Engl. J. Med. 2008, 358, 2127–2137. [Google Scholar] [CrossRef]
- Sprigg, N.; Flaherty, K.; Appleton, J.P.; Al-Shahi Salman, R.; Bereczki, D.; Beridze, M.; Christensen, H.; Ciccone, A.; Collins, R.; Czlonkowska, A.; et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): An international randomised, placebo-controlled, phase 3 superiority trial. Lancet 2018, 391, 2107–2115. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Liu, X.; Wang, F.; Sun, Y.; Wang, J.; Liu, J.; Hao, X.; Zhou, L.; Yuan, Y.; Liu, J. Identification of immune-related biomarkers for intracerebral hemorrhage diagnosis based on RNA sequencing and machine learning. Front. Immunol. 2024, 15, 1421942. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Peng, Q.; Fan, X.; Zhang, Y.; Xu, H.; Li, J.; Sonita, H.; Liu, S.; Le, A.; Hu, Q.; et al. Immune-mediated disruption of the blood-brain barrier after intracerebral hemorrhage: Insights and potential therapeutic targets. CNS Neurosci. Ther. 2024, 30, e14853. [Google Scholar] [CrossRef]
- Jin, Z.; Lu, J.; Xu, H.; Zhang, Y.; Zhang, S.; Zhang, D.; Hu, J.; Shi, Z.; Li, Z.; Wang, J. Exploring the correlation between innate immune activation of inflammasome and regulation of pyroptosis after intracerebral hemorrhage: From mechanism to treatment. Biomed. Pharmacother. 2024, 179, 117382. [Google Scholar] [CrossRef]
- Kashiwazaki, D.; Tomita, T.; Shibata, T.; Yamamoto, S.; Hori, E.; Akioka, N.; Kuwayama, N.; Nakatsuji, Y.; Noguchi, K.; Kuroda, S. Impact of Perihematomal Edema on Infectious Complications after Spontaneous Intracerebral Hemorrhage. J. Stroke Cerebrovasc. Dis. 2021, 30, 105827. [Google Scholar] [CrossRef]
- Liesz, A.; Ruger, H.; Purrucker, J.; Zorn, M.; Dalpke, A.; Mohlenbruch, M.; Englert, S.; Nawroth, P.P.; Veltkamp, R. Stress mediators and immune dysfunction in patients with acute cerebrovascular diseases. PLoS ONE 2013, 8, e74839. [Google Scholar] [CrossRef] [PubMed]
- Marini, S.; Morotti, A.; Lena, U.K.; Goldstein, J.N.; Greenberg, S.M.; Rosand, J.; Anderson, C.D. Men Experience Higher Risk of Pneumonia and Death After Intracerebral Hemorrhage. Neurocrit. Care 2018, 28, 77–82. [Google Scholar] [CrossRef]
- Sykora, M.; Diedler, J.; Poli, S.; Rizos, T.; Turcani, P.; Veltkamp, R.; Steiner, T. Autonomic shift and increased susceptibility to infections after acute intracerebral hemorrhage. Stroke 2011, 42, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shi, K.; Li, Z.; Li, M.; Han, Y.; Wang, L.; Zhang, Z.; Yu, C.; Zhang, F.; Song, L.; et al. Organ- and cell-specific immune responses are associated with the outcomes of intracerebral hemorrhage. FASEB J. 2018, 32, 220–229. [Google Scholar] [CrossRef]
- You, S.; Zhong, C.; Zheng, D.; Xu, J.; Zhang, X.; Liu, H.; Zhang, Y.; Shi, J.; Huang, Z.; Cao, Y.; et al. Monocyte to HDL cholesterol ratio is associated with discharge and 3-month outcome in patients with acute intracerebral hemorrhage. J. Neurol. Sci. 2017, 372, 157–161. [Google Scholar] [CrossRef]
- Yu, S.; Arima, H.; Heeley, E.; Delcourt, C.; Krause, M.; Peng, B.; Yang, J.; Wu, G.; Chen, X.; Chalmers, J.; et al. White blood cell count and clinical outcomes after intracerebral hemorrhage: The INTERACT2 trial. J. Neurol. Sci. 2016, 361, 112–116. [Google Scholar] [CrossRef]
- de Oliveira Manoel, A.L. Surgery for spontaneous intracerebral hemorrhage. Crit. Care 2020, 24, 45. [Google Scholar] [CrossRef] [PubMed]
- Mould, W.A.; Carhuapoma, J.R.; Muschelli, J.; Lane, K.; Morgan, T.C.; McBee, N.A.; Bistran-Hall, A.J.; Ullman, N.L.; Vespa, P.; Martin, N.A.; et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke 2013, 44, 627–634. [Google Scholar] [CrossRef]
- Wagner, K.R.; Xi, G.; Hua, Y.; Zuccarello, M.; de Courten-Myers, G.M.; Broderick, J.P.; Brott, T.G. Ultra-early clot aspiration after lysis with tissue plasminogen activator in a porcine model of intracerebral hemorrhage: Edema reduction and blood-brain barrier protection. J. Neurosurg. 1999, 90, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Li, C.; Wang, L.; Mao, Y.; Hong, Z. Minimally invasive procedures for evacuation of intracerebral hemorrhage reduces perihematomal glutamate content, blood-brain barrier permeability and brain edema in rabbits. Neurocrit. Care 2011, 14, 118–126. [Google Scholar] [CrossRef]
- Kothari, R.U.; Brott, T.; Broderick, J.P.; Barsan, W.G.; Sauerbeck, L.R.; Zuccarello, M.; Khoury, J. The ABCs of measuring intracerebral hemorrhage volumes. Stroke 1996, 27, 1304–1305. [Google Scholar] [CrossRef]
- Li, J.; Luo, H.; Chen, Y.; Wu, B.; Han, M.; Jia, W.; Wu, Y.; Cheng, R.; Wang, X.; Ke, J.; et al. Comparison of the Predictive Value of Inflammatory Biomarkers for the Risk of Stroke-Associated Pneumonia in Patients with Acute Ischemic Stroke. Clin. Interv. Aging 2023, 18, 1477–1490. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.H.; Wen, W.X.; Jiang, Z.P.; Du, Z.P.; Ma, Z.H.; Lu, A.L.; Li, H.P.; Yuan, F.; Wu, S.B.; Guo, J.W.; et al. The clinical value of neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation index (SII), platelet-to-lymphocyte ratio (PLR) and systemic inflammation response index (SIRI) for predicting the occurrence and severity of pneumonia in patients with intracerebral hemorrhage. Front. Immunol. 2023, 14, 1115031. [Google Scholar] [CrossRef]
- Xu, M.; Wang, J.; Zhan, C.; Zhou, Y.; Luo, Z.; Yang, Y.; Zhu, D. Association of follow-up neutrophil-to-lymphocyte ratio and systemic inflammation response index with stroke-associated pneumonia and functional outcomes in cerebral hemorrhage patients: A case-controlled study. Int. J. Surg. 2024, 110, 4014–4022. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.N.; Shen, Y.Q.; Li, Z.Q.; Deng, L.; Wang, Z.J.; Cheng, J.; Hu, X.; Pu, M.J.; Yang, W.S.; Xie, P.; et al. Neutrophil percentage to albumin ratio is associated with stroke-associated pneumonia and poor outcome in patients with spontaneous intracerebral hemorrhage. Front. Immunol. 2023, 14, 1173718. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Ye, Y.; Xu, Q.; Li, Y.; Feng, S.; Xiong, X.; Jian, Z.; Gu, L. Peripheral Organ Injury After Stroke. Front. Immunol. 2022, 13, 901209. [Google Scholar] [CrossRef] [PubMed]
- Mendelow, A.D.; Gregson, B.A.; Fernandes, H.M.; Murray, G.D.; Teasdale, G.M.; Hope, D.T.; Karimi, A.; Shaw, M.D.; Barer, D.H.; STICH investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): A randomised trial. Lancet 2005, 365, 387–397. [Google Scholar] [CrossRef]
- Mendelow, A.D.; Gregson, B.A.; Rowan, E.N.; Murray, G.D.; Gholkar, A.; Mitchell, P.M.; Investigators, S.I. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): A randomised trial. Lancet 2013, 382, 397–408. [Google Scholar] [CrossRef]
- Lord, A.S.; Lewis, A.; Czeisler, B.; Ishida, K.; Torres, J.; Kamel, H.; Woo, D.; Elkind, M.S.; Boden-Albala, B. Majority of 30-Day Readmissions After Intracerebral Hemorrhage Are Related to Infections. Stroke 2016, 47, 1768–1771. [Google Scholar] [CrossRef]
- Morotti, A.; Marini, S.; Jessel, M.J.; Schwab, K.; Kourkoulis, C.; Ayres, A.M.; Gurol, M.E.; Viswanathan, A.; Greenberg, S.M.; Anderson, C.D.; et al. Lymphopenia, Infectious Complications, and Outcome in Spontaneous Intracerebral Hemorrhage. Neurocrit. Care 2017, 26, 160–166. [Google Scholar] [CrossRef]
Group A | Group B | Group C | p | |
---|---|---|---|---|
without hematoma evacuation | hematoma evacuation with residual hematoma ≥ 10 mL | hematoma evacuation with residual hematoma < 10 mL | ||
Number of patients | 88 | 25 | 61 | NA |
Baseline characteristics | ||||
age(years) | 68.8 ± 11.3 | 65.3 ± 12.1 | 64.4 ± 12.5 | 0.43 |
gender, male | 56 (63.6%) | 16 (64.0%) | 39 (63.9%) | |
Comorbidities | ||||
hypertension | 85 (96.6%) | 23 (92.0%) | 58 (95.1%) | 0.38 |
dyslipidemia | 29 (33.0%) | 10 (40.0%) | 18 (29.5%) | 0.21 |
diabetic mellitus | 25 (28.4%) | 9 (36.0%) | 17 (27.9%) | 0.44 |
coronary artery disease | 11 (12.5%) | 4 (16.0%) | 9 (14.8%) | 0.54 |
renal failure | 10 (11.4%) | 4 (16.0%) | 7 (11.5%) | 0.27 |
Surgery | ||||
surgery in <24 h | NA | 22 (88.0%) | 50 (82.0%) | NA |
ventricle drain | 8 (9.1%) | 4 (16.0%) | 8 (13.1%) | 0.17 |
tracheostomy | 9 (10.2%) | 5 (20.0%) | 8 (13.1%) | |
Radiological findings | ||||
hematoma volume (mL) | 26.4 ± 5.2 | 42.2 ± 9.9 | 43.2 ± 9.1 | <0.01 |
residual hematoma (mL) | NA | 16.8 ± 4.5 | 4.8 ± 3.1 | <0.01 |
IVH | 19 (21.6%) | 5 (20.0%) | 11 (18.0%) | 0.22 |
All Infection | Pneumonia | Urinary Tract Infection | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Demographic | |||||||||
Age | 1.61 | 1.19–4.56 | 0.02 | 1.52 | 1.15–3.86 | 0.01 | 1.65 | 1.18–4.02 | 0.02 |
Gender (female) | 1.02 | 0.94–1.88 | 0.18 | 0.95 | 0.90–1.95 | 0.13 | 1.22 | 1.12–4.15 | 0.02 |
Diabetec mellitus | 1.04 | 0.90–1.45 | 0.32 | 1.03 | 0.92–1.35 | 0.21 | 1.02 | 0.90–1.45 | 0.28 |
Dyslipidemia | 1.01 | 0.88–1.35 | 0.56 | 1.03 | 0.94–1.18 | 0.31 | 1.04 | 0.90–1.15 | 0.41 |
History of ischemic storke | 1.02 | 0.95–1.21 | 0.09 | 1.01 | 0.92–1.12 | 0.15 | 1.02 | 0.91–1.05 | 0.17 |
History of hemorrhagic stroke | 1.01 | 1.10–1.35 | 0.22 | 0.99 | 0.92–1.10 | 0.26 | 1.02 | 0.94–1.05 | 0.27 |
Neurological | |||||||||
NIHSS > 15 | 1.22 | 1.02–1.98 | <0.01 | 1.35 | 1.04–2.33 | <0.01 | 1.16 | 1.01–1.84 | 0.01 |
GCS < 12 | 1.3 | 1.05–2.04 | <0.01 | 1.53 | 1.08–2.08 | <0.01 | 1.21 | 1.02–1.55 | 0.02 |
motor weakness | 1.11 | 1.02–1.31 | 0.03 | 1.12 | 1.03–1.21 | 0.02 | 1.09 | 1.00–1.17 | 0.04 |
motor aphasia | 1.04 | 0.92–1.32 | 0.38 | 1.03 | 0.94–1.27 | 0.44 | 1.04 | 0.92–1.18 | 0.17 |
sensory aphasia | 1.02 | 0.88–1.03 | 0.21 | 1.03 | 0.87–1.33 | 0.46 | 0.99 | 0.82–1.22 | 0.25 |
Radiological | |||||||||
intraventrivle hemorrhage | 1.09 | 1.03–1.32 | 0.02 | 1.11 | 1.05–1.23 | 0.02 | 1.07 | 1.03–1.25 | 0.03 |
Hemorrhage | |||||||||
cortical | 1.03 | 0.91–1.09 | 0.21 | 1.01 | 0.92–1.11 | 0.31 | 0.98 | 0.90–1.09 | 0.28 |
putamen | 0.95 | 0.84–1.06 | 0.18 | 0.98 | 0.92–1.06 | 0.31 | 0.94 | 0.81–1.19 | 0.27 |
thalamus | 1.02 | 0.94–1.10 | 0.38 | 1.02 | 0.88–1.12 | 0.41 | 1.01 | 0.9–1.12 | 0.36 |
others | 1.03 | 0.91–1.21 | 0.45 | 1.05 | 0.89–1.12 | 0.17 | 1.02 | 0.96–1.09 | 0.22 |
Medical | |||||||||
mechanical ventilation > 24 h | 0.98 | 0.88–1.20 | 0.36 | 0.97 | 0.86–1.18 | 0.28 | 0.99 | 0.91–1.08 | 0.46 |
EVD use | 1.05 | 0.94–1.14 | 0.15 | 1.06 | 0.95–1.08 | 0.21 | 1.04 | 0.91–1.10 | 0.3 |
hematoma evacuation | 0.96 | 0.92–0.1.01 | 0.08 | 0.95 | 0.91–1.01 | 0.07 | 0.97 | 0.94–1.04 | 0.1 |
hematoma evacuation with residual <10 mL | 0.85 | 0.79–0.92 | 0.01 | 0.82 | 0.75–0.90 | 0.01 | 0.88 | 0.82–0.97 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashiwazaki, D.; Maruyama, K.; Yamamoto, S.; Hori, E.; Noguchi, K.; Kuroda, S. Early Hematoma Evacuation Can Prevent Infectious Complications in Patients with Spontaneous Intracerebral Hemorrhage. J. Clin. Med. 2025, 14, 6480. https://doi.org/10.3390/jcm14186480
Kashiwazaki D, Maruyama K, Yamamoto S, Hori E, Noguchi K, Kuroda S. Early Hematoma Evacuation Can Prevent Infectious Complications in Patients with Spontaneous Intracerebral Hemorrhage. Journal of Clinical Medicine. 2025; 14(18):6480. https://doi.org/10.3390/jcm14186480
Chicago/Turabian StyleKashiwazaki, Daina, Kunitaka Maruyama, Shusuke Yamamoto, Emiko Hori, Kyo Noguchi, and Satoshi Kuroda. 2025. "Early Hematoma Evacuation Can Prevent Infectious Complications in Patients with Spontaneous Intracerebral Hemorrhage" Journal of Clinical Medicine 14, no. 18: 6480. https://doi.org/10.3390/jcm14186480
APA StyleKashiwazaki, D., Maruyama, K., Yamamoto, S., Hori, E., Noguchi, K., & Kuroda, S. (2025). Early Hematoma Evacuation Can Prevent Infectious Complications in Patients with Spontaneous Intracerebral Hemorrhage. Journal of Clinical Medicine, 14(18), 6480. https://doi.org/10.3390/jcm14186480