Radiotherapeutic Modalities and Advancements in the Treatment of Cutaneous Malignancies
Abstract
1. Introduction
2. Methodology
3. Consensus Recommendations and Evidence for Radiotherapy in Cutaneous Malignancies
4. Kilovoltage X-Rays
4.1. Superficial X-Ray Therapy
4.2. Orthovoltage X-Ray Therapy
5. Three-Dimensional Conformal Radiotherapy
6. Intensity-Modulated Radiation Therapy
7. Volumetric Modulated Arc Therapy
8. Electron Beam Therapy
9. Brachytherapy
9.1. High-Dose-Rate Brachytherapy
9.2. Pulse-Dose-Rate Brachytherapy
9.3. Low-Dose-Rate Brachytherapy
9.4. Electronic Brachytherapy
10. Proton Beam Therapy
11. Cost-Effectiveness and Global Availability of Radiotherapy Modalities
12. Comparative Overview of RT Modalities
13. Integrating Systemic Therapy, Immunotherapy and Radiotherapy in Cutaneous Malignancies
14. Future Directions
15. Limitations
16. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Agency for Research on Cancer. Skin Cancer. 2025. Available online: https://www.iarc.who.int/cancer-type/skin-cancer/ (accessed on 10 September 2025).
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Wang, M.; Gao, X.; Zhang, L. Recent global patterns in skin cancer incidence, mortality, and prevalence. Chin. Med. J. 2025, 138, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Fang, L.; Ni, R.; Zhang, H.; Pan, G. Changing trends in the disease burden of non-melanoma skin cancer globally from 1990 to 2019 and its predicted level in 25 years. BMC Cancer 2022, 22, 836. [Google Scholar] [CrossRef]
- Apalla, Z.; Nashan, D.; Weller, R.B.; Castellsagué, X. Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches. Dermatol. Ther. 2017, 7, 5–19. [Google Scholar] [CrossRef]
- Kim, J.Y.; Dao, H. Physiology, Integument. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- National Cancer Institute. Cancer Stat Facts: Melanoma of the Skin. SEER Cancer Statistics. Available online: https://seer.cancer.gov/statfacts/html/melan.html (accessed on 21 June 2025).
- Damsky, W.E., Jr.; Rosenbaum, L.E.; Bosenberg, M. Decoding melanoma metastasis. Cancers 2010, 3, 126–163. [Google Scholar] [CrossRef]
- American Cancer Society. Key Statistics for Melanoma Skin Cancer. Available online: https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html (accessed on 21 June 2025).
- Aggarwal, P.; Knabel, P.; Fleischer, A.B., Jr. United States burden of melanoma and non-melanoma skin cancer from 1990 to 2019. J. Am. Acad. Dermatol. 2021, 85, 388–395. [Google Scholar] [CrossRef]
- Hadian, Y.; Howell, J.Y.; Ramsey, M.L.; Buckley, C. Cutaneous Squamous Cell Carcinoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441939/ (accessed on 25 June 2025).
- McDaniel, B.; Steele, R.B. Basal Cell Carcinoma. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482439/ (accessed on 25 June 2025).
- Brady, M.; Puckett, Y. Merkel Cell Carcinoma of the Skin. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482329/ (accessed on 10 September 2025).
- Roth, J.J.; Granick, M.S. Squamous Cell and Adnexal Carcinomas of the Skin. Clin. Plast. Surg. 1997, 24, 687–703. [Google Scholar] [CrossRef]
- Prickett, K.A.; Ramsey, M.L. Mohs micrographic surgery. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441833/ (accessed on 26 June 2025).
- Genders, R.E.; Marsidi, N.; Michi, M.; Henny, E.P.; Goeman, J.J.; van Kester, M.S. Incomplete excision of cutaneous squamous cell carcinoma; systematic review of the literature. Acta Derm. Venereol. 2020, 100, adv00084. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Squamous Cell Skin Cancer, Version 2.2025. In NCCN Clinical Practice Guidelines in Oncology; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2025; Available online: https://www.nccn.org/professionals/physician_gls/pdf/squamous.pdf (accessed on 28 June 2025).
- National Comprehensive Cancer Network. Cutaneous Melanoma, Version 2.2025. In NCCN Clinical Practice Guidelines in Oncology; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2025; Available online: https://www.nccn.org/professionals/physician_gls/pdf/cutaneous_melanoma.pdf (accessed on 28 June 2025).
- National Comprehensive Cancer Network. Non-Melanoma Skin Cancer, Version 2.2025. In NCCN Clinical Practice Guidelines in Oncology; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2025; Available online: https://www.nccn.org/professionals/physician_gls/pdf/nmsc.pdf (accessed on 28 June 2025).
- Van Egmond, S.; Wakkee, M.; Hoogenraad, M.; Korfage, I.J.; Mureau, M.A.M.; Lugtenberg, M. Complex skin cancer treatment requiring reconstructive plastic surgery: An interview study on the experiences and needs of patients. Arch. Dermatol. Res. 2022, 314, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Grob, J.J.; Gaudy-Marqueste, C.; Guminski, A.; Malvehy, J.; Basset-Seguin, N.; Bertrand, B.; Fernandez-Peñas, P.; Kaufmann, R.; Zalaudek, I.; Fargnoli, M.C.; et al. Position statement on classification of basal cell carcinomas. Part 2: EADO proposal for new operational staging system adapted to basal cell carcinomas. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 2149–2153. [Google Scholar] [CrossRef] [PubMed]
- Stratigos, A.J.; Garbe, C.; Dessinioti, C.; Lebbe, C.; van Akkooi, A.; Bataille, V.; Bastholt, L.; Dreno, B.; Dummer, R.; Fargnoli, M.C.; et al. European consensus-based interdisciplinary guideline for invasive cutaneous squamous cell carcinoma. Part 1: Diagnostics and prevention—Update 2023. Eur. J. Cancer 2023, 193, 113251. [Google Scholar] [CrossRef] [PubMed]
- Ferini, G.; Molino, L.; Bottalico, L.; De Lucia, P.; Garofalo, F. A small case series about safety and effectiveness of a hypofractionated electron beam radiotherapy schedule in five fractions for facial non-melanoma skin cancer among frail and elderly patients. Rep. Pr. Oncol. Radiother. 2021, 26, 66–72. [Google Scholar] [CrossRef]
- Yosefof, E.; Kurman, N.; Yaniv, D. The role of radiation therapy in the treatment of non-melanoma skin cancer. Cancers 2023, 15, 2408. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Merkel Cell Carcinoma, Version 2.2025. In NCCN Clinical Practice Guidelines in Oncology; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2025; Available online: https://www.nccn.org/professionals/physician_gls/pdf/mcc.pdf (accessed on 26 June 2025).
- National Comprehensive Cancer Network. Primary Cutaneous Lymphomas, Version 3.2025. In NCCN Clinical Practice Guidelines in Oncology; National Comprehensive Cancer Network: Plymouth Meeting, PA, USA, 2025; Available online: https://www.nccn.org/professionals/physician_gls/pdf/primary_cutaneous.pdf (accessed on 26 June 2025).
- Likhacheva, A.; Awan, M.; Barker, C.A.; Bhatnagar, A.; Bradfield, L.; Brady, M.S.; Buzurovic, I.; Geiger, J.L.; Parvathaneni, U.; Zaky, S.; et al. Definitive and postoperative radiation therapy for basal and squamous cell cancers of the skin: Executive summary of an American Society for Radiation Oncology clinical practice guideline. Pract. Radia.t Oncol. 2020, 10, 8–20. [Google Scholar] [CrossRef]
- Guinot, J.L.; Rembielak, A.; Perez-Calatayud, J.; Rodríguez-Villalba, S.; Skowronek, J.; Tagliaferri, L.; Guix, B.; Gonzalez-Perez, V.; Valentini, V.; Kovacs, G.; et al. GEC-ESTRO ACROP recommendations in skin brachytherapy. Radiother Oncol. 2018, 126, 377–385. [Google Scholar] [CrossRef]
- Cox, J.D.; Stetz, J.; Pajak, T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1341–1346. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services; National Institutes of Health; National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE); Version 4.0; NIH: Bethesda, MD, USA, 2009. [Google Scholar]
- Cognetta, A.B., Jr.; Wolfe, C.M.; Goldberg, D.J.; Hong, H.G. Practice and educational gaps in radiation therapy in dermatology. Dermatol. Clin. 2016, 34, 319–333. [Google Scholar] [CrossRef]
- Bhupalam, V.; Hetzel, J.D.; Awad, N.; Nestor, M.S. Superficial radiation therapy in dermatology: A historical perspective. Dermatol. Rev. 2024, 5, e229. [Google Scholar] [CrossRef]
- Safigholi, H.; Song, W.Y.; Meigooni, A.S. Optimum radiation source for radiation therapy of skin cancer. J. Appl. Clin. Med. Phys. 2015, 16, 219–227. [Google Scholar] [CrossRef]
- Nestor, M.S.; Berman, B.; Goldberg, D.; Cognetta, A.B., Jr.; Gold, M.; Roth, W.; Cockerell, C.J.; Glick, B. Consensus guidelines on the use of superficial radiation therapy for treating nonmelanoma skin cancers and keloids. J. Clin. Aesthet. Dermatol. 2019, 12, 12–18. [Google Scholar] [PubMed]
- Velindre University NHS Trust. Clinical Protocol: Skin Malignancies. Issue 5. 2016. Available online: https://velindre.nhs.wales/about-us/publications/freedom-of-information/foia-disclosure-logs-2023/january-2023/corp-2023-010-skin-cancer-pathway-management-attachment-2/ (accessed on 7 July 2025).
- Han, H.; Gade, A.; Ceci, F.M.; Lawson, A.; Auerbach, S.; Nestor, M.S. Superficial radiation therapy for nonmelanoma skin cancer: A review. Dermatol. Ther. 2023, 13, e174. [Google Scholar] [CrossRef]
- Cognetta, A.B.; Howard, B.M.; Heaton, H.P.; Stoddard, E.R.; Hong, H.G.; Green, W.H. Superficial X-ray in the treatment of basal and squamous cell carcinomas: A viable option in select patients. J. Am. Acad. Dermatol. 2012, 67, 1235–1241. [Google Scholar] [CrossRef]
- Schulte, K.W.; Lippold, A.; Auras, C.; Müller-Pannes, H.; Rupprecht, R.; Suter, L. Soft X-ray therapy for cutaneous basal cell and squamous cell carcinomas. J. Am. Acad. Dermatol. 2005, 53, 993–1001. [Google Scholar] [CrossRef]
- Lee, Y.C.; Davis, S.D.; Romaguera, W.; Chaswal, V.; Tolakanahalli, R.; Gutierrez, A.N.; Kalman, N.S. Implementation of superficial radiation therapy (SRT) using SRT-100 Vision™ for non-melanoma skin cancer in a Radiation Oncology clinic. J. Appl. Clin. Med. Phys. 2023, 24, e13926. [Google Scholar] [CrossRef]
- Moloney, M.; Harris, P.M.; Kaczmarski, P.; Zheng, S.; Ladd, D.; Serure, D.; Malik, A.; Yu, L. Updated results of 3,050 non-melanoma skin cancer (NMSC) lesions in 1,725 patients treated with high resolution dermal ultrasound-guided superficial radiotherapy, a multi-institutional study. BMC Cancer 2025, 25, 526. [Google Scholar] [CrossRef]
- Tran, A.; Moloney, M.; Kaczmarski, P.; Zheng, S.; Desai, A.; Desai, T.; Yu, L. Analysis of image-guided superficial radiation therapy (IGSRT) on the treatment of early-stage non-melanoma skin cancer (NMSC) in the outpatient dermatology setting. J. Cancer Res. Clin. Oncol. 2023, 149, 6283–6291. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.D.; Kacinski, B.M.; Jones, G.W. Local superficial radiotherapy in the management of minimal stage IA cutaneous T-cell lymphoma (Mycosis Fungoides). Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Haydu, L.E.; Goh, R.Y.H.; Fogarty, G.B. Radiotherapy is associated with significant improvement in local and regional control in Merkel cell carcinoma. Radiat. Oncol. 2012, 7, 171. [Google Scholar] [CrossRef]
- Plastic Surgery Key. Radiotherapy. Available online: https://plasticsurgerykey.com/radiotherapy-2/ (accessed on 11 July 2025).
- Amdur, R.J.; Kalbaugh, K.J.; Ewald, L.M.; Parsons, J.T.; Mendenhall, W.M.; Bova, F.J.; Million, R.R. Radiation therapy for skin cancer near the eye: Kilovoltage X-rays versus electrons. Int. J. Radiat. Oncol. Biol. Phys. 1992, 23, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Bell, B.I.; Vercellino, J.; Brodin, N.P.; Velten, C.; Nanduri, L.S.Y.; Nagesh, P.K.B.; Tanaka, K.E.; Fang, Y.; Wang, Y.; Macedo, R.; et al. Orthovoltage X-rays exhibit increased efficacy compared with γ-rays in preclinical irradiation. Cancer Res. 2022, 82, 2678–2691. [Google Scholar] [CrossRef]
- Abbatucci, J.S.; Boulier, N.; Laforge, T.; Lozier, J.C. Radiation therapy of skin carcinomas: Results of a hypofractionated irradiation schedule in 675 cases followed more than 2 years. Radiother. Oncol. 1989, 14, 113–119. [Google Scholar] [CrossRef]
- Marconi, D.; Resende, B.; Rauber, E.; Soares, P.; Fernandes, J.; Carvalho, A.; Kupelian, P.; Chen, A. Head and neck nonmelanoma skin cancer treated by orthovoltage radiation: An analysis of 1021 cases. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, S572. [Google Scholar] [CrossRef]
- Hendrickx, A.; Cozzio, A.; Plasswilm, L.; Panje, C.M. Radiotherapy for lentigo maligna and lentigo maligna melanoma—A systematic review. Radiat. Oncol. 2020, 15, 174. [Google Scholar] [CrossRef]
- Schmid-Wendtner, M.H.; Brunner, B.; Konz, B.; Kaudewitz, P.; Wendtner, C.M.; Peter, R.U.; Plewig, G.; Volkenandt, M. Fractionated radiotherapy of lentigo maligna and lentigo maligna melanoma in 64 patients. J. Am. Acad. Dermatol. 2000, 43, 477–482. [Google Scholar] [CrossRef]
- Kharofa, J.; Currey, A.; Wilson, J.F. Patient-reported outcomes in patients with nonmelanomatous skin cancers of the face treated with orthovoltage radiation therapy: A cross-sectional survey. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 636–637. [Google Scholar] [CrossRef]
- Mattia, A.; Thompson, A.; Lee, S.K.; Hong, H.G.; Green, W.H.; Cognetta, A.B., Jr. Superficial X-ray in the treatment of nonaggressive basal and squamous cell carcinoma in the elderly: A 22-year retrospective analysis. J. Am. Acad. Dermatol. 2024, 90, 1052–1054. [Google Scholar] [CrossRef]
- Green, W.H.; Mattia, A.; Thompson, A.; Lee, S.; Hong, G.; Cognetta, A. Superficial X-ray in the treatment of basal and squamous cell carcinomas for select patients: The second decade. J. Am. Acad. Dermatol. 2023, 89, AB90. [Google Scholar] [CrossRef]
- Duinkerken, C.W.; Lohuis, P.J.F.; Heemsbergen, W.; Zupan-Kajcovski, B.; Navran, A.; Hamming-Vrieze, O.; Klop, W.M.C.; Balm, F.J.M.; Al-Mamgani, A. Orthovoltage for basal cell carcinoma of the head and neck: Excellent local control and low toxicity profile. Laryngoscope 2016, 126, 1796–1802. [Google Scholar] [CrossRef]
- Krema, H.; Herrmann, E.; Albert-Green, A.; Payne, D.; Laperriere, N.; Chung, C. Orthovoltage radiotherapy in the management of medial canthal basal cell carcinoma. Br. J. Ophthalmol. 2013, 97, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Zagrodnik, B.; Kempf, W.; Seifert, B.; Müller, B.; Burg, G.; Urosevic, M.; Dummer, R. Superficial radiotherapy for patients with basal cell carcinoma: Recurrence rates, histologic subtypes, and expression of p53 and Bcl-2. Cancer 2003, 98, 2708–2714. [Google Scholar] [CrossRef] [PubMed]
- Verhey, L.J. Comparison of three-dimensional conformal radiation therapy and intensity-modulated radiation therapy systems. Semin. Radiat. Oncol. 1999, 9, 78–98. [Google Scholar] [CrossRef]
- Cho, B. Intensity-modulated radiation therapy: A review with a physics perspective. Radiat. Oncol. J. 2018, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mattes, M.D.; Zhou, Y.; Berry, S.L.; Barker, C.A. Dosimetric comparison of axilla and groin radiotherapy techniques for high-risk and locally advanced skin cancer. Radiat. Oncol. J. 2016, 34, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Henderson, M.A.; Burmeister, B.H.; Ainslie, J.; Fisher, R.; Di Iulio, J.; Smithers, B.M.; Hong, A.; Shannon, K.; Scolyer, R.A.; Carruthers, S.; et al. Adjuvant lymph-node field radiotherapy versus observation only in patients with melanoma at high risk of further lymph-node field relapse after lymphadenectomy (ANZMTG 01.02/TROG 02.01): 6-year follow-up of a phase 3, randomised controlled trial. Lancet Oncol. 2015, 16, 1049–1060. [Google Scholar] [CrossRef]
- Cheung, K.Y. Intensity modulated radiotherapy: Advantages, limitations and future developments. Biomed. Imaging Interv. J. 2006, 2, e19. [Google Scholar] [CrossRef]
- Hong, T.S.; Ritter, M.A.; Tomé, W.A.; Harari, P.M. Intensity-modulated radiation therapy: Emerging cancer treatment technology. Br. J. Cancer 2005, 92, 1819–1824. [Google Scholar] [CrossRef] [PubMed]
- Chao, K.S.C.; Ozyigit, G.; Tran, B.N.; Cengiz, M.; Dempsey, J.F.; Low, D.A. Patterns of failure in patients receiving definitive and postoperative IMRT for head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 312–321. [Google Scholar] [CrossRef]
- Dawson, L.A.; Anzai, Y.; Marsh, L.; Martel, M.K.; Paulino, A.; Ship, J.A.; Eisbruch, A. Patterns of local-regional recurrence following parotid-sparing conformal and segmental intensity-modulated radiotherapy for head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 1117–1126. [Google Scholar] [CrossRef]
- Matthiesen, C.; Thompson, J.S.; Forest, C.; Ahmad, S.; Herman, T.; Bogardus, C., Jr. The role of radiotherapy for T4 non-melanoma skin carcinoma. J. Med. Imaging Radiat. Oncol. 2011, 55, 407–416. [Google Scholar] [CrossRef]
- Hallemeier, C.L.; Garces, Y.I.; Neben-Wittich, M.A.; Olivier, K.R.; Shon, W.; García, J.J.; Brown, P.D.; Foote, R.L. Adjuvant hypofractionated intensity modulated radiation therapy after resection of regional lymph node metastases in patients with cutaneous malignant melanoma of the head and neck. Pract. Radiat. Oncol. 2013, 3, e71–e77. [Google Scholar] [CrossRef]
- Miéville, F.A.; Pitteloud, N.; Achard, V.; Lamanna, G.; Pisaturo, O.; Tercier, P.A.; Allal, A.S. Post-mastectomy radiotherapy: Impact of bolus thickness and irradiation technique on skin dose. Z. Med. Phys. 2023, 34, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Xu, S.; Jiang, W.; Xie, C.; Wang, J. Integral dose in three-dimensional conformal radiotherapy, intensity-modulated radiotherapy and helical tomotherapy. Clin. Oncol. (R. Coll. Radiol.) 2009, 21, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Unkelbach, J.; Bortfeld, T.; Craft, D.; Alber, M.; Bangert, M.; Bokrantz, R.; Chen, D.; Li, R.; Xing, L.; Men, C.; et al. Optimization approaches to volumetric modulated arc therapy planning. Med. Phys. 2015, 42, 1367–1377. [Google Scholar] [CrossRef]
- Afrin, K.T.; Ahmad, S. Clinical differences among volumetric modulated arc therapy, intensity modulated radiation therapy, and 3D conformal radiation therapy in prostate cancer: A brief review study. Multidiscip. Cancer Investig. 2021, 5, 1–7. [Google Scholar] [CrossRef]
- Holt, A.; Van Gestel, D.; Arends, M.P.; Korevaar, E.W.; Schuring, D.; Kunze-Busch, M.C.; Louwe, R.J.W.; van Vliet-Vroegindeweij, C. Multi-institutional comparison of volumetric modulated arc therapy vs. intensity-modulated radiation therapy for head-and-neck cancer: A planning study. Radiat. Oncol. 2013, 8, 26. [Google Scholar] [CrossRef]
- Bray, F.N.; Simmons, B.J.; Wolfson, A.H.; Nouri, K. Acute and chronic cutaneous reactions to ionizing radiation therapy. Dermatol. Ther. 2016, 6, 185–206. [Google Scholar] [CrossRef]
- Zhang, E.J.; Knox, M.; Veness, M.J.; Abdul-Razak, M.; Wong, E.; Hwang, E.J.; Carlino, M.; Sundaresan, P. Outcomes with radiation therapy as primary treatment for unresectable cutaneous head and neck squamous cell carcinoma. Clin. Oncol. (R. Coll. Radiol.) 2025, 38, 103739. [Google Scholar] [CrossRef]
- Granger, E.E.; Kim, E.Y.; Karn, E.E.; Groover, M.K.; Silk, A.W.; Margalit, D.N.; Tishler, R.B.; Schoenfeld, J.D.; Ruiz, E.S. Definitive radiation therapy for inoperable stage III/IV cutaneous squamous cell carcinoma: A single-institution retrospective cohort study. J. Am. Acad. Dermatol. 2024, 90, 187–189. [Google Scholar] [CrossRef]
- Spelman, L.; Christie, D.; Kaminski, A.; Baker, C.; Supranowicz, M.; Sinclair, R. Radiotherapy, utilizing volumetric modulated arc therapy, for extensive skin field cancerization: A retrospective case series assessing efficacy, safety, and cosmetic outcomes at 12 months after treatment. Case Rep. Dermatol. 2022, 14, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Ko, H.; Choi, J. Effect of jaw tracking during volumetric modulated arc therapy for facial non-melanoma skin cancer. Vivo 2024, 38, 849–854. [Google Scholar] [CrossRef]
- Robinson, A.; Tallhamer, M.; Orman, A. Optimizing breast cancer radiation therapy with volumetric modulated arc therapy and skin flash: A case study using deep inspiration breath hold and Cherenkov imaging. Adv. Radiat. Oncol. 2025, 10, 101798. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fu, W.; Brandner, E.; Percinsky, S.; Moran, M.; Huq, M.S. Minimizing normal tissue low dose bath for left breast volumetric modulated arc therapy (VMAT) using jaw offset. J. Appl. Clin. Med. Phys. 2024, 25, e14365. [Google Scholar] [CrossRef] [PubMed]
- Teoh, M.; Clark, C.H.; Wood, K.; Whitaker, S.; Nisbet, A. Volumetric modulated arc therapy: A review of current literature and clinical use in practice. Br. J. Radiol. 2011, 84, 967–996. [Google Scholar] [CrossRef]
- Arunkumar, T.; Supe, S.S.; Ravikumar, M.; Sathiyan, S.; Ganesh, M. Electron beam characteristics at extended source-to-surface distances for irregular cut-outs. J. Med. Phys. 2010, 35, 207–214. [Google Scholar] [CrossRef]
- Reisner, K.; Haase, W. Electron beam therapy of primary tumors of the skin. Radiol. Med. 1990, 80 (Suppl. S1), 114–115. [Google Scholar]
- Mott, J.H.L.; West, N.S. Essentials of depth dose calculations for clinical oncologists. Clin. Oncol. (R. Coll. Radiol.) 2021, 33, 5–11. [Google Scholar] [CrossRef]
- Valve, A.; Koskenmies, S.; Tenhunen, M.; Nurmi, H.; Hernberg, M.; Salminen, S.; Anttonen, A. Early clinical experience with a degraded 4 MeV electron beam in radiotherapy of superficial basal cell carcinoma. Phys. Imaging Radiat. Oncol. 2023, 27, 100487. [Google Scholar] [CrossRef]
- Rustgi, S.N.; Working, K.R. Dosimetry of small field electron beams. Med. Dosim. 1992, 17, 107–110. [Google Scholar] [CrossRef]
- Renard, S.; Parent, L.; de Marzi, L.; Tsoutsou, P.; Kirova, Y. Electron radiation therapy: Back to the future? Cancer Radiother. 2024, 28, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Zablow, A.I.; Eanelli, T.R.; Sanfilippo, L.J. Electron beam therapy for skin cancer of the head and neck. Head Neck 1992, 14, 188–195. [Google Scholar] [CrossRef]
- Smits, K.; Quint, K.D.; Vermeer, M.H.; Daniëls, L.A.; Willemze, R.; Jansen, P.M.; Jansen, W.P.A.; Neelis, K.J. Total skin electron beam therapy for cutaneous T-cell lymphomas in the Netherlands: A retrospective analysis of treatment outcomes and selection for high or low dose schedule. Clin. Transl. Radiat. Oncol. 2022, 33, 77–82. [Google Scholar] [CrossRef]
- Esmati, E.; Abyaneh, R.; Jaberi, R.; Naderinasab, S.; Gholami, S.; Payandeh, M.; Salarvand, F.; Khalilian, A.; Seiri, M.; Lashkari, M.; et al. Surface mold brachytherapy for head and neck non-melanoma skin cancer—Local control rates and survival: A retrospective analysis. J. Contemp. Brachyther. 2024, 16, 323–334. [Google Scholar] [CrossRef]
- Fionda, B.; Placidi, E.; Rosa, E.; Lancellotta, V.; Stimato, G.; De Angeli, M.; Ciardo, F.G.; Cornacchione, P.; Siebert, F.A.; Tagliaferri, L.; et al. Multilayer intensity modulated contact interventional radiotherapy (brachytherapy): Stretching the therapeutic window in skin cancer. J. Contemp. Brachyther. 2023, 15, 220–223. [Google Scholar] [CrossRef]
- Benkhaled, S.; Van Gestel, D.; Cauduro, C.G.S.; Palumbo, S.; del Marmol, V.; Desmet, A. The state of the art of radiotherapy for non-melanoma skin cancer: A review of the literature. Front. Med. 2022, 9, 913269. [Google Scholar] [CrossRef] [PubMed]
- Shah, C.; Ouhib, Z.; Kamrava, M.; Koyfman, S.A.; Campbell, S.R.; Bhatnagar, A.; Canavan, J.; Husain, Z.; Barker, C.A.; Cohen, G.N.; et al. The American Brachytherapy Society consensus statement for skin brachytherapy. Brachytherapy 2020, 19, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Tormo, A.; Celada, F.; Rodriguez, S.; Botella, R.; Ballesta, A.; Kasper, M.; Ouhib, Z.; Santos, M.; Perez-Calatayud, J. Non-melanoma skin cancer treated with HDR Valencia applicator: Clinical outcomes. J. Contemp. Brachyther. 2014, 6, 167–172. [Google Scholar] [CrossRef]
- Köhler-Brock, A.; Prager, W.; Pohlmann, S.; Kunze, S. The indications for and results of HDR afterloading therapy in diseases of the skin and mucosa with standardized surface applicators (the Leipzig applicator). Strahlenther. Onkol. 1999, 175, 170–174. (In German) [Google Scholar]
- Delishaj, D.; Laliscia, C.; Manfredi, B.; Ursino, S.; Pasqualetti, F.; Lombardo, E.; Perrone, F.; Morganti, R.; Paiar, F.; Fabrini, M.G. Non-melanoma skin cancer treated with high-dose-rate brachytherapy and Valencia applicator in elderly patients: A retrospective case series. J. Contemp. Brachyther. 2015, 7, 437–444. [Google Scholar] [CrossRef]
- Zaorsky, N.G.; Lee, C.T.; Zhang, E.; Galloway, T.J. Skin cancer brachytherapy vs external beam radiation therapy (SCRiBE) meta-analysis. Radiother. Oncol. 2018, 126, 386–393. [Google Scholar] [CrossRef]
- Brovchuk, S.; Park, S.-J.; Shepil, Z.; Romanenko, S.; Vaskevych, O. High-dose-rate skin brachytherapy with interstitial, surface, or a combination of interstitial and surface mold technique. J. Contemp. Brachyther. 2022, 14, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Ciurlia, E.; Santo, B.; Barba, M.C.; Cavalera, E.; De Franco, P.; De Matteis, S.; Di Paola, G.; Leone, A.; Papaleo, A.; Rubini, D.; et al. Non-melanoma skin cancer treated with hypofractionated 192–Ir contact brachytherapy: A single institution series. Front. Oncol. 2025, 14, 1525926. [Google Scholar] [CrossRef] [PubMed]
- Monge-Cadet, J.; Vairel, B.; Morisseau, M.; Moyal, E.; Ducassou, A.; Chira, C.; Pagès, C.; Sibaud, V.; Brun, T.; Modesto, A.; et al. High-dose-rate brachytherapy for treatment of facial skin cancers: Local control, toxicity, and quality of life in 67 patients. Cancers 2024, 16, 2742. [Google Scholar] [CrossRef]
- Oliveira, C.N.; Viveiros, C.; Travancinha, C.; Mota, A.; Pino, I.; Fonseca, J.; Madaleno, T.; Labareda, M.; Santos, F.; Esteves, S.; et al. Treatment of basal cell carcinoma of the lower eyelid with high-dose-rate brachytherapy. Cureus 2024, 16, e53067. [Google Scholar] [CrossRef]
- Bilski, M.; Cisek, P.; Baranowska, I.; Kordzińska-Cisek, I.; Komaniecka, N.; Hymos, A.; Grywalska, E.; Niedźwiedzka-Rystwej, P. Brachytherapy in the treatment of non-melanoma skin peri-auricular cancers—A retrospective analysis of a single institution experience. Cancers 2022, 14, 5614. [Google Scholar] [CrossRef]
- Renard, S.; Salleron, J.; Py, J.F.; Cuenin, M.; Buchheit, I.; Marchesi, V.; Huger, S.; Meknaci, E.; Peiffert, D. High-dose-rate brachytherapy for facial skin cancer: Outcome and toxicity assessment for 71 cases. Brachytherapy 2021, 20, 624–630. [Google Scholar] [CrossRef]
- Virbel, G.; Ka, K.; Escande, A.; Mortier, L.; Barthoulot, M.; Liem, X.; Mirabel, X.; Lartigau, E.F.; Cordoba, A. HDR and PDR brachytherapy for facial nonmelanoma skin cancer: Outcome and toxicity assessment for 155 patients. Brachytherapy 2025. epub ahead of print. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Loper, A. The initial experience of electronic brachytherapy for the treatment of non-melanoma skin cancer. Radiat. Oncol. 2010, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Elekta AB–Nucletron. Esteya® Electronic Brachytherapy System. Stockholm, Sweden. Available online: http://www.esteya.com (accessed on 1 July 2025).
- Elekta Xoft. Xoft® Axxent® Electronic Brachytherapy System. Nashua, NH, USA. Available online: https://www.elekta.com/products/brachytherapy/xoft/ (accessed on 1 July 2025).
- Carl Zeiss Meditec AG. INTRABEAM® Electronic Brachytherapy System. Jena, Germany. Available online: https://www.zeiss.com/meditec/en/products/intrabeam-700.html (accessed on 1 July 2025).
- Eaton, D.J. Electronic brachytherapy—Current status and future directions. Br. J. Radiol. 2015, 88, 20150002. [Google Scholar] [CrossRef]
- Bhatnagar, A. Nonmelanoma skin cancer treated with electronic brachytherapy: Results at 1 year. Brachytherapy 2013, 12, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martinez, T.; Chan, J.P.; Perez-Calatayud, J.; Ballester, F. Dosimetric characteristics of a new unit for electronic skin brachytherapy. J. Contemp. Brachyther. 2014, 6, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Henry, G.V.; Lyden, M.R.; Shrager, D.I.; Swann, M.H.; Stubbs, J.B.; Willard, R.J.; Lee, E.K. The Elekta Esteya® electronic brachytherapy system in non-melanoma skin cancers: A post-market observational study. J. Contemp. Brachyther. 2024, 16, 478–488. [Google Scholar] [CrossRef]
- Doggett, S.W.; Willoughby, M.; Miller, K.A.; Mafong, E. Long-term clinical outcomes of non-melanoma skin cancer patients treated with electronic brachytherapy. J. Contemp. Brachyther. 2023, 15, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Goyal, U.; Cheung, M.K.; Suszko, J.; Laughlin, B.; Kim, Y.; Askam, J.; Arif-Tiwari, H.; Slane, B.; Gordon, J.; Stea, B.; et al. Electronic brachytherapy for treatment of non-melanoma skin cancers: Clinical results and toxicities. J. Contemp. Brachyther. 2021, 13, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Ballester-Sánchez, R.; Pons-Llanas, O.; Candela-Juan, C.; Celada-Alvarez, F.J.; de Unamuno-Bustos, B.; Llavador-Ros, M.; Ballesta-Cuñat, A.; Barker, C.A.; Tormo-Micó, A.; Botella-Estrada, R.; et al. Efficacy and safety of electronic brachytherapy for superficial and nodular basal cell carcinoma. J. Contemp. Brachyther. 2015, 7, 231–238. [Google Scholar] [CrossRef]
- Paravati, A.J.; Hawkins, P.G.; Martin, A.N.; Mansy, G.; Rahn, D.A.; Advani, S.J.; Hoisak, J.; Dragojevic, I.; Martin, P.J.; Miller, C.J.; et al. Clinical and cosmetic outcomes in patients treated with high-dose-rate electronic brachytherapy for nonmelanoma skin cancer. Pract. Radiat. Oncol. 2015, 5, e659–e664. [Google Scholar] [CrossRef]
- Liu, H.; Chang, J.Y. Proton therapy in clinical practice. Chin. J. Cancer 2011, 30, 315–326. [Google Scholar] [CrossRef]
- Lane, S.A.; Slater, J.M.; Yang, G.Y. Image-guided proton therapy: A comprehensive review. Cancers 2023, 15, 2555. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.M.; Dagan, R.; Holtzman, A.L.; Fernandes, R.; Bunnell, A.; Mendenhall, W.M. Passively scattered proton therapy for nonmelanoma skin cancer with clinical perineural invasion. Int. J. Part. Ther. 2021, 8, 285–293. [Google Scholar] [CrossRef]
- Yacoub, I.; Rayn, K.; Choi, J.I.; Bakst, R.; Chhabra, A.; Qian, J.Y.; Johnstone, P.; Simone, C.B., 2nd. The role of radiation, immunotherapy, and chemotherapy in the management of locally advanced or metastatic cutaneous malignancies. Cancers 2024, 16, 3920. [Google Scholar] [CrossRef]
- Maillie, L.; Lazarev, S.; Simone, C.B., II; Sisk, M. Geospatial disparities in access to proton therapy in the continental United States. Cancer Investig. 2021, 39, 582–588. [Google Scholar] [CrossRef]
- Patel, P.V.; Pixley, J.N.; Dibble, H.S.; Feldman, S.R. Recommendations for cost-conscious treatment of basal cell carcinoma. Dermatol. Ther. 2023, 13, 1959–1971. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Implementation of High Dose Rate Brachytherapy in Limited Resource Settings; IAEA Human Health Series No. 30; IAEA: Vienna, Austria, 2015; Available online: https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1670web-5444797.pdf (accessed on 9 September 2025).
- Kharrati, K. Global Electronic Brachytherapy Market Size Likely to Reach at a CAGR of 9.48% by 2033; Custom Market Insights: Sandy, UT, USA, 2024; Available online: https://www.custommarketinsights.com/press-releases/electronic-brachytherapy-market-size/ (accessed on 9 September 2025).
- Particle Therapy Co-Operative Group. Particle Therapy Facilities in Clinical Operation. Particle Therapy Co-Operative Group. Available online: https://www.ptcog.site/index.php/facilities-in-operation-public (accessed on 9 September 2025).
- Helgadottir, H.; Jönsson, G.; Wickström, S.; Nilsson, J.; Björkström, K.; Berglund, A.; Carneiro, A.; Ny, L.; Olofsson Bagge, R. SWE-NEO: Swedish NeoAdjuvant Trial Comparing anti-PD-1 Monotherapy to Combined anti-CTLA-4/anti-PD-1 Blockade in Resectable Stage III Melanoma. Eur. J. Cancer Skin Cancer 2025, 3 (Suppl. S1), 100639. [Google Scholar] [CrossRef]
- Zandberg, D.P.; Allred, J.B.; Rosenberg, A.J.; Kaczmar, J.M.; Swiecicki, P.; Julian, R.A.; Poklepovic, A.S.; Schwartz, G.K. Phase II (Alliance A091802) randomized trial of avelumab plus cetuximab versus avelumab alone in advanced cutaneous squamous cell carcinoma. J. Clin. Oncol. 2025, 43, JCO2500759. [Google Scholar] [CrossRef]
- Nardone, V.; Napolitano, S.; Gagliardi, F.; Esposito, A.; Caraglia, F.; Briatico, G.; Scharf, C.; Ronchi, A.; D’Onofrio, I.; D’Ippolito, E.; et al. Previous radiotherapy increases the efficacy of cemiplimab in the treatment of locally advanced and metastatic cutaneous squamous cell carcinoma: A retrospective analysis. J. Am. Acad. Dermatol. 2024, 91, 678–683. [Google Scholar] [CrossRef]
- OncoBeta GmbH. Rhenium-SCT® Skin Cancer Therapy. Freiburg, Germany. Available online: https://www.oncobeta.com/our-products/rhenium-sct (accessed on 1 July 2025).
- Fukuda, H. Boron neutron capture therapy (BNCT) for cutaneous malignant melanoma using 10B-p-boronophenylalanine (BPA) with special reference to the radiobiological basis and clinical results. Cells 2021, 10, 2881. [Google Scholar] [CrossRef] [PubMed]
- Kashihara, T.; Nakamura, S.; Yamazaki, N.; Takahashi, A.; Namikawa, K.; Ogata, D.; Nakano, E.; Okuma, K.; Kaneda, T.; Mori, T.; et al. Boron neutron capture therapy for cutaneous angiosarcoma and malignant melanoma: First in-human phase I clinical trial. Radiother. Oncol. 2025, 202, 110607. [Google Scholar] [CrossRef] [PubMed]
- Dziura, D.; Tabbassum, S.; MacNeil, A.; Maharaj, D.D.; Laxdal, R.; Kester, O.; Pan, M.; Kumada, H.; Marquardt, D. Boron neutron capture therapy in the new age of accelerator-based neutron production and preliminary progress in Canada. Can. J. Phys. 2023, 101, 363–372. [Google Scholar] [CrossRef]
- Durante, M.; Paganetti, H. Nuclear physics in particle therapy: A review. Rep. Prog. Phys. 2016, 79, 096702. [Google Scholar] [CrossRef]
- Tsujii, H.; Mizoe, J.E.; Kamada, T.; Baba, M.; Kato, S.; Kato, H.; Tsuji, H.; Yamada, S.; Yasuda, S.; Ohno, T.; et al. Overview of clinical experiences on carbon ion radiotherapy at NIRS. Radiother. Oncol. 2004, 73 (Suppl. S2), S41–S49. [Google Scholar] [CrossRef]
- Blake, P.R.; Catterall, M.; Errington, R.D. Treatment of malignant melanoma by fast neutrons. Br. J. Surg. 1985, 72, 517–519. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, M.; Kamomae, T.; Yanagawa, M.; Kamagata, K.; Fujita, S.; Ueda, D.; Matsui, Y.; Fushimi, Y.; Fujioka, T.; Nozaki, T. Revolutionizing radiation therapy: The role of AI in clinical practice. J. Radiat. Res. 2024, 65, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, G.; Balato, A.; Malvehy, J.; Puig, S.; Argenziano, G.; Kittler, H. Artificial intelligence in skin cancer diagnosis: A reality check. J. Investig. Dermatol. 2023, 144, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, K.P.; Kadakia, K.T.; Gilbert, S. Learnings from the first AI-enabled skin cancer device for primary care authorized by FDA. NPJ Digit. Med. 2024, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- University Hospitals of Liverpool NHS Foundation Trust. Merseyside Hospital Pioneers the Use of AI Technology for Early Detection of Skin Cancer; University Hospitals of Liverpool NHS: Liverpool, UK, 2024; Available online: https://www.uhliverpool.nhs.uk/about-us/our-stories/merseyside-hospital-pioneers-use-ai-technology-early-detection-skin-cancer (accessed on 9 September 2025).
- Horvat, N.; Papanikolaou, N.; Koh, D.M. Radiomics beyond the hype: A critical evaluation toward oncologic clinical use. Radiol. Artif. Intell. 2024, 6, e230437. [Google Scholar] [CrossRef]
Histology | Risk/Size/Stage | Primary (Preferred Treatment) | Primary RT (Definitive) | Adjuvant RT | Palliative RT | Nodal Management | Immunotherapy/Systemic Therapy | Considerations: Immunocompromised Individuals and Special Cases |
---|---|---|---|---|---|---|---|---|
cBCC | Low-risk: ≤2 cm, superficial. High-risk: >2 cm, infiltrative, periorificial. | Surgery/Mohs | Patient/clinician preference or if surgery contraindicated. Techniques: superficial/orthovoltage, electrons, HDR-BT (surface applicators/molds), eBT, conformal photons for deeper lesions. PBT can be considered for periorbital or skull base involvement. | Used for positive margins or PNI. | Symptom control | Nodal mets very rare; routine nodal RT not indicated. | Hedgehog inhibitors (vismodegib/sonidegib) or PD-1 inhibitors for advanced/metastatic disease. | Immunocompromised: consider lower threshold for definitive/adjuvant RT due to aggressive growth, higher recurrence risk |
cSCC | Low-risk: ≤2 cm, ≤6 mm depth, well/mod diff, no PNI. High-risk: >2 cm, ≥6 mm depth, poor-diff, PNI, recurrent, immunosuppressed. | Wide excision ± Mohs; LN evaluation if clinically suspicious. | Definitive RT for inoperable lesions or patient/clinician preference. Techniques: superficial/orthovoltage or electrons for small superficial lesions; IMRT/VMAT/3D-CRT for deep/PNI; HDR-BT/eBT for small superficial (<4–5 mm, ≤2–3 cm) lesions; PBT can be considered for periocular/skull base tumors. | High-risk features: positive margins, extensive PNI, large primary; elective nodal RT as indicated; treat along nerve to skull base if PNI. | Symptomatic advanced disease with electrons/photons. | Elective nodal RT may be considered in high-risk primary sites (e.g., lip, ear, deep/large tumors, poorly differentiated, immunosuppressed) -especially in head/neck locations where surgical nodal management may be limited and risk ≥15%. Clinically involved nodes and named-nerve PNI should receive therapeutic nodal or nerve tract RT | PD-1 inhibitors (cemiplimab, pembrolizumab) for locally advanced/metastatic disease. | Immunocompromised: higher recurrence/metastasis; consider elective nodal RT more liberally; lower threshold for definitive RT |
Melanoma—LM (in situ) | Extensive facial LM, elderly/comorbid | Wide local excision | RT acceptable if surgery not feasible or disfiguring; patient/clinician preference. Techniques: superficial/orthovoltage (~5 mm depth), HDR-BT/eBT for small convex sites. PBT rarely indicated for periocular lesions. | Not indicated | Not indicated | Not indicated | Immunocompromised: may have accelerated progression; careful RT planning, close follow-up | |
Melanoma—invasive/desmoplastic | Breslow depth guides staging; desmoplastic/neurotropic high-risk | Wide local excision ± SLNB | Adjuvant RT more common; primary RT rare, consider HDR-BT/eBT for small superficial lesions if surgery not feasible. PBT may be considered in head/neck sites near OARs. | Palliative for metastases: SRS, hypofractionated RT. | Treat nodal disease per melanoma nodal guidelines; consider RT if unresectable or extracapsular extension. | ICIs/targeted therapy for advanced disease. | Satellite/in-transit mets: RT can be used for LC, symptom relief; electrons, IMRT, or SXRT depending on size/number/location | |
MCC | Small primary lesions common; high regional spread risk | Wide excision + SLNB | Definitive RT for inoperable cases. Techniques: electrons/photons standard; HDR-BT/eBT occasionally for superficial lesions; protons for periocular/complex head & neck sites. | Palliative RT for symptomatic locoregional or distant disease (short courses). | SLNB strongly recommended; nodal RT ± dissection if positive; elective nodal RT often used. | PD-L1/PD-1 inhibitors (avelumab, pembrolizumab, nivolumab) for advanced/metastatic disease. | Immunocompromised: higher recurrence risk; may benefit from wider RT fields or elective nodal RT | |
Other rare cutaneous malignancies | Cutaneous lymphomas, adnexal tumors (sebaceous, eccrine poro/hidradenocarcinoma) | Surgery when possible; lymphomas treated medically | RT frequently used: superficial/electrons for localized lymphoma; TSEBT for generalized disease; HDR/eBT for small superficial adnexal tumors. PBT in selected complex head/neck/adnexal lesions. | Hypofractionated short courses for symptom control. | Lymphoma nodal management stage-dependent; adnexal tumors treated like high-risk head/neck skin cancers. | Lymphoma systemic therapy per hematology protocols; adnexal tumors occasionally receive chemo/targeted therapy; limited evidence. | Immunocompromised: consider early RT for aggressive disease; close monitoring for recurrence |
Study (Author, Year) | Histology and Disease Site | No. of Patients, No. of Lesions | RT Modality | Dose and Fractionation | Length of Follow-up | LC and/or Recurrence Rates | Cosmesis and Toxicity |
---|---|---|---|---|---|---|---|
Mattia et al., 2024 [52] | Nodular cBCC, superficial cBCC, invasive cSCC, cSCC in situ, and combined histology | 1082 patients, 2490 lesions | SXRT | Average dose 35.7 Gy over 5.47 fractions | Up to 22 years, minimum 1 month | All subtypes recurrence: 2-year: 2.2% 5-year: 6.0% 10-year: 10.5% cBCC recurrence: 2-year: 2.8% 5-year: 6.9% 10-year: 12.4% cSCC recurrence: 2-year: 2.0% 5-year: 5.8% 10-year: 9.9% | Not specified |
Green et al., 2023 [53] | cBCC and cSCC | 891 patients, 2179 lesions | SXRT | Not specified (full study inaccessible) | Up to 10 years | cBCC Recurrence: 2-year: 2.8% 5-year: 7.2% 10-year: 9.6% cSCC Recurrence: 2-year: 2.2% 5-year: 6.5% 10-year: 8.9% | Not specified (full study inaccessible) |
Duinkerken et al., 2016 [54] | Head & neck favorable cBCC | 232 patients, 253 lesions | Orthovoltage X-ray RT | 2 regimens: Non-periocular lesions, very old patients with poor overall health: 4.5 Gy in 10 fractions All other lesions: 3 Gy in 18 fractions | Maximum 5 years (range 1 month–5 years) | 1-year LC 98.9%, 3-year LC 97.5%, 5-year LC 96.3% | Acute toxicity: self-resolving Late toxicity: not significant Excellent cosmesis and no functional impairments |
Krema et al., 2013 [55] | Medial canthal cBCC | 90 patients | Orthovoltage X-ray RT | Median dose was 35 Gy delivered in 5 daily fractions, used in 59 (66%) of patients, with 16 (18%) treated with 45 Gy in 10 daily fractions and 9 (10%) with 50 Gy in 20 daily fractions. | Median 80 months | 10-year LC: 94% | Toxicity: eyelash loss occurred in 59% of patients, epiphora occurred in 51% of patients, dry eye occurred in 14% of patients, conjunctival scarring occurred in 11% of patients. No corneal complications. |
Marconi et al., 2013 [48] | cBCC | 597 patients, 1021 lesions | Orthovoltage X-ray RT | 3 regimens: 2.5 Gy in 22 fractions (55 Gy total); 2.5 Gy in 20 fractions (50 Gy total); 2.0 Gy in 30 fractions (60 Gy total) | Median 44 months (range 1–406 months) | All subtypes LC: 5-year 95%, 10-year 92.9% cBCC LC: 5-year 95.6%, 10-year 94.3% cSCC LC: 5-year 91.9%, 10-year 87.3% | Toxicity: 8.88% of lesions developed grade 3+ acute toxicity; no significant difference in toxicity by fractionation. |
Zagrodnik et al., 2003 [56] | Nodular cBCC, superficial cBCC, sclerosing cBCC | 148 patients, 175 lesions | SXRT | 3 regimens based on lesion size (cm): <2 cm: 8 Gy in 5–6 fractions (40–48 Gy total) 2–5 cm: 4 Gy in 10–13 fractions (40–52 Gy total) >5 cm: 2 Gy in 26–30 fractions (52–60 Gy total) | Median 48 months | Overall 5-year recurrence rate: 15.8% By subtype: nodular: 8.2% recurrence, superficial: 26.1% recurrence, sclerosing: 27.7% recurrence Higher recurrence rate associated with sclerosing subtype, and p53 and Bcl-2 expression; lower recurrence rate associated with nodular subtype. | Not specified |
Study (Author, Year) | Histology | No. of Patients, No. of Lesions | Dose and Fractionation | Applicators or Delivery Method | Length of Follow-up | LC and/or Recurrence Rates | Cosmesis and Toxicity |
---|---|---|---|---|---|---|---|
Cirulia et al., 2025 [97] | cBCC and cSCC | 39 patients, 46 lesions | 2 regimens: 40 Gy in 4 fractions or 30 Gy in 3 fractions | Leipzig applicator | Mean 25.1 months (range 1 month–77 months) | 100% LC and 100% disease-specific survival at 2-year follow-up. | Acute toxicity: grade 1 in 39.1% of patients, grade 2 in 10.9% of patients, grade 3 in 15.2% of patients. No acute toxicity was observed in 34.8% of patients. Late toxicity: not detected in 76.1% of patients. |
Monge-Cadet et al., 2024 [98] | Facial cBCC and cSCC | 67 patients, 67 lesions | 40 Gy in 8 fractions delivered over 5 consecutive days | Flexible interstitial implant tubes | Median 28 months and 3 years | After median follow-up of 28 months, 8 patients developed local recurrence, 3 developed nodal recurrence, and 3 developed metastatic recurrence. 87.05% LC at 3 years for all patients. | Acute toxicity: All patients experienced grade 1 and grade 2 acute side-effects, 1 patient experienced grade 3 acute side effects. Late toxicity: no patients with severe late toxicity. Of the patients who reported QoL outcomes, 77.8% recommended the treatment. |
Oliviera et al., 2024 [99] | Lower eyelid cBCC | 58 patients, 58 lesions | 36–40 Gy in 9–10 fractions, twice daily over 5 days. | Interstitial catheters | Median 44 months | 95% and 100% LC in adjuvant and radical groups, respectively. 4 local relapses. | Acute toxicity: 76% of patients developed acute toxicity (1 grade 3 dermatitis) Late toxicity: 56% of patients. Excellent/very good cosmesis in 93%. |
Bilski et al., 2022 [100] | Peri-auricular NMSC | 33 patients | 7 Gy per fraction, time intervals from 6 h (interstitial) up to 7 days (contact); total dose range 7–49 Gy | Contact HDR-BT and interstitial HDR-BT | Mean 29.75 months (range 2–64 months) | 97% LC with 1 local recurrence (3%) | Toxicity: no toxicity in 15 (45.5%) patients, grade 1 toxicity in 15 (45.5%) patients, grade 2 toxicity in 2 (6%) patients, no 3 or higher toxicity. |
Renard et al., 2021 [101] | Facial NMSC | 66 patients, 71 lesions | 2 regimens: 7 Gy day 1 then 8 Gy in 4 fractions over next 4 days or 4 Gy over 5 days (post-operative cases) | Interstitial catheters | Median 15.3 months | 98.5% complete response at median 15.3 month follow-up. 3% local recurrence at median 20.5 month follow-up | Acute toxicity: grade 3 acute dermatitis in 4 (6.1%) patients and grade 3 mucositis in 3 (4.5%) patients. These resolved within 3 months. Late toxicity: late hypopigmentation in 4 patients. |
Study (Author, Year) | Histology and Disease Site | No. of Patients, No. of Lesions | Dose and Fractionation | Length of Follow-Up | LC and/or Recurrence Rates | Cosmesis and Toxicity |
---|---|---|---|---|---|---|
Cheng et al., 2024 [110] | cBCC and cSCC | 205 patients, 236 lesions | 69–72 GyBED (various fraction regimes) | Median 24.2 months (maximum 73.5 months) | 99.6% LC (1 recurrence) | Acute toxicity: erythema (34.1% at 1 month), resolved within 6 months Late toxicity: Hypopigmentation, telangiectasia Cosmesis: HCP-rated E/G at 36 months: 83.6%; Patient-rated E/G at 36 months: 86.6% |
Dogett et al., 2023 [111] | cBCC and cSCC | 183 patients, 185 lesions | 40 Gy in 8 fractions (given twice weekly) | Median 7.5 years (range 5–9.5 years) | 98.9% LC | Toxicity: grade 1 hypopigmentation (65.9% of patients), telangiectasia (22.2% of patients), rare grade 1-2 scarring (1.1% of patients), hyperpigmentation (1.1% of patients, induration (0.5% of patients) |
Goyal et al., 2021 [112] | cBCC and cSCC | 33 patients, 50 lesions | Median BED: 50 Gy total dose to a 0.1–0.5 cm depth (various fractionation regimens) | Mean 45.6 months | 97% LC | Acute toxicity: grade 3 toxicity occurred in 9 lesions (18%), grade 4 toxicity occurred in 4 lesions (8%) Late toxicity: none reported at median 45.6 month follow-up |
Ballister-Sánchez et al., 2015 [113] | cBCC | 20 patients, 23 lesions | 42 Gy in 6 fractions (given twice weekly) | 6 months for all cases | 100% LC | Toxicity: Mild erythema post-4th fraction; no serious toxicity reported Excellent cosmesis in >60%; subtle changes in remaining |
Paravati et al., 2015 [114] | cBCC | 127 patients, 154 lesions | 40 Gy in 8 fractions | Median 16.1 months (range 3.4–34.8 months) | 98.7% LC | Acute toxicity: grade 0–1 (52.6%), grade 2 (34.4%), grade 3 (13%) Late toxicity: grade 0–1 (94.2%), grade 2 (5.8%) Excellent cosmesis in 94.2%, good outcomes in 3.3% and fair/poor in 1.4% |
Modality | Tumor Depth Suitability | Cost | Availability | Logistical Benefits | Technical Limitations | Typical Indications | Toxicity | Cosmesis |
---|---|---|---|---|---|---|---|---|
Orthovoltage/superficial X-rays | Very superficial (<5 mm) | Low | Widely available (declining use in high-income settings) | Simple setup, outpatient treatment | Limited depth penetration | Small, superficial lesions; palliative lesions; selected adjuvant cases for superficial margins | Skin atrophy, telangiectasia | Overall good |
3D-CRT | Up to several cm | Moderate | Widely available | Relatively straightforward planning | Less conformal than IMRT/VMAT | Larger or deeper cutaneous tumors; post-op adjuvant treatment; nodal irradiation in select cases | Moderate dose to adjacent tissues | Variable; depends on field size |
IMRT | Deep or complex volumes | High | Widely available in developed centers | Highly conformal, spares normal tissue | Longer planning and delivery times | Irregular target volumes; head & neck skin cancers; post-op adjuvant; nodal irradiation; re-irradiation | Lower normal tissue dose, but risk of low-dose bath | Good, especially in cosmesis-sensitive areas |
VMAT | Similarly to IMRT, faster delivery | High | Increasingly available | Shorter treatment time than IMRT | Requires advanced planning software | Similarly to IMRT; post-op adjuvant; nodal coverage; complex geometry; re-irradiation | Similarly to IMRT | Comparable to IMRT |
Electron beam therapy | Up to ~5 cm, sharp distal fall-off | Moderate | Widely available | Rapid delivery, predictable dose fall-off | Limited to uniform fields; complex shapes require multiple energies | Superficial to moderately deep tumors; post-op scar boost; skin lymphomas; adjuvant or definitive treatment of localized lesions; re-irradiation of previously treated superficial sites | Erythema, desquamation | Excellent for appropriately selected depths |
HDR-BT | Superficial (3–10 mm) | Moderate-high | Available at specialized centers | Outpatient or short-course treatment | Requires specialized applicators and expertise | Small, well-defined lesions; cosmesis-critical sites (face, ears, nose); adjuvant treatment for positive or close margins; boost therapy; re-irradiation | Ulceration, hypopigmentation | Excellent (esp. face, nose, ears) |
PDR-BT | Similarly to HDR-BT (fractionated, protracted) | Moderate-high | Less widely available | Fractionated delivery may reduce toxicity | Requires specialized equipment | Alternative to HDR-BT in select centers; adjuvant therapy; boost to surgical bed; palliation of superficial lesions; re-irradiation | Similarly to HDR-BT, potentially reduced late effects | Excellent |
eBT | Very superficial (≤5 mm) | Moderate | Limited availability (office-based units) | Portable, office-based | Limited depth penetration | Outpatient settings; boost to surgical margins; superficial palliation; re-irradiation | Similarly to HDR-BT, low acute toxicity | Very good |
PBT | Deep, complex, sparing OARs | High | Limited to major centers | Excellent normal tissue sparing | Very high cost, limited access | Data emerging for definitive treatment of skin lesions; deep or recurrent lesions; periorbital and scalp tumors; adjuvant therapy in high-risk cases; nodal coverage in select patients; re-irradiation | Reduced integral dose | Good especially when OAR sparing is critical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, N.; Yacoub, I.; Hsieh, K.; Choi, J.I.; Chhabra, A.; Simone, C.B., 2nd. Radiotherapeutic Modalities and Advancements in the Treatment of Cutaneous Malignancies. J. Clin. Med. 2025, 14, 6547. https://doi.org/10.3390/jcm14186547
Malik N, Yacoub I, Hsieh K, Choi JI, Chhabra A, Simone CB 2nd. Radiotherapeutic Modalities and Advancements in the Treatment of Cutaneous Malignancies. Journal of Clinical Medicine. 2025; 14(18):6547. https://doi.org/10.3390/jcm14186547
Chicago/Turabian StyleMalik, Noor, Irini Yacoub, Kristin Hsieh, J. Isabelle Choi, Arpit Chhabra, and Charles B. Simone, 2nd. 2025. "Radiotherapeutic Modalities and Advancements in the Treatment of Cutaneous Malignancies" Journal of Clinical Medicine 14, no. 18: 6547. https://doi.org/10.3390/jcm14186547
APA StyleMalik, N., Yacoub, I., Hsieh, K., Choi, J. I., Chhabra, A., & Simone, C. B., 2nd. (2025). Radiotherapeutic Modalities and Advancements in the Treatment of Cutaneous Malignancies. Journal of Clinical Medicine, 14(18), 6547. https://doi.org/10.3390/jcm14186547