Cardiovascular Physiology During Mechanical Circulatory Support: Implications for Management and Monitoring
Abstract
1. Introduction
2. Cardiovascular Physiology in the Setting of MCS
2.1. Definitions of Heart Failure and Cardiogenic Shock
2.2. Neurohormonal Mechanisms in Heart Failure and Cardiogenic Shock
2.3. Hemodynamic Effects of Mechanical Circulatory Support Devices
2.4. Device-Specific Physiological Effects and Clinical Management
2.4.1. Intra-Aortic Balloon Pump (IABP)
2.4.2. Impella (Left-Sided)
2.4.3. TandemHeart
2.4.4. Right Ventricular Assist Device (RVAD)
2.4.5. Veno-Arterial (VA-ECMO)
2.4.6. Durable Left Ventricular Assist Device (LVAD)
2.4.7. Biventricular Assist Device (BiVAD)
2.5. Ventricular-Arterial Coupling, Oxygen Delivery, and Metabolic-Neurohormonal Effects During MCS
2.6. Clinical Algorithms for MCS Selection
3. Clinical Management Strategies and Evidence Based Use of MCS Devices
3.1. IABP
3.2. Impella
3.3. VA-ECMO
3.4. Durable LVAD
3.5. BIVAD
4. Monitoring During MCS
4.1. Pulmonary Artery Catheter (PAC)
4.2. Continuous Cardiac Output and SvO2
4.3. Echocardiography
4.4. Arterial Waveform Analysis
4.5. End-Tidal Carbon Dioxide (EtCO2)
4.6. Device-Specific Monitoring
4.6.1. VA-ECMO Parameters: Flow Rates and Oxygenation Indices
4.6.2. LVAD Parameters (HeartMate 3): Pump Speed, Flow, and Pulsatility Index
5. Special Considerations
5.1. Physiological Adaptation During Weaning from MCS
5.2. Ethical Consideration in MCS
- Autonomy: obtaining informed consent for emergent MCS is ethically complex because most patients are critically ill and unable to participate in decision-making, placing the burden on families or other legal surrogates [104]. In some situations—such as the operating room or catheterization laboratory—there is no time to obtain consent before device placement. In these cases, early involvement of palliative care or ethics consultation may be appropriate to ensure that patients’ wishes and values are respected [105].
- Beneficence: while MCS can provide life-saving physiologic support, it does not guarantee recovery or meaningful long-term survival. For example, only 41% of adults supported with VA-ECMO after cardiotomy survive to hospital discharge, with survival decreasing to 34% after CABG and 30% after aortic surgery [106]. Short-term microaxial pumps (e.g., Impella) have shown a 25–35% reduction in six-month mortality in post-STEMI cardiogenic shock [6,107]. Conversely, early VA-ECMO initiation in severe cardiogenic shock has not consistently improved survival [75,108,109]. These data highlight the need to weigh potential benefits against the risks of prolonged debility and suffering, with early family discussions and palliative input helping align treatment with patient values.
- Nonmaleficence: determining when MCS becomes futile is one of the most challenging aspects of care. Devices such as VA-ECMO may create a perception of ongoing hope even when recovery is unlikely, leading families to resist withdrawal. The absence of consensus guidelines further complicates decisions and can contribute to moral distress among care teams. Multidisciplinary discussions and ethics consultations are essential to navigate these situations with compassion and clarity [110].
- Justice and Equity: MCS requires substantial resources, specialized staff, and prolonged ICU care, raising concerns about justice and equity [111]. Access is uneven, with only 67% of the U.S. population living within reach of an ECMO-capable center by ground transportation, while the remaining 33% have no such access, including all of Puerto Rico and the states of Wyoming, North Dakota, and Alaska [112]. Triage tools such as the SAVE score may prioritize those most likely to benefit but risk excluding marginalized patients who already face barriers to timely care [113]. Ensuring equitable distribution of MCS, therefore, requires balancing clinical benefit with fairness and transparency.
6. Emerging Role of Artificial Intelligence in MCS
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| BiVAD | Biventricular Assist Device |
| CO | Cardiac Output |
| CS | Cardiogenic Shock |
| CVP | Central Venous Pressure |
| DO2 | Oxygen Delivery |
| ECPR | Extracorporeal Cardiopulmonary Resuscitation |
| FAC | Fractional Area Change |
| HF | Heart Failure |
| HR | Heart Rate |
| IABP | Intra-Aortic Balloon Pump |
| LV | Left Ventricle |
| LVAD | Left Ventricular Assist Device |
| LVEDP | Left Ventricular End-Diastolic Pressure |
| MAP | Mean Arterial Pressure |
| MCS | Mechanical Circulatory Support |
| ML | Machine Learning |
| PAC | Pulmonary Artery Catheter |
| PAPi | Pulmonary Artery Pulsatility Index |
| PCWP | Pulmonary Capillary Wedge Pressure |
| PI | Pulsatility Index |
| PVR | Pulmonary Vascular Resistance |
| RAAS | Renin–Angiotensin–Aldosterone System |
| RPM | Revolutions per Minute |
| RV | Right Ventricle |
| RVAD | Right Ventricular Assist Device |
| SV | Stroke Volume |
| SVR | Systemic Vascular Resistance |
| SvO2 | Mixed Venous Oxygen Saturation |
| TAPSE | Tricuspid Annular Plane Systolic Excursion |
| TEE | Transesophageal Echocardiography |
| TTE | Transthoracic Echocardiography |
| UFH | Unfractionated Heparin |
| VA-ECMO | Veno-Arterial Extracorporeal Membrane Oxygenation |
References
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e876–e894. [Google Scholar] [CrossRef]
- Naidu, S.S.; Baran, D.A.; Jentzer, J.C.; Hollenberg, S.M.; van Diepen, S.; Basir, M.B.; Grines, C.L.; Diercks, D.B.; Hall, S.; Kapur, N.K.; et al. SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies: This statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), European Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International Society for Heart and Lung Transplantation (ISHLT), Society of Critical Care Medicine (SCCM), and Society of Thoracic Surgeons (STS) in December 2021. J. Am. Coll. Cardiol. 2022, 79, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.S.; Morrow, D.A.; Kapur, N.K.; Kataria, R.; Roswell, R.O. 2025 Concise Clinical Guidance: An ACC Expert Consensus Statement on the Evaluation and Management of Cardiogenic Shock. J. Am. Coll. Cardiol. 2025, 85, 1618–1641. [Google Scholar] [CrossRef]
- Ron Waksman, M.D.; Pahuja, M.; van Diepen, S.; Proudfoot, A.G.; Morrow, D.; Spitzer, E.; Nichol, G.; Weisfeldt, M.L.; Moscucci, M.; Lawler, P.R.; et al. Standardized Definitions for Cardiogenic Shock Research and Mechanical Circulatory Support Devices: Scientific Expert Panel from the Shock Academic Research Consortium (SHARC). Circulation 2023, 148, 1113–1126. [Google Scholar] [CrossRef]
- Miller, P.E.; Solomon, M.A.; McAreavey, D. Advanced Percutaneous Mechanical Circulatory Support Devices for Cardiogenic Shock. Crit. Care Med. 2017, 45, 1922–1929. [Google Scholar] [CrossRef]
- Møller, J.E.; Engstrøm, T.; Jensen, L.O.; Eiskjær, H.; Mangner, N.; Polzin, A.; Schulze, P.C.; Skurk, C.; Nordbeck, P.; Clemmensen, P.; et al. Microaxial Flow Pump or Standard Care in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2024, 390, 1382–1393. [Google Scholar] [CrossRef]
- Geller, B.J.; Sinha, S.S.; Kapur, N.K.; Bakitas, M.; Balsam, L.B.; Chikwe, J.; Klein, D.G.; Kochar, A.; Masri, S.C.; Sims, D.B.; et al. Escalating and De-escalating Temporary Mechanical Circulatory Support in Cardiogenic Shock: A Scientific Statement from the American Heart Association. Circulation 2022, 146, e50–e68. [Google Scholar] [CrossRef]
- Garan, A.R.; Kataria, R.; Li, B.; Sinha, S.; Kanwar, M.K.; Hernandez-Montfort, J.; Li, S.; Ton, V.-K.; Blumer, V.; Grandin, E.W.; et al. Outcomes of Patients Transferred to Tertiary Care Centers for Treatment of Cardiogenic Shock: A Cardiogenic Shock Working Group Analysis. J. Card. Fail. 2024, 30, 564–575. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Møller, J.E.; Henriques, J.P.S.; Bogerd, M.; Seyfarth, M.; Burkhoff, D.; Ostadal, P.; Rokyta, R.; Belohlavek, J.; Massberg, S.; et al. Temporary mechanical circulatory support in infarct-related cardiogenic shock: An individual patient data meta-analysis of randomised trials with 6-month follow-up. Lancet 2024, 404, 1019–1028. [Google Scholar] [CrossRef]
- Rihal, C.S.; Naidu, S.S.; Givertz, M.M.; Szeto, W.Y.; Burke, J.A.; Kapur, N.K.; Kern, M.; Garratt, K.N.; Goldstein, J.A.; Dimas, V.; et al. 2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care: Endorsed by the American Heart Assocation, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; Affirmation of Value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d’intervention. J. Am. Coll. Cardiol. 2015, 65, e7–e26. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Manolis, A.A.; Manolis, T.A.; Manolis, A.S. Neurohumoral Activation in Heart Failure. Int. J. Mol. Sci. 2023, 24, 15472. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Hu, Y.; Ling, L.; Yang, Z.; Wan, L.; Yang, X.; Lei, M.; Guo, X.; Ren, Z. Molecular mechanisms and intervention approaches of heart failure (Review). Int. J. Mol. Med. 2025, 56, 5566. [Google Scholar] [CrossRef]
- Rector, T.S.; Olivari, M.T.; Levine, T.B.; Francis, G.S.; Cohn, J.N. Predicting survival for an individual with congestive heart failure using the plasma norepinephrine concentration. Am. Heart J. 1987, 114 Pt 1, 148–152. [Google Scholar] [CrossRef]
- Pamias-Lopez, B.; Ibrahim, M.E.; Pitoulis, F.G. Cardiac mechanics and reverse remodelling under mechanical support from left ventricular assist devices. Front. Cardiovasc. Med. 2023, 10, 1212875. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Ohman, E.M.; de Waha-Thiele, S.; Zeymer, U.; Desch, S. Management of cardiogenic shock complicating myocardial infarction: An update 2019. Eur. Heart J. 2019, 40, 2671–2683. [Google Scholar] [CrossRef]
- Guihaire, J.; Haddad, F.; Hoppenfeld, M.; Amsallem, M.; Christle, J.W.; Owyang, C.; Shaikh, K.; Hsu, J.L. Physiology of the Assisted Circulation in Cardiogenic Shock: A State-of-the-Art Perspective. Can. J. Cardiol. 2020, 36, 170–183. [Google Scholar] [CrossRef]
- Atti, V.; Narayanan, M.A.; Patel, B.; Balla, S.; Siddique, A.; Lundgren, S.; Velagapudi, P. A Comprehensive Review of Mechanical Circulatory Support Devices. Heart Int. 2022, 16, 37–48. [Google Scholar] [CrossRef]
- Burkhoff, D.; Sayer, G.; Doshi, D.; Uriel, N. Hemodynamics of Mechanical Circulatory Support. J. Am. Coll. Cardiol. 2015, 66, 2663–2674. [Google Scholar] [CrossRef] [PubMed]
- González, L.S.; Chaney, M.A. Intraaortic Balloon Pump Counterpulsation, Part I: History, Technical Aspects, Physiologic Effects, Contraindications, Medical Applications/Outcomes. Anesth. Analg. 2020, 131, 776–791. [Google Scholar] [CrossRef]
- Salter, B.S.; Gross, C.R.; Weiner, M.M.; Dukkipati, S.R.; Serrao, G.W.; Moss, N.; Anyanwu, A.C.; Burkhoff, D.; Lala, A. Temporary mechanical circulatory support devices: Practical considerations for all stakeholders. Nat. Rev. Cardiol. 2023, 20, 263–277. [Google Scholar] [CrossRef] [PubMed]
- den Uil, C.A.; Van Mieghem, N.M.; Bastos, M.B.; Jewbali, L.S.; Lenzen, M.J.; Engstrom, A.E.; Bunge, J.J.H.; Brugts, J.J.; Manintveld, O.C.; Daemen, J.; et al. Primary intra-aortic balloon support versus inotropes for decompensated heart failure and low output: A randomised trial. EuroIntervention 2019, 15, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Prondzinsky, R.; Unverzagt, S.; Russ, M.; Lemm, H.; Swyter, M.; Wegener, N.; Buerke, U.; Raaz, U.; Ebelt, H.; Schlitt, A.; et al. Hemodynamic effects of intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: The prospective, randomized IABP shock trial. Shock 2012, 37, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Thelemann, N.; Neumann, F.J.; Hausleiter, J.; Abdel-Wahab, M.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Hambrecht, R.; et al. Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial. Circulation 2019, 139, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Hershenhouse, K.S.; Ferrell, B.E.; Glezer, E.; Wu, J.; Goldstein, D. A profile of the impella 5.5 for the clinical management of cardiogenic shock and a review of the current indications for use and future directions. Expert. Rev. Med. Devices 2024, 21, 1087–1099. [Google Scholar] [CrossRef]
- Masiero, G.; Arturi, F.; Panza, A.; Tarantini, G. Mechanical Circulatory Support with Impella: Principles, Evidence, and Daily Practice. J. Clin. Med. 2024, 13, 4586. [Google Scholar] [CrossRef]
- Burkhoff, D.; Cohen, H.; Brunckhorst, C.; O’Neill, W.W. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am. Heart J. 2006, 152, 469.e1–469.e8. [Google Scholar] [CrossRef]
- Bruckner, B.A.; Jacob, L.P.; Gregoric, I.D.; Loyalka, P.; Kar, B.; Cohn, W.E.; La Francesca, S.; Radovancevic, B.; Frazier, O.H. Clinical experience with the TandemHeart percutaneous ventricular assist device as a bridge to cardiac transplantation. Tex. Heart Inst. J. 2008, 35, 447–450. [Google Scholar]
- Alkhunaizi, F.A.; Burkhoff, D.; Brener, M.I. Right-Sided Mechanical Circulatory Support—A Hemodynamic Perspective. Curr. Heart Fail. Rep. 2022, 19, 334–345. [Google Scholar] [CrossRef]
- Carnicelli, A.P.; Diepen, S.V.; Gage, A.; Bernhardt, A.M.; Cowger, J.; Houston, B.A.; Siuba, M.T.; Kataria, R.; Beavers, C.J.; John, K.J.; et al. Pragmatic approach to temporary mechanical circulatory support in acute right ventricular failure. J. Heart Lung Transpl. 2024, 43, 1894–1904. [Google Scholar] [CrossRef]
- Lim, H.S.; Howell, N.; Ranasinghe, A. Extracorporeal Life Support: Physiological Concepts and Clinical Outcomes. J. Card. Fail. 2017, 23, 181–196. [Google Scholar] [CrossRef]
- Patel, B.; Diaz-Gomez, J.L.; Ghanta, R.K.; Bracey, A.W.; Chatterjee, S. Management of Extracorporeal Membrane Oxygenation for Postcardiotomy Cardiogenic Shock. Anesthesiology 2021, 135, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Smith, R.; Khalpey, Z. Venoarterial Extracorporeal Membrane Oxygenation in Cardiogenic Shock. JACC Heart Fail. 2018, 6, 887. [Google Scholar] [CrossRef]
- Ezad, S.M.; Ryan, M.; Donker, D.W.; Pappalardo, F.; Barrett, N.; Camporota, L.; Price, S.; Kapur, N.K.; Perera, D. Unloading the Left Ventricle in Venoarterial ECMO: In Whom, When, and How? Circulation 2023, 147, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Schrage, B.; Burkhoff, D.; Rübsamen, N.; Becher, P.M.; Schwarzl, M.; Bernhardt, A.; Grahn, H.; Lubos, E.; Söffker, G.; Clemmensen, P.; et al. Unloading of the Left Ventricle During Venoarterial Extracorporeal Membrane Oxygenation Therapy in Cardiogenic Shock. JACC Heart Fail. 2018, 6, 1035–1043. [Google Scholar] [CrossRef]
- Kalra, R.; Kosmopoulos, M.; Goslar, T.; Raveendran, G.; Bartos, J.A.; Yannopoulos, D. Extracorporeal cardiopulmonary resuscitation for cardiac arrest. Curr. Opin. Crit. Care 2020, 26, 228–235. [Google Scholar] [CrossRef]
- Hoyler, M.M.; Flynn, B.; Iannacone, E.M.; Jones, M.M.; Ivascu, N.S. Clinical Management of Venoarterial Extracorporeal Membrane Oxygenation. J. Cardiothorac. Vasc. Anesth. 2020, 34, 2776–2792. [Google Scholar] [CrossRef]
- Wheeler, C.R.; Bullock, K.J. Extracorporeal Membrane Oxygenation. Respir. Care 2023, 68, 1158–1170. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Naka, Y.; Uriel, N.; Goldstein, D.J.; Cleveland, J.C., Jr.; Colombo, P.C.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Jorde, U.P.; et al. A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure. N. Engl. J. Med. 2017, 376, 440–450. [Google Scholar] [CrossRef]
- Belkin, M.N.; Kagan, V.; Labuhn, C.; Pinney, S.P.; Grinstein, J. Physiology and Clinical Utility of HeartMate Pump Parameters. J. Card. Fail. 2022, 28, 845–862. [Google Scholar] [CrossRef]
- Bennett, M.K.; Adatya, S. Blood pressure management in mechanical circulatory support. J. Thorac. Dis. 2015, 7, 2125–2128. [Google Scholar] [CrossRef]
- Argiriou, M.; Kolokotron, S.M.; Sakellaridis, T.; Argiriou, O.; Charitos, C.; Zarogoulidis, P.; Katsikogiannis, N.; Kougioumtzi, I.; Machairiotis, N.; Tsiouda, T.; et al. Right heart failure post left ventricular assist device implantation. J. Thorac. Dis. 2014, 6 (Suppl. 1), S52–S59. [Google Scholar] [CrossRef]
- Stone, M.E.; Pawale, A.; Ramakrishna, H.; Weiner, M.M. Implantable Left Ventricular Assist Device Therapy-Recent Advances and Outcomes. J. Cardiothorac. Vasc. Anesth. 2018, 32, 2019–2028. [Google Scholar] [CrossRef]
- Ben Gal, T.; Ben Avraham, B.; Milicic, D.; Crespo-Leiro, M.G.; Coats, A.J.S.; Rosano, G.; Seferovic, P.; Ruschitzka, F.; Metra, M.; Anker, S.; et al. Guidance on the management of left ventricular assist device (LVAD) supported patients for the non-LVAD specialist healthcare provider: Executive summary. Eur. J. Heart Fail. 2021, 23, 1597–1609. [Google Scholar] [CrossRef]
- Chaudhry, S.P.; DeVore, A.D.; Vidula, H.; Nassif, M.; Mudy, K.; Birati, E.Y.; Gong, T.; Atluri, P.; Pham, D.; Sun, B.; et al. Left Ventricular Assist Devices: A Primer for the General Cardiologist. J. Am. Heart Assoc. 2022, 11, e027251. [Google Scholar] [CrossRef]
- Lavee, J.; Mulzer, J.; Krabatsch, T.; Marasco, S.; McGiffin, D.; Garbade, J.; Schmitto, J.D.; Zimpfer, D.; Potapov, E.V. An international multicenter experience of biventricular support with HeartMate 3 ventricular assist systems. J. Heart Lung Transplant. 2018, 37, 1399–1402. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.P.; O’Malley, T.J.; Choi, J.H.; Maynes, E.J.; Prochno, K.W.; Austin, M.A.; Wood, C.T.; Patel, S.; Morris, R.J.; Massey, H.T.; et al. Outcomes of percutaneous temporary biventricular mechanical support: A systematic review. Heart Fail. Rev. 2022, 27, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Loardi, C.M.; Zanobini, M.; Ricciardi, G.; Vermes, E. Current and future options for adult biventricular assistance: A review of literature. Front. Cardiovasc. Med. 2023, 10, 1234516. [Google Scholar] [CrossRef]
- Yin, E.B. Anticoagulation Management in Temporary Mechanical Circulatory Support Devices. Tex. Heart Inst. J. 2023, 50, 2129. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.; Osorio, B.; Sodha, N.R.; Gibson, H.C.; Clancy, A.; Poppas, A.; Hyder, O.N.; Saad, M.; Kataria, R.; Abbott, J.D.; et al. Anticoagulation Medications, Monitoring, and Outcomes in Patients with Cardiogenic Shock Requiring Temporary Mechanical Circulatory Support. J. Card. Fail. 2024, 30, 1343–1354. [Google Scholar] [CrossRef]
- Abraham, J.; Blumer, V.; Burkhoff, D.; Pahuja, M.; Sinha, S.S.; Rosner, C.; Vorovich, E.; Grafton, G.; Bagnola, A.; Hernandez-Montfort, J.A.; et al. Heart Failure-Related Cardiogenic Shock: Pathophysiology, Evaluation and Management Considerations: Review of Heart Failure-Related Cardiogenic Shock. J. Card. Fail. 2021, 27, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.C.; Givertz, M.M. Mechanical circulatory support for advanced heart failure: Patients and technology in evolution. Circulation 2012, 125, 1304–1315. [Google Scholar] [CrossRef]
- Saeed, D.; Feldman, D.; Banayosy, A.E.; Birks, E.; Blume, E.; Cowger, J.; Hayward, C.; Jorde, U.; Kremer, J.; MacGowan, G.; et al. The 2023 International Society for Heart and Lung Transplantation Guidelines for Mechanical Circulatory Support: A 10-Year Update. J. Heart Lung Transpl. 2023, 42, e1–e222. [Google Scholar] [CrossRef] [PubMed]
- Kantrowitz, A.; Tjonneland, S.; Freed, P.S.; Phillips, S.J.; Butner, A.N.; Sherman, J.L., Jr. Initial clinical experience with intraaortic balloon pumping in cardiogenic shock. JAMA 1968, 203, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Trost, J.C.; Hillis, L.D. Intra-aortic balloon counterpulsation. Am. J. Cardiol. 2006, 97, 1391–1398. [Google Scholar] [CrossRef]
- Ferguson, J.J., 3rd; Cohen, M.; Freedman, R.J., Jr.; Stone, G.W.; Miller, M.F.; Joseph, D.L.; Ohman, E.M. The current practice of intra-aortic balloon counterpulsation: Results from the Benchmark Registry. J. Am. Coll. Cardiol. 2001, 38, 1456–1462. [Google Scholar] [CrossRef]
- Gilotra, N.A.; Stevens, G.R. Temporary mechanical circulatory support: A review of the options, indications, and outcomes. Clin. Med. Insights Cardiol. 2014, 8 (Suppl. 1), 75–85. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; de Waha, A.; Richardt, G.; Hennersdorf, M.; Empen, K.; et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): Final 12 month results of a randomised, open-label trial. Lancet 2013, 382, 1638–1645. [Google Scholar] [CrossRef]
- Rao, S.V.; O’Donoghue, M.L.; Ruel, M.; Rab, T.; Tamis-Holland, J.E.; Alexander, J.H.; Baber, U.; Baker, H.; Cohen, M.G.; Cruz-Ruiz, M.; et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI Guideline for the Management of Patients With Acute Coronary Syndromes: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2025, 151, e771–e862. [Google Scholar] [CrossRef]
- Authors/Task Force Members; Windecker, S.; Kolh, P.; Alfonso, F.; Collet, J.P.; Cremer, J.; Falk, V.; Filippatos, G.; Hamm, C.; Head, S.J.; et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 2014, 35, 2541–2619. [Google Scholar] [CrossRef]
- Deppe, A.C.; Weber, C.; Liakopoulos, O.J.; Zeriouh, M.; Slottosch, I.; Scherner, M.; Kuhn, E.W.; Choi, Y.H.; Wahlers, T. Preoperative intra-aortic balloon pump use in high-risk patients prior to coronary artery bypass graft surgery decreases the risk for morbidity and mortality-A meta-analysis of 9,212 patients. J. Card. Surg. 2017, 32, 177–185. [Google Scholar] [CrossRef]
- Glazier, J.J.; Kaki, A. The Impella Device: Historical Background, Clinical Applications and Future Directions. Int. J. Angiol. 2019, 28, 118–123. [Google Scholar] [CrossRef]
- Attinger-Toller, A.; Bossard, M.; Cioffi, G.M.; Tersalvi, G.; Madanchi, M.; Bloch, A.; Kobza, R.; Cuculi, F. Ventricular Unloading Using the Impella(TM) Device in Cardiogenic Shock. Front. Cardiovasc. Med. 2022, 9, 856870. [Google Scholar] [CrossRef]
- Tarabichi, S.; Ikegami, H.; Russo, M.J.; Lee, L.Y.; Lemaire, A. The role of the axillary Impella 5.0 device on patients with acute cardiogenic shock. J. Cardiothorac. Surg. 2020, 15, 218. [Google Scholar] [CrossRef] [PubMed]
- Iannaccone, M.; Albani, S.; Giannini, F.; Colangelo, S.; Boccuzzi, G.G.; Garbo, R.; Brilakis, E.S.; D’Ascenzo, F.; de Ferrari, G.M.; Colombo, A. Short term outcomes of Impella in cardiogenic shock: A review and meta-analysis of observational studies. Int. J. Cardiol. 2021, 324, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Batsides, G.; Massaro, J.; Cheung, A.; Soltesz, E.; Ramzy, D.; Anderson, M.B. Outcomes of Impella 5.0 in Cardiogenic Shock: A Systematic Review and Meta-analysis. Innovations 2018, 13, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Ramzy, D.; Soltesz, E.G.; Silvestry, S.; Daneshmand, M.; Kanwar, M.; D’Alessandro, D.A. Improved clinical outcomes associated with the Impella 5.5 compared to the Impella 5.0 in contemporary cardiogenic shock and heart failure patients. J. Heart Lung Transpl. 2023, 42, 553–557. [Google Scholar] [CrossRef]
- Dangas, G.D.; Kini, A.S.; Sharma, S.K.; Henriques, J.P.; Claessen, B.E.; Dixon, S.R.; Massaro, J.M.; Palacios, I.; Popma, J.J.; Ohman, M.; et al. Impact of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump on prognostically important clinical outcomes in patients undergoing high-risk percutaneous coronary intervention (from the PROTECT II randomized trial). Am. J. Cardiol. 2014, 113, 222–228. [Google Scholar] [CrossRef]
- Schrage, B.; Ibrahim, K.; Loehn, T.; Werner, N.; Sinning, J.M.; Pappalardo, F.; Pieri, M.; Skurk, C.; Lauten, A.; Landmesser, U.; et al. Impella Support for Acute Myocardial Infarction Complicated by Cardiogenic Shock. Circulation 2019, 139, 1249–1258. [Google Scholar] [CrossRef]
- Guglin, M.; Zucker, M.J.; Bazan, V.M.; Bozkurt, B.; El Banayosy, A.; Estep, J.D.; Gurley, J.; Nelson, K.; Malyala, R.; Panjrath, G.S.; et al. Venoarterial ECMO for Adults: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2019, 73, 698–716. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Khalpey, Z.; Smith, R.; Burkhoff, D.; Kociol, R.D. Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock and Cardiac Arrest. Circ. Heart Fail. 2018, 11, e004905. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, K.D.; Moras, E.C.; Niroula, S.; Lopez, P.D.; Aggarwal, D.; Bhatia, K.; Balboul, Y.; Daibes, J.; Correa, A.; Dominguez, A.C.; et al. Left Ventricular Unloading with Impella Versus IABP in Patients With VA-ECMO: A Systematic Review and Meta-Analysis. Am. J. Cardiol. 2023, 208, 53–59. [Google Scholar] [CrossRef]
- Banning, A.S.; Sabate, M.; Orban, M.; Gracey, J.; Lopez-Sobrino, T.; Massberg, S.; Kastrati, A.; Bogaerts, K.; Adriaenssens, T.; Berry, C.; et al. Venoarterial extracorporeal membrane oxygenation or standard care in patients with cardiogenic shock complicating acute myocardial infarction: The multicentre, randomised EURO SHOCK trial. EuroIntervention 2023, 19, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Akin, I.; Behnes, M.; Rassaf, T.; Mahabadi, A.A.; Lehmann, R.; Eitel, I.; Graf, T.; Seidler, T.; et al. Extracorporeal Life Support in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2023, 389, 1286–1297. [Google Scholar] [CrossRef] [PubMed]
- Diddle, J.W.; Almodovar, M.C.; Rajagopal, S.K.; Rycus, P.T.; Thiagarajan, R.R. Extracorporeal membrane oxygenation for the support of adults with acute myocarditis. Crit. Care Med. 2015, 43, 1016–1025. [Google Scholar] [CrossRef]
- Virk, S.A.; Keren, A.; John, R.M.; Santageli, P.; Eslick, A.; Kumar, S. Mechanical Circulatory Support During Catheter Ablation of Ventricular Tachycardia: Indications and Options. Heart Lung Circ. 2019, 28, 134–145. [Google Scholar] [CrossRef]
- Abusnina, W.; Ismayl, M.; Al-Abdouh, A.; Ganesan, V.; Mostafa, M.R.; Hallak, O.; Peterson, E.; Abdou, M.; Goldsweig, A.M.; Aboeata, A.; et al. Impella Versus Extracorporeal Membrane Oxygenation in Cardiogenic Shock: A Systematic Review and Meta-Analysis. Shock 2022, 58, 349–357. [Google Scholar] [CrossRef]
- Bhatia, K.; Jain, V.; Hendrickson, M.J.; Aggarwal, D.; Aguilar-Gallardo, J.S.; Lopez, P.D.; Narasimhan, B.; Wu, L.; Arora, S.; Joshi, A.; et al. Meta-Analysis Comparing Venoarterial Extracorporeal Membrane Oxygenation with or Without Impella in Patients with Cardiogenic Shock. Am. J. Cardiol. 2022, 181, 94–101. [Google Scholar] [CrossRef]
- Bhagra, S.K.; Pettit, S.; Parameshwar, J. Implantable left ventricular assist device: Indications, eligibility and current outcomes. Heart 2022, 108, 233–241. [Google Scholar] [CrossRef]
- Ripoll, J.G.; Orjuela, R.B.; Ortoleva, J.; Nabzdyk, C.S.; Dasani, S.; Bhowmik, S.; Balakrishna, A.; Hain, S.; Chang, M.G.; Bittner, E.A.; et al. HeartMate 3: Analysis of Outcomes and Future Directions. J. Cardiothorac. Vasc. Anesth. 2024, 38, 3224–3233. [Google Scholar] [CrossRef]
- Mehra, M.R.; Uriel, N.; Naka, Y.; Cleveland, J.C.; Yuzefpolskaya, M.; Salerno, C.T.; Walsh, M.N.; Milano, C.A.; Patel, C.B.; Hutchins, S.W.; et al. A Fully Magnetically Levitated Left Ventricular Assist Device—Final Report. N. Engl. J. Med. 2019, 380, 1618–1627. [Google Scholar] [CrossRef]
- Schmitto, J.D.; Shaw, S.; Garbade, J.; Gustafsson, F.; Morshuis, M.; Zimpfer, D.; Lavee, J.; Pya, Y.; Berchtold-Herz, M.; Wang, A.; et al. Fully magnetically centrifugal left ventricular assist device and long-term outcomes: The ELEVATE registry. Eur. Heart J. 2024, 45, 613–625. [Google Scholar] [CrossRef]
- Castrodeza, J.; Ortiz-Bautista, C.; Fernandez-Aviles, F. Continuous-flow left ventricular assist device: Current knowledge, complications, and future directions. Cardiol. J. 2022, 29, 293–304. [Google Scholar] [CrossRef]
- Rodenas-Alesina, E.; Brahmbhatt, D.H.; Rao, V.; Salvatori, M.; Billia, F. Prediction, prevention, and management of right ventricular failure after left ventricular assist device implantation: A comprehensive review. Front. Cardiovasc. Med. 2022, 9, 1040251. [Google Scholar] [CrossRef] [PubMed]
- Arabía, F.A.; Milano, C.A.; Mahr, C.; McGee, E.C., Jr.; Mokadam, N.A.; Rame, J.E.; Moriguchi, J.D.; Ramzy, D.; Naftel, D.C.; Myers, S.L.; et al. Biventricular Support with Intracorporeal, Continuous Flow, Centrifugal Ventricular Assist Devices. Ann. Thorac. Surg. 2018, 105, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Kadosh, B.S.; Berg, D.D.; Bohula, E.A.; Park, J.-G.; Baird-Zars, V.M.; Alviar, C.; Alzate, J.; Barnett, C.F.; Barsness, G.W.; Burke, J.; et al. Pulmonary Artery Catheter Use and Mortality in the Cardiac Intensive Care Unit. JACC Heart Fail. 2023, 11 Part 1, 903–914. [Google Scholar] [CrossRef]
- Kanwar, M.K.; Blumer, V.; Zhang, Y.; Sinha, S.S.; Garan, A.R.; Hernandez-Montfort, J.; Khalif, A.; Hickey, G.W.; Abraham, J.; Mahr, C.; et al. Pulmonary Artery Catheter Use and Risk of In-hospital Death in Heart Failure Cardiogenic Shock. J. Card. Fail. 2023, 29, 1234–1244. [Google Scholar] [CrossRef]
- Garan, A.R.; Kanwar, M.; Thayer, K.L.; Whitehead, E.; Zweck, E.; Hernandez-Montfort, J.; Mahr, C.; Haywood, J.L.; Harwani, N.M.; Wencker, D.; et al. Complete Hemodynamic Profiling with Pulmonary Artery Catheters in Cardiogenic Shock Is Associated with Lower In-Hospital Mortality. JACC Heart Fail. 2020, 8, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Owyang, C.G.; Rippon, B.; Teran, F.; Brodie, D.; Araos, J.; Burkhoff, D.; Kim, J.; Tonna, J.E. Pulmonary Artery Pressures and Mortality during VA ECMO: An ELSO Registry Analysis. medRxiv 2023. [Google Scholar] [CrossRef]
- Doufle, G.; Ferguson, N.D. Monitoring during extracorporeal membrane oxygenation. Curr. Opin. Crit. Care 2016, 22, 230–238. [Google Scholar] [CrossRef]
- Estep, J.D.; Nicoara, A.; Cavalcante, J.; Chang, S.M.; Cole, S.P.; Cowger, J.; Daneshmand, M.A.; Hoit, B.D.; Kapur, N.K.; Kruse, E.; et al. Recommendations for Multimodality Imaging of Patients with Left Ventricular Assist Devices and Temporary Mechanical Support: Updated Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2024, 37, 820–871. [Google Scholar] [CrossRef]
- Anand, S.; Barry, T.; Arsanjani, R.; LeMond, L. Echocardiography in Cardiac Assist Devices. Rev. Cardiovasc. Med. 2022, 23, 253. [Google Scholar] [CrossRef]
- Hussey, P.T.; von Mering, G.; Nanda, N.C.; Ahmed, M.I.; Addis, D.R. Echocardiography for extracorporeal membrane oxygenation. Echocardiography 2022, 39, 339–370. [Google Scholar] [CrossRef]
- Charbonneau, F.; Chahinian, K.; Bebawi, E.; Lavigueur, O.; Levesque, E.; Lamarche, Y.; Serri, K.; Albert, M.; Noly, P.E.; Cournoyer, A.; et al. Parameters associated with successful weaning of veno-arterial extracorporeal membrane oxygenation: A systematic review. Crit. Care 2022, 26, 375. [Google Scholar] [CrossRef]
- Su, Y.; Liu, K.; Zheng, J.L.; Li, X.; Zhu, D.M.; Zhang, Y.; Zhang, Y.J.; Wang, C.S.; Shi, T.T.; Luo, Z.; et al. Hemodynamic monitoring in patients with venoarterial extracorporeal membrane oxygenation. Ann. Transl. Med. 2020, 8, 792. [Google Scholar] [CrossRef] [PubMed]
- Naruke, T.; Inomata, T.; Imai, H.; Yanagisawa, T.; Maekawa, E.; Mizutani, T.; Osaka, T.; Shinagawa, H.; Koitabashi, T.; Nishii, M.; et al. End-tidal carbon dioxide concentration can estimate the appropriate timing for weaning off from extracorporeal membrane oxygenation for refractory circulatory failure. Int. Heart J. 2010, 51, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Shiloh, A.L.; Carlese, A. Monitoring of the adult patient on venoarterial extracorporeal membrane oxygenation. Sci. World J. 2014, 2014, 393258. [Google Scholar] [CrossRef]
- Tomarchio, E.; Momigliano, F.; Giosa, L.; Collins, P.D.; Barrett, N.A.; Camporota, L. The intricate physiology of veno-venous extracorporeal membrane oxygenation: An overview for clinicians. Perfusion 2024, 39 (Suppl. 1), 49s–65s. [Google Scholar] [CrossRef] [PubMed]
- Puerto, E.; Tavazzi, G.; Gambaro, A.; Cirillo, C.; Pecoraro, A.; Martin-Asenjo, R.; Delgado, J.; Bueno, H.; Price, S. Interaction between VA-ECMO and the right ventricle. Hell. J. Cardiol. 2022, 68, 17–24. [Google Scholar] [CrossRef]
- Drakos, S.G.; Badolia, R.; Makaju, A.; Kyriakopoulos, C.P.; Wever-Pinzon, O.; Tracy, C.M.; Bakhtina, A.; Bia, R.; Parnell, T.; Taleb, I.; et al. Distinct Transcriptomic and Proteomic Profile Specifies Patients Who Have Heart Failure with Potential of Myocardial Recovery on Mechanical Unloading and Circulatory Support. Circulation 2023, 147, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Birks, E.J.; Drakos, S.G.; Patel, S.R.; Lowes, B.D.; Selzman, C.H.; Starling, R.C.; Trivedi, J.; Slaughter, M.S.; Alturi, P.; Goldstein, D.; et al. Prospective Multicenter Study of Myocardial Recovery Using Left Ventricular Assist Devices (RESTAGE-HF [Remission from Stage D Heart Failure]): Medium-Term and Primary End Point Results. Circulation 2020, 142, 2016–2028. [Google Scholar] [CrossRef]
- Spillmann, F.; Van Linthout, S.; Schmidt, G.; Klein, O.; Hamdani, N.; Mairinger, T.; Krackhardt, F.; Maroski, B.; Schlabs, T.; Soltani, S.; et al. Mode-of-action of the PROPELLA concept in fulminant myocarditis. Eur. Heart J. 2019, 40, 2164–2169. [Google Scholar] [CrossRef]
- Piscitello, G.M.; Bermea, R.S.; Stokes, J.W.; Gannon, W.D.; Kanelidis, A.J.; Konopka, M.; Shappell, C.; Frye, L.K.; Lyons, P.G.; Siegler, M.; et al. Clinician Ethical Perspectives on Extracorporeal Membrane Oxygenation in Practice. Am. J. Hosp. Palliat. Care 2022, 39, 659–666. [Google Scholar] [CrossRef]
- Wirpsa, M.J.; Carabini, L.M.; Neely, K.J.; Kroll, C.; Wocial, L.D. Mitigating ethical conflict and moral distress in the care of patients on ECMO: Impact of an automatic ethics consultation protocol. J. Med. Ethics 2021, 47, e63. [Google Scholar] [CrossRef]
- Kowalewski, M.; Zielinski, K.; Brodie, D.; MacLaren, G.; Whitman, G.; Raffa, G.M.; Boeken, U.; Shekar, K.; Chen, Y.S.; Bermudez, C.; et al. Venoarterial Extracorporeal Membrane Oxygenation for Postcardiotomy Shock-Analysis of the Extracorporeal Life Support Organization Registry. Crit. Care Med. 2021, 49, 1107–1117. [Google Scholar] [CrossRef]
- Tariq, M.D.; Jain, H.; Khan, A.M.; Shahnoor, S.; Goyal, P.; Zulfiqar, E.; Ahsan, A.; Jaiswal, V.; Daoud, M.; Sohail, A.H. Efficacy and safety of percutaneous mechanical circulatory support in patients with cardiogenic shock following acute myocardial infarction: A meta-analysis of randomized controlled trials. Medicine 2024, 103, e40595. [Google Scholar] [CrossRef]
- Ostadal, P.; Rokyta, R.; Karasek, J.; Kruger, A.; Vondrakova, D.; Janotka, M.; Naar, J.; Smalcova, J.; Hubatova, M.; Hromadka, M.; et al. Extracorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock: Results of the ECMO-CS Randomized Clinical Trial. Circulation 2023, 147, 454–464. [Google Scholar] [CrossRef]
- Zeymer, U.; Freund, A.; Hochadel, M.; Ostadal, P.; Belohlavek, J.; Rokyta, R.; Massberg, S.; Brunner, S.; Lusebrink, E.; Flather, M.; et al. Venoarterial extracorporeal membrane oxygenation in patients with infarct-related cardiogenic shock: An individual patient data meta-analysis of randomised trials. Lancet 2023, 402, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- Hadler, R.A.; Clapp, J.T.; Chung, J.J.; Gutsche, J.T.; Fleisher, L.A. Escalation and Withdrawal of Treatment for Patients on Extracorporeal Membrane Oxygenation: A Qualitative Study. Ann. Surg. 2023, 277, e226–e234. [Google Scholar] [CrossRef] [PubMed]
- Enumah, Z.O.; Carrese, J.; Choi, C.W. The Ethics of Extracorporeal Membrane Oxygenation: Revisiting the Principles of Clinical Bioethics. Ann. Thorac. Surg. 2021, 112, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Gottula, A.L.; Van Wyk, H.; Qi, M.; Vogelsong, M.A.; Shaw, C.R.; Tonna, J.E.; Johnson, N.J.; Condella, A.; Bartos, J.A.; Berrocal, V.J.; et al. Geospatial Access to Extracorporeal Membrane Oxygenation in the United States. Crit. Care Med. 2025, 53, e874–e883. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Burrell, A.; Roberts, L.; Bailey, M.; Sheldrake, J.; Rycus, P.T.; Hodgson, C.; Scheinkestel, C.; Cooper, D.J.; Thiagarajan, R.R.; et al. Predicting survival after ECMO for refractory cardiogenic shock: The survival after veno-arterial-ECMO (SAVE)-score. Eur. Heart J. 2015, 36, 2246–2256. [Google Scholar] [CrossRef]
- Grzyb, C.; Du, D.; Nair, N. Artificial Intelligence Approaches for Predicting the Risks of Durable Mechanical Circulatory Support Therapy and Cardiac Transplantation. J. Clin. Med. 2024, 13, 2076. [Google Scholar] [CrossRef]
- Li, S.; Hickey, G.W.; Lander, M.M.; Kanwar, M.K. Artificial Intelligence and Mechanical Circulatory Support. Heart Fail. Clin. 2022, 18, 301–309. [Google Scholar] [CrossRef]
- Kanwar, M.K.; Kilic, A.; Mehra, M.R. Machine learning, artificial intelligence and mechanical circulatory support: A primer for clinicians. J. Heart Lung Transpl. 2021, 40, 414–425. [Google Scholar] [CrossRef]
- Kanwar, M.K.; Lohmueller, L.C.; Kormos, R.L.; Teuteberg, J.J.; Rogers, J.G.; Lindenfeld, J.; Bailey, S.H.; McIlvennan, C.K.; Benza, R.; Murali, S.; et al. A Bayesian Model to Predict Survival After Left Ventricular Assist Device Implantation. JACC Heart Fail. 2018, 6, 771–779. [Google Scholar] [CrossRef]
- Adler, E.D.; Voors, A.A.; Klein, L.; Macheret, F.; Braun, O.O.; Urey, M.A.; Zhu, W.; Sama, I.; Tadel, M.; Campagnari, C.; et al. Improving risk prediction in heart failure using machine learning. Eur. J. Heart Fail. 2020, 22, 139–147. [Google Scholar] [CrossRef]
- Genovese, D.; Rashedi, N.; Weinert, L.; Narang, A.; Addetia, K.; Patel, A.R.; Prater, D.; Goncalves, A.; Mor-Avi, V.; Lang, R.M. Machine Learning-Based Three-Dimensional Echocardiographic Quantification of Right Ventricular Size and Function: Validation Against Cardiac Magnetic Resonance. J. Am. Soc. Echocardiogr. 2019, 32, 969–977. [Google Scholar] [CrossRef]
- Choi, E.; Schuetz, A.; Stewart, W.F.; Sun, J. Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc. 2016, 24, 361–370. [Google Scholar] [CrossRef] [PubMed]




| Profile | Description |
|---|---|
| 1—Critical shock | “Crash and burn,” immediate support required |
| 2—Progressive decline | Worsening despite inotropes |
| 3—Stable but inotrope dependent | Continuous inotrope requirement |
| 4—Frequent hospitalizations | Recurrent decompensation episodes |
| 5—Exertion limited | Stable but severe limitation |
| 6—Stable, exertion limited | Symptoms with daily activity |
| 7—Advanced but stable | NYHA III, early referral stage |
| Stage | Description |
|---|---|
| A—At risk | HF/ACS, stable, no hypoperfusion |
| B—Beginning | Hypotension/tachycardia, no hypoperfusion |
| C—Classic | Hypoperfusion requiring inotropes/vasopressors |
| D—Deteriorating | Worsening shock despite therapy |
| E—Extremis | Circulatory collapse, refractory arrest/shock |
| Device | Flow Support | LV Unloading | RV Support | Invasiveness | Indication |
|---|---|---|---|---|---|
| IABP | Low (0.5–1 L/min) | Partial | No | Low | Cardiogenic shock |
| Impella | Moderate (2.5–5.5 L/min) | Yes | No | Moderate | Severe LV failure, cardiogenic shock |
| TandemHeart | Moderate (up to 5 L/min) | Yes | No | High | Cardiogenic shock |
| VA-ECMO | High (3–5+ L/min) | No (↑Afterload) | Yes | Low (Peripheral)/High (Central) | Profound shock/cardiac arrest (ECPR) |
| LVAD | High (up to 10 L/min) | Yes | No | High | End-stage LV failure, bridge to transplant |
| RVAD | High (up to 5 L/min) | No | Yes | High | RV failure, post-LVAD RV dysfunction |
| Parameter | Normal Heart | With MCS |
|---|---|---|
| Cardiac Output | Dependent on LV contractility, preload, afterload, and heart rate | Enhanced or maintained by device flow |
| LV End-Diastolic Volume | Reflects preload and ventricular filling | Generally decreased due to ventricular unloading (except increased with VA-ECMO if inadequate decompression) |
| LV Afterload | Determined by systemic vascular resistance (SVR) | Typically reduced (Impella, IABP); increased with VA-ECMO |
| Mean Arterial Pressure | Derived from cardiac output × systemic vascular resistance | Often supported artificially independent of native cardiac function |
| Coronary Perfusion | Depends on diastolic blood pressure and coronary vascular resistance | Improved with IABP; may worsen with VA-ECMO due to increased LV afterload and ventricular distension |
| Device | Preferred Anticoagulant | Target Range | Notes |
|---|---|---|---|
| IABP | UFH (variable use) | aPTT 50–70 s (if used) | Often none unless prolonged use or reduced support ratio |
| Impella | Purge: UFH (traditional) or sodium bicarbonate (increasingly used) Systemic: UFH | Anti-Xa 0.2–0.4 U/mL; aPTT 50–80 s | Bivalirudin if HIT |
| VA-ECMO | UFH | Anti-Xa 0.3–0.7 U/mL; aPTT 1.5–2.5 × baseline | Alternatives: bivalirudin, argatroban |
| RVAD | UFH (purge if motor-driven) or systemic UFH | Individualized (often aPTT 60–80 s) | Strategy depends on device type; direct thrombin inhibitors if HIT |
| Durable LVAD | UFH → Warfarin (±antiplatelet) | INR 2–3 | Individualized to bleeding/thrombotic risk |
| Device | Key Evidence/Trials | Clinical Settings | Strength of Evidence |
|---|---|---|---|
| IABP | IABP-SHOCK II (no mortality benefit) [58]; meta-analyses suggest perioperative benefit (e.g., pre-CABG) [62] | Ischemic shock (limited role), perioperative stabilization, high-risk PCI | Weak–moderate |
| Impella | PROTECT II (no benefit vs. IABP in PCI) [69]; DanGer Shock (12.7% mortality reduction at 180 days with Impella CP) [6]; registry data favor larger devices (5.0/5.5) [68] | High-risk PCI, AMI-related CS, perioperative support, LV venting on VA-ECMO | Moderate |
| VA-ECMO | EURO SHOCK (suggested benefit, early termination) [74]; ECLS-SHOCK (no survival benefit, ↑ complications) [75] | Profound cardiogenic shock, cardiac arrest/ECPR, post-cardiotomy failure, myocarditis, pulmonary embolism with shock | Moderate |
| Durable LVAD | MOMENTUM 3 (79% 2-year survival, 58% at 5 years) [82]; ELEVATE registry (similar outcomes) [83] | Advanced HF refractory to GDMT; bridge to transplant, bridge to candidacy, destination therapy | Strong |
| BiVAD | Small multicenter series (dual HeartMate 3 pumps, ~266 days support); registry cohorts show ~1/3 mortality, some bridged to transplant | Severe biventricular failure, bridge to transplant | Weak |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crimi, E.; Rajkumar, K.; Coleman, S.; Fernando, R.; Marchant, B.; Garner, C.; Gaillard, J.; Hicks, M.H.; Maves, R.C.; Khanna, A.K. Cardiovascular Physiology During Mechanical Circulatory Support: Implications for Management and Monitoring. J. Clin. Med. 2025, 14, 6935. https://doi.org/10.3390/jcm14196935
Crimi E, Rajkumar K, Coleman S, Fernando R, Marchant B, Garner C, Gaillard J, Hicks MH, Maves RC, Khanna AK. Cardiovascular Physiology During Mechanical Circulatory Support: Implications for Management and Monitoring. Journal of Clinical Medicine. 2025; 14(19):6935. https://doi.org/10.3390/jcm14196935
Chicago/Turabian StyleCrimi, Ettore, Karuna Rajkumar, Scott Coleman, Rohesh Fernando, Bryan Marchant, Chandrika Garner, John Gaillard, Megan H. Hicks, Ryan C. Maves, and Ashish K. Khanna. 2025. "Cardiovascular Physiology During Mechanical Circulatory Support: Implications for Management and Monitoring" Journal of Clinical Medicine 14, no. 19: 6935. https://doi.org/10.3390/jcm14196935
APA StyleCrimi, E., Rajkumar, K., Coleman, S., Fernando, R., Marchant, B., Garner, C., Gaillard, J., Hicks, M. H., Maves, R. C., & Khanna, A. K. (2025). Cardiovascular Physiology During Mechanical Circulatory Support: Implications for Management and Monitoring. Journal of Clinical Medicine, 14(19), 6935. https://doi.org/10.3390/jcm14196935

