Expanding Applications of Three-Dimensional Cardiac Mapping Systems: A Review
Abstract
1. Introduction
2. Technical Foundations of Electro-Anatomical Mapping Systems
3. EAMS in Device Implantation
4. EAMS in Coronary Intervention
4.1. Imaging Technologies Currently Used to Support PCI
4.2. Technical Principles and Setup of EAMS in PCI
4.3. Feasibility Studies of EAMS in PCI
4.4. Limitations and Future Directions for EAMS in PCI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCI | Percutaneous Coronary Intervention |
EAMS | Electro-Anatomical Mapping Systems |
CIN | Contrast-Induced Nephropathy |
IVUS | Intravascular Ultrasound |
OCT | Optical Coherence Tomography |
DCR | Dynamic Coronary Roadmapping |
CRT | Cardiac Resynchronisation Therapy |
HBP | His Bundle Pacing |
LBBP | Left Bundle Branch Pacing |
VT | Ventricular Tachycardia |
References
- Belenkov, I.N.; Samko, A.N.; Batyraliev, T.A.; Pershukov, I.V. Coronary angioplasty: View through 30 years. Kardiologiia 2007, 47, 4–14. [Google Scholar]
- Garg, T.; Shrigiriwar, A. Radiation Protection in Interventional Radiology. Indian. J. Radiol. Imaging 2021, 31, 939–945. [Google Scholar] [CrossRef] [PubMed]
- James, M.T.; Samuel, S.M.; Manning, M.A.; Tonelli, M.; Ghali, W.A.; Faris, P.; Knudtson, M.L.; Pannu, N.; Hemmelgarn, B.R. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: A systematic review and meta-analysis. Circ. Cardiovasc. Interv. 2013, 6, 37–43. [Google Scholar] [CrossRef]
- Perrin, T.; Descombes, E.; Cook, S. Contrast-induced nephropathy in invasive cardiology. Swiss Med. Wkly. 2012, 142, w13608. [Google Scholar] [CrossRef]
- Mariani, J.; Guedes, C.; Soares, P.; Zalc, S.; Campos, C.M.; Lopes, A.C.; Spadaro, A.G.; Perin, M.A.; Filho, A.E.; Takimura, C.K.; et al. Intravascular ultrasound guidance to minimize the use of iodine contrast in percutaneous coronary intervention: The MOZART (Minimizing cOntrast utiliZation with IVUS Guidance in coRonary angioplasTy) randomized controlled trial. JACC Cardiovasc. Interv. 2014, 7, 1287–1293. [Google Scholar] [CrossRef]
- Kumar, P.; Jino, B.; Shafeeq, A.; Roy, S.; Rajendran, M.; Villoth, S.G. IVUS-Guided Zero-Contrast PCI in CKD Patients: Safety and Short-Term Outcome in Patients with Complex Demographics and/or Lesion Characteristics. J. Interv. Cardiol. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Anil, K.R. Pilot Study of Dynamic Coronary Roadmap During Coronary Angioplasty. JACC 2017, 69, 1079. [Google Scholar]
- Bhakta, D.; Miller, J.M. Principles of electroanatomic mapping. Indian Pacing Electrophysiol. J. 2008, 8, 32–50. [Google Scholar] [PubMed]
- Tuzcu, V. A nonfluoroscopic approach for electrophysiology and catheter ablation procedures using a three-dimensional navigation system. Pacing Clin. Electrophysiol. 2007, 30, 519–525. [Google Scholar] [CrossRef]
- Del Greco, M.; Maines, M.; Marini, M.; Colella, A.; Zecchin, M.; Vitali-Serdoz, L.; Blandino, A.; Barbonaglia, L.; Allocca, G.; Mureddu, R.; et al. Three-Dimensional Electroanatomic Mapping System-Enhanced Cardiac Resynchronization Therapy Device Implantation: Results From a Multicenter Registry. J. Cardiovasc. Electrophysiol. 2017, 28, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.; Ebert, M.; Bertagnolli, L.; Gebauer, R.; Lucas, J.; Scheller, D.; Paetsch, I.; Hindricks, G.; Döring, M. Impact of electroanatomical mapping-guided lead implantation on procedural outcome of His bundle pacing. Europace 2021, 23, 409–420. [Google Scholar] [CrossRef]
- Nair, M.; Singal, G.; Yaduvanshi, A.; Kataria, V. First in man: Percutaneous coronary angioplasty using non-fluoroscopic electro-anatomic mapping. Int. J. Cardiovasc. Imaging 2020, 36, 1189–1190. [Google Scholar] [CrossRef]
- Javid, R.; Abdelrahman, A.; Thompson, R.; Puppala, S.; Wheatcroft, S.B.; Mozid, A.; Tayebjee, M.H. Imaging Real-Time Coronary Anatomy Using a Three-Dimensional Electrophysiology Mapping System. J. Cardiovasc. Transl. Res. 2023, 16, 715–721. [Google Scholar] [CrossRef]
- Narayan, S.M.; John, R.M. Advanced Electroanatomic Mapping: Current and Emerging Approaches. Curr. Treat. Options Cardiovasc. Med. 2024, 26, 69–91. [Google Scholar] [CrossRef]
- Knackstedt, C.; Schauerte, P.; Kirchhof, P. Electro-anatomic mapping systems in arrhythmias. Europace 2008, 10 (Suppl. 3), iii28–iii34. [Google Scholar] [CrossRef] [PubMed]
- Tsalafoutas, I.A.; Spanodimos, S.G.; Maniatis, P.N.; Fournarakis, G.M.; Koulentianos, E.D.; Tsigas, D.L. Radiation doses to patients and cardiologists from permanent cardiac pacemaker implantation procedures. Pacing Clin. Electrophysiol. 2005, 28, 910–916. [Google Scholar] [CrossRef]
- Shepard, R.; Ellenbogen, K. Challenges and Solutions for Difficult Implantations of CRT Devices: The Role of New Technology and Techniques. J. Cardiovasc. Electrophysiol. 2007, 18, S21–S25. [Google Scholar] [CrossRef]
- Da Costa, A.; Gate-Martinet, A.; Rouffiange, P.; Cerisier, A.; Nadrouss, A.; Bisch, L.; Romeyer-Bouchard, C.; Isaaz, K. Anatomical factors involved in difficult cardiac resynchronization therapy procedure: A non-invasive study using dual-source 64-multi-slice computed tomography. Europace 2012, 14, 833–840. [Google Scholar] [CrossRef]
- Kloosterman, E.M.; Yamamura, K.; Alba, J.; Mitrani, R.D.; Myerburg, R.J.; Interian, A. An innovative application of anatomic electromagnetic voltage mapping in a patient with Ebstein’s anomaly undergoing permanent pacemaker implantation. J. Cardiovasc. Electrophysiol. 2000, 11, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Granell, R.; Morell-Cabedo, S.; Ferrero-De-Loma, A.; García-Civera, R. Atrioventricular node ablation and permanent ventricular pacemaker implantation without fluoroscopy: Use of an electroanatomic navigation system. J. Cardiovasc. Electrophysiol. 2005, 16, 793–795. [Google Scholar] [CrossRef]
- Merino, J.L.; Peinado, R.; Silvestre, J. Dual-chamber implantable cardioverter defibrillator implantation guided by non-fluoroscopic electro-anatomical navigation. Europace 2008, 10, 1124–1125. [Google Scholar] [CrossRef]
- Singh, H.R.; Webster, P. Three-dimensional mapping-guided implantation of an atrial pacing lead in a dilated scarred quiescent right atrium following CHD repair. J. Innov. Card. Rhythm. Manag. 2012, 3, 992–995. [Google Scholar]
- Velasco, A.; Velasco, V.M.; Rosas, F.; Cevik, C.; Morillo, C.A. Utility of the NavX® Electroanatomic Mapping System for Permanent Pacemaker Implantation in a Pregnant Patient with Chagas Disease. Indian Pacing Electrophysiol. J. 2013, 13, 34–37. [Google Scholar] [CrossRef]
- Kühne, M.; Schaer, B.; Reichlin, T.; Sticherling, C.; Osswald, S. X-ray-free implantation of a permanent pacemaker during pregnancy using a 3D electro-anatomic mapping system. Eur. Heart J. 2015, 36, 2790. [Google Scholar] [CrossRef] [PubMed]
- Hartz, J.; Clark, B.C.; Ito, S.; Sherwin, E.D.; Berul, C.I. Transvenous nonfluoroscopic pacemaker implantation during pregnancy guided by 3-dimensional electroanatomic mapping. HeartRhythm Case Rep. 2017, 3, 490–492. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.; Lo, M.; Paydak, H.; Maskoun, W. Near-zero fluoroscopy implantation of dual-chamber pacemaker in pregnancy using electroanatomic mapping. HeartRhythm Case Rep. 2017, 3, 205–209. [Google Scholar] [CrossRef]
- Ringwala, S.; Knight, B.P.; Verma, N. Permanent His bundle pacing at the time of atrioventricular node ablation: A 3-dimensional mapping approach. HeartRhythm Case Rep. 2017, 3, 323–325. [Google Scholar] [CrossRef]
- Cay, S.; Ozcan, F.; Ozeke, O.; Aras, D.; Topaloglu, S. 3-Dimensional Electroanatomic Mapping Guided Selective His Bundle Pacing. JACC Clin. Electrophysiol. 2018, 4, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Paech, C.; Schnappauf, D.; Gehre, T.; Wagner, F.; Gebauer, R.A. Use of the Abbott EnSite Precision three-dimensional mapping system for the placement of an atrial pacemaker lead in a patient with congenital heart disease. Ann. Pediatr. Cardiol. 2019, 12, 130–131. [Google Scholar] [CrossRef]
- Hua, W.; Hu, Y.-R.; Gu, M.; Cai, C.; Chen, X.-H.; Niu, H.-X.; Zhang, S. A feasible approach for His bundle pacing using a novel mapping system in patients receiving pacemaker therapy. HeartRhythm Case Rep. 2019, 5, 433–435. [Google Scholar] [CrossRef]
- Molina-Lerma, M.; Tercedor-Sánchez, L.; Álvarez, M. Electroanatomic Mapping and Intracardiac Echocardiography-Guided Approach for Left-Bundle Branch Area Pacing With Zero Fluoroscopy. CJC Open 2020, 2, 705–707. [Google Scholar]
- Žižek, D.; Štublar, J.; Weiss, M.; Jan, M. His bundle pacing in a young child guided by electroanatomical mapping. Pacing Clin. Electrophysiol. 2021, 44, 199–202. [Google Scholar] [CrossRef]
- Covino, G.; Magliano, P.L.; Colimodio, F.; Auricchio, C.; Provvisiero, C.; Volpicelli, M. Ultra-high-density mapping to guide effective His-bundle pacing. Clin. Case Rep. 2021, 9, e04477. [Google Scholar] [CrossRef]
- Ruiz-Granell, R.; Ferrero, A.; Morell-Cabedo, S.; Martinez-Brotons, A.; Bertomeu, V.; Llacer, A.; García-Civera, R. Implantation of single-lead atrioventricular permanent pacemakers guided by electroanatomic navigation without the use of fluoroscopy. Europace 2008, 10, 1048–1051. [Google Scholar] [CrossRef]
- Choudhuri, I.; Krum, D.; Hare, J.; Kelley, J.; Becker, D.; Mortada, M.E.; Akhtar, M.; Sra, J. Pacing lead implantation without live fluoroscopy: Feasibility of acute success in the live canine model. J. Cardiovasc. Electrophysiol. 2009, 20, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Del Greco, M.; Marini, M.; Bonmassari, R. Implantation of a biventricular implantable cardioverter-defibrillator guided by an electroanatomic mapping system. Europace 2012, 14, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Castrejón-Castrejón, S.; Pérez-Silva, A.; González-Villegas, E.; Al-Razzo, O.; Silvestre, J.; Doiny, D.; Estrada-Mucci, A.; Filgueiras-Rama, D.; Ortega-Molina, M.; López-Sendón, J.L.; et al. Implantation of cardioverter defibrillators with minimal fluoroscopy using a three-dimensional navigation system: A feasibility study. Europace 2013, 15, 1763–1770. [Google Scholar] [CrossRef]
- Mina, A.; Warnecke, N. Near zero fluoroscopic implantation of BIV ICD using electro-anatomical mapping. Pacing Clin. Electrophysiol. 2013, 36, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Mafi Rad, M.; Blaauw, Y.; Dinh, T.; Pison, L.; Crijns, H.J.; Prinzen, F.W.; Vernooy, K. Left ventricular lead placement in the latest activated region guided by coronary venous electroanatomic mapping. Europace 2015, 17, 84–93. [Google Scholar] [CrossRef]
- Colella, A.; Giaccardi, M.; Colella, T.; Modesti, P.A. Zero X-ray cardiac resynchronization therapy device implantation guided by a nonfluoroscopic mapping system: A pilot study. Heart Rhythm Off. J. Heart Rhythm Soc. 2016, 13, 1481–1488. [Google Scholar] [CrossRef]
- Guo, P.; Qiu, J.; Wang, Y.; Chen, G.; Proietti, R.; Fadhle, A.-S.; Zhao, C.; Wen Wang, D. Zero-fluoroscopy permanent pacemaker implantation using Ensite NavX system: Clinical viability or fanciful technique? Pacing Clin. Electrophysiol. 2018, 41, 122–127. [Google Scholar] [CrossRef]
- Huang, H.D.; Sharma, P.S.; Nayak, H.M.; Serafini, N.; Trohman, R.G. How to perform electroanatomic mapping-guided cardiac resynchronization therapy using Carto 3 and ESI NavX three-dimensional mapping systems. Europace 2019, 21, 1742–1749. [Google Scholar] [CrossRef]
- Patel, H.; Hiner, E.; Naqvi, A.; Wrobel, J.; Machado, C. The safety and efficacy of electroanatomical mapping (EAM)-guided device implantation. Pacing Clin. Electrophysiol. 2019, 42, 897–903. [Google Scholar] [CrossRef]
- Larsen, T.R.; Saini, A.; Moore, J.; Huizar, J.F.; Tan, A.Y.; Ellenbogen, K.A.; Kaszala, K. Fluoroscopy reduction during device implantation by using three-dimensional navigation. A single-center experience. J. Cardiovasc. Electrophysiol. 2019, 30, 2027–2033. [Google Scholar] [CrossRef]
- Vijayaraman, P.; Panikkath, R.; Mascarenhas, V.; Bauch, T.D. Left bundle branch pacing utilizing three dimensional mapping. J. Cardiovasc. Electrophysiol. 2019, 30, 3050–3056. [Google Scholar] [CrossRef]
- Sharma, P.S.; Huang, H.D.; Trohman, R.G.; Naperkowski, A.; Ellenbogen, K.A.; Vijayaraman, P. Low Fluoroscopy Permanent His Bundle Pacing Using Electroanatomic Mapping: A Feasibility Study. Circ. Arrhythmia Electrophysiol. 2019, 12, e006967. [Google Scholar] [CrossRef]
- Imnadze, G.; Vijayaraman, P.; Bante, H.; Eitz, T.; Bergau, L.; Baridwan, N.; El Hamriti, M.; Molatta, S.; Braun, M.; Khalaph, M.; et al. Novel electroanatomical map for permanent his bundle pacing: The Mont Blanc approach—Influence of the learning curve and procedural outcome. Europace 2020, 22, 1697–1702. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, X.; Xiao, X.; Yin, X.; Gao, L.; Zhang, R.; Dai, S.; Wang, N.; Zhang, D.; Dong, Y.; et al. High efficiency and workflow of His bundle pacing and atrioventricular node ablation guided by three-dimensional mapping system. Pacing Clin. Electrophysiol. 2020, 43, 1165–1172. [Google Scholar] [CrossRef]
- Richter, S.; Gebauer, R.; Ebert, M.; Moscoso Ludueña, C.; Scheller, D.; Lucas, J.; König, S.; Paetsch, I.; Hindricks, G.; Döring, M. Electroanatomical mapping-guided left bundle branch area pacing in patients with structural heart disease and advanced conduction abnormalities. Europace 2023, 25, 1068–1076. [Google Scholar] [CrossRef]
- Modi, K.; Padala, S.A.; Gupta, M. Contrast-Induced Nephropathy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025; Updated 4 January 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448066/ (accessed on 13 April 2025). [PubMed]
- Ozaki, Y.; Kitabata, H.; Tsujioka, H.; Hosokawa, S.; Kashiwagi, M.; Ishibashi, K.; Komukai, K.; Tanimoto, T.; Ino, Y.; Takarada, S.; et al. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography. Circ. J. Off. J. Jpn. Circ. Soc. 2012, 76, 922–927. [Google Scholar] [CrossRef]
- Frick, K.; Michael, T.T.; Alomar, M.; Mohammed, A.; Rangan, B.V.; Abdullah, S.; Grodin, J.; Hastings, J.L.; Banerjee, S.; Brilakis, E.S. Low molecular weight dextran provides similar optical coherence tomography coronary imaging compared to radiographic contrast media. Catheter. Cardiovasc. Interv. 2014, 84, 727–731. [Google Scholar] [CrossRef]
- Gupta, A.; Chhikara, S.; Vijayvergiya, R.; Seth, A.; Mahesh, N.K.; Akasaka, T.; Singh, N. Saline as an Alternative to Radio-Contrast for Optical Coherence Tomography-Guided Percutaneous Coronary Intervention: A Prospective Comparison. Cardiovasc. Revasc Med. 2022, 34, 86–91. [Google Scholar] [CrossRef]
- Kimura, M.; Takeda, T.; Tsujino, Y.; Matsumoto, Y.; Yamaji, M.; Sakaguchi, T.; Maeda, K.; Mabuchi, H.; Murakami, T. Assessing the efficacy of saline flush in frequency-domain optical coherence tomography for intracoronary imaging. Heart Vessel. 2024, 39, 310–318. [Google Scholar] [CrossRef]
- Garber, J.R.; Cobin, R.H.; Gharib, H.; Hennessey, J.V.; Klein, I.; Mechanick, J.I.; Pessah-Pollack, R.; Singer, P.A.; Woeber, K.A.; American Association Of Clinical, E.; et al. Clinical practice guidelines for hypothyroidism in adults: Cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid. Off. J. Am. Thyroid. Assoc. 2012, 22, 1200–1235. [Google Scholar] [CrossRef]
- Lima da Silva, G.; Cortez Dias, N.; Carpinteiro, L.; de Sousa, J. Electroanatomical mapping of coronary artery anatomy to guide epicardial ventricular tachycardia ablation. Europace 2018, 20, 419. [Google Scholar] [CrossRef]
- Segal, O.R.; Wong, T.; Chow, A.W.C.; Jarman, J.W.E.; Schilling, R.J.; Markides, V.; Peters, N.S.; Wyn Davies, D. Intra-coronary guidewire mapping-a novel technique to guide ablation of human ventricular tachycardia. J. Interv. Card. Electrophysiol. 2007, 18, 143–154. [Google Scholar] [CrossRef]
- Kumagai, K.; Takahashi, A.; Yamauchi, Y.; Aonuma, K. Ventricular tachycardia originating from the epicardium identified by intracoronary mapping using a PTCA guidewire. J. Cardiovasc. Electrophysiol. 2006, 17, 670–673. [Google Scholar] [CrossRef]
- Kawata, H.; Yamada, T.; Karanam, S.; Reddy, R. Intracoronary artery mapping and 3-dimensional visualization of the coronary arteries with a 0.014 inch guidewire in catheter ablation of left ventricular summit premature ventricular contractions. HeartRhythm Case Rep. 2020, 6, 914–917. [Google Scholar] [CrossRef]
- Dorval, J.-F.; Richer, L.-P.; Soucie, L.; McSpadden, L.C.; Hoopai, A.; Tan, S.; West, N.E.J.; Jolicoeur, E.M. Electroanatomical Navigation to Minimize Contrast Medium or X-Rays During Stenting: Insights From an Experimental Model. JACC Basic. Transl. Sci. 2022, 7, 131–142. [Google Scholar] [CrossRef]
- Mintz, G.S. Intravascular Imaging, Stent Implantation, and the Elephant in the Room. JACC Cardiovasc. Interv. 2017, 10, 2499–2501. [Google Scholar] [CrossRef]
- Prati, F.; Regar, E.; Mintz, G.S.; Arbustini, E.; Di Mario, C.; Jang, I.K.; Akasaka, T.; Costa, M.; Guagliumi, G.; Grube, E.; et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: Physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur. Heart J. 2010, 31, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Maehara, A.; Lansky, A.J.; de Bruyne, B.; Cristea, E.; Mintz, G.S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S.P.; et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 2011, 364, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Kubo, T.; Imanishi, T.; Takarada, S.; Kuroi, A.; Ueno, S.; Yamano, T.; Tanimoto, T.; Matsuo, Y.; Masho, T.; Kitabata, H.; et al. Assessment of culprit lesion morphology in acute myocardial infarction: Ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 2007, 50, 933–939. [Google Scholar] [CrossRef]
- Andreassi, M.G. Radiation Risks and Interventional Cardiology: The Value of Radiation Reduction Exposure. J. Cardiovasc. Dev. Dis. 2023, 10, 121. [Google Scholar] [CrossRef]
Case Report | n | Gender | Indication | Device | EAMS | Catheter for Anatomy | Time (min) | Procedure Time | Complication | Fluoroscopy Time | Radiation Exposure |
---|---|---|---|---|---|---|---|---|---|---|---|
Kloosterman 2000 [19] | 1 | Female | AVN ablation | Dual chamber PM | CARTO | – | 10 | - | None | n/s | n/s |
Ruiz-Granell 2005 [20] | 1 | Male | AVN ablation | Single-chamber PM | EnSite NavX | 7F 4 mm tip quadripolar steerable ablation catheter | n/s | - | None | <1 min | Minimal |
Merino 2008 [21] | 1 | Female, 24 weeks pregnant | VT and SSS | Dual chamber ICD | EnSite NavX | Mapping catheter | n/s | 180 min | None | 0 | 0 |
Tuzcu 2007 [9] | 1 | Female, 21 weeks pregnant | VT | Single-chamber ICD | EnSite NavX | Single Deflectable quadripolar | n/s | 120 min | None | 0 | 0 |
Singh 2012 [22] | 1 | Male | Sinus node dysfunction and VT | Dual chamber ICD | EnSite | Mapping catheter | n/s | n/s | None | n/s | n/s |
Velasco 2013 [23] | 1 | Female, 31 weeks pregnant | High-degree AV block | Dual chamber PM | EnSite (NavX) | Quadripolar catheter | n/s | n/s | None | <5 s | n/a |
Kühne 2015 [24] | 1 | Female, 9 weeks pregnant | AV block | Single-chamber PM | CARTO 3 | Mapping catheter | n/s | n/s | None | 0 | 0 |
Hartz 2017 [25] | 1 | Female, pregnant | Sinus node dysfunction, | Single-chamber ICD | CARTO 3 | Deflectable mapping catheter | n/s | n/s | None | 0.5 s | n/a |
Payne 2017 [26] | 1 | Female, 11 weeks pregnant | PAF | Dual chamber PM | EnSite NavX | Single Deflectable quadripolar | n/s | n/s | None | <10 s | <1 mGy |
Ringwala 2017 [27] | 1 | Male | AVN ablation and His bundle pacing | Single chamber PM with HBP | EnSite NavX | Octapolar catheter | n/s | n/s | Healthcare-associated pneumonia | n/a | n/s |
Cay 2018 [28] | 1 | Male | Symptomatic AV block | Dual chamber PM | n/s | Steerable decapolar + quadripolar | n/s | n/s | None | Yes (n/s) | Yes (n/s) |
Paech 2019 [29] | 1 | n/s | n/s | – | EnSite Precision | Steerable decapolar catheter | n/s | n/s | None | – | 49.2 cGy/cm2 |
Hua 2019 [30] | 1 | Male | Sinus node dysfunction | Dual chamber PM with HBP | KODEX-EPD | His pacing lead | n/s | n/s | None | n/s | n/s |
Molina-Lerma 2020 [31] | 1 | Female | Advanced AVB | Dual chamber PM with LBBP | EnSite + ICE | Tendril STS 52 cm STS; Abbott | n/s | n/s | None | n/s | – |
Žižek 2021 [32] | 1 | Female | Advanced AVB | Dual chamber PM | EnSite Precision | 10-polar Polaris X | n/a | n/s | None | 3 min | n/a |
Covino 2021 [33] | 1 | Female | AF refractory to drug therapy | Single-chamber HBP | Rhythmia HDX | Intellamap Orion | - | 75 | None | 13.6 min | 16.40 Gy·cm2 |
Case Report/Study | Study Type | n | Participants | Indication | Device | EAMS | Complications |
---|---|---|---|---|---|---|---|
Ruiz-Granell 2008 [34] | Retrospective case-control | 15 | Human | AV block | Single-chamber PM | EnSite NavX | 1:Lead dislodgement in EAMS arm (6.6%) |
Choudhuri 2009 [35] | Prospective, no control | 7 | Dog | Normal | Single chamber | Electromagnetic Navigation | 1:Lead dislodgement in EMN arm (14%) |
Del Greco 2012 [36] | Prospective | 4 | Human | NYHA Class IV, EF < 35% | CRT-ICD | EnSite NavX | None |
Castrejón 2013 [37] | Prospective | 35 | Human | Primary and secondary prevention | Single and dual chamber ICD | EnSite NavX | Infection (2.8%) |
Mina 2013 [38] | Retrospective control | 21 | Human | NICMP, ICMP | CRT-D = 19, CRT-P = 2 | EnSite Velocity | Pneumothorax in control |
Mafi Rad 2015 [39] | Prospective | 25 | Human | LBBB | CRT-D = 23, CRT-P = 2 | EnSite NavX | None |
Del Greco 2017 [10] | Prospective | 125 | Human | NICMP, ICMP | CRT | EnSite | CS dissection, Pocket hematoma, Pocket infection |
Colella 2016 [40] | Prospective case-control | 61 | Human | NICMP, ICMP | CRT | EnSite Velocity | None |
Guo 2018 [41] | Prospective case-control | Case 6, Control 21 | Human | NICMP, ICMP | Single and dual chamber | EnSite NavX | None |
Huang 2019 [42] | Prospective case-control | 20 | Human | NICMP, ICMP | CRT | EnSite NavX, CARTO 3 | None |
Patel 2019 [43] | Prospective case-control | 33 | Human | Not stated | Single and dual chamber ICD | EnSite NavX | None |
Larsen 2019 [44] | Prospective case-control | 140 | Human | Not stated | Single, dual, biventricular | EnSite Velocity | None |
Vijayaraman 2019 [45] | Prospective case series | 3 | Human | AVB | Dual chamber, AVN, LBBP | EnSite Precision | None |
Sharma 2019 [46] | Prospective | 10 | Human | AVB, SND | Dual chamber HBP | CARTO | 1 high threshold |
Imnadze 2020 [47] | Prospective | 15 | Human | AVB | Dual chamber HBP | EnSite Precision | None |
Sun 2020 [48] | Prospective | 18 | Human | AVB | AVN ablation + HBP | CARTO 3 | None |
Richter 2021 [11] | Prospective | 58 | Human | AVB, SND | Dual chamber, CRT-P, CRT-D | EnSite Precision | None |
Richter 2023 [49] | Prospective | 32 | Human | AVB, SND | Dual chamber CRT | EnSite Precision | Hematoma, Pneumothorax |
Study | Setting | n | System Used | Key Finding | Limitation |
---|---|---|---|---|---|
Nair et al. [12] | Human case report | 1 | EnSite NavX | Successful PCI with EAMS in renal impairment | Customised insulated guidewire needed |
Dorval et al. [60] | Porcine model (animal) | – | EnSite Velocity | Accurate coronary anatomy reconstruction with EAMS | Experimental model only |
Javid et al. [13] | Human feasibility study | 5 | EnSite Precision | Feasibility of coronary mapping and tracking validated | Custom-built equipment used |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javid, R.; Otieno, S.O.; Wheatcroft, S.B.; Arockiam, S.; Tayebjee, M.H. Expanding Applications of Three-Dimensional Cardiac Mapping Systems: A Review. J. Clin. Med. 2025, 14, 6487. https://doi.org/10.3390/jcm14186487
Javid R, Otieno SO, Wheatcroft SB, Arockiam S, Tayebjee MH. Expanding Applications of Three-Dimensional Cardiac Mapping Systems: A Review. Journal of Clinical Medicine. 2025; 14(18):6487. https://doi.org/10.3390/jcm14186487
Chicago/Turabian StyleJavid, Rabeia, Stephen O. Otieno, Stephen B. Wheatcroft, Sacchin Arockiam, and Muzahir H. Tayebjee. 2025. "Expanding Applications of Three-Dimensional Cardiac Mapping Systems: A Review" Journal of Clinical Medicine 14, no. 18: 6487. https://doi.org/10.3390/jcm14186487
APA StyleJavid, R., Otieno, S. O., Wheatcroft, S. B., Arockiam, S., & Tayebjee, M. H. (2025). Expanding Applications of Three-Dimensional Cardiac Mapping Systems: A Review. Journal of Clinical Medicine, 14(18), 6487. https://doi.org/10.3390/jcm14186487