Pathological Classification of Lateral Elbow Tendinopathy Based on Fiber Orientation, Blood Flow Velocity of Radial Recurrent Artery, and Patient-Reported Outcome Measures
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Ultrasonographic Assessments
2.4. Patient-Reported Outcome Measures
2.5. Intra-Rater Reliability
2.6. Statistical Analysis
3. Results
3.1. Intra-Rater Reliability
3.2. Ultrasonography Assessments
3.3. Principal Component Analysis
3.4. Cluster Analysis
4. Discussion
- Grade 1: Wave-like pattern of collagen fibers.
- Grade 2: Angiofibroblastic hyperplasia, cell hyperplasia, rounding of nuclei, disorganized collagen fibers, neovascularity.
- Grade 3: Cell depletion, matrix breakdown, collagen discontinuity, and small particle tears.
- Grade 4: Macroscopic tears (bone tendon separation).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LET | Lateral Elbow Tendinopathy |
CET | Common Extensor Tendon |
PSV | Peak Systolic Velocity |
RRA | Radial Recurrent Artery |
DASH | Disabilities of the Arm, Shoulder, and Hand (score) |
NRS | Numeric Rating Scale (for pain) |
ICC | Intraclass Correlation Coefficient |
MDC95% | Minimal Detectable Change at the 95% Confidence Interval |
PC/PC1/PC2 | Principal Component(s) |
References
- Bhabra, G.; Wang, A.; Ebert, J.R.; Edwards, P.; Zheng, M.; Zheng, M.H. Lateral Elbow Tendinopathy: Development of a Pathophysiology-Based Treatment Algorithm. Orthop. J. Sports Med. 2016, 4, 2325967116670635. [Google Scholar] [CrossRef] [PubMed]
- Shiri, R.; Viikari-Juntura, E.; Varonen, H.; Heliovaara, M. Prevalence and determinants of lateral and medial epicondylitis: A population study. Am. J. Epidemiol. 2006, 164, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Lucado, A.M.; Day, J.M.; Vincent, J.I.; MacDermid, J.C.; Fedorczyk, J.; Grewal, R.; Martin, R.L. Lateral Elbow Pain and Muscle Function Impairments. J. Orthop. Sports Phys. Ther. 2022, 52, Cpg1–Cpg111. [Google Scholar] [CrossRef]
- Steinmann, S.; Pfeifer, C.G.; Brochhausen, C.; Docheva, D. Spectrum of Tendon Pathologies: Triggers, Trails and End-State. Int. J. Mol. Sci. 2020, 21, 844. [Google Scholar] [CrossRef]
- Pringels, L.; Cook, J.L.; Witvrouw, E.; Burssens, A.; Vanden Bossche, L.; Wezenbeek, E. Exploring the role of intratendinous pressure in the pathogenesis of tendon pathology: A narrative review and conceptual framework. Br. J. Sports Med. 2022, 57, 1042–1048. [Google Scholar] [CrossRef]
- Bonczar, M.; Ostrowski, P.; Dziedzic, M.; Kasprzyk, M.; Obuchowicz, R.; Zacharias, T.; Marchewka, J.; Walocha, J.; Koziej, M. Evaluation of lateral epicondylopathy, posterior interosseous nerve compression, and plica syndrome as co-existing causes of chronic tennis elbow. Int. Orthop. 2023, 47, 1787–1795. [Google Scholar] [CrossRef]
- Al-Dhafer, B.A.A.; Joo, H.S.; Park, S.Y.; Shin, Y.H.; Kim, J.K. Increased expression of macrophages and inflammatory cytokines at tendon origin in patients with chronic lateral epicondylitis. J. Shoulder Elb. Surg. 2021, 30, 1487–1493. [Google Scholar] [CrossRef]
- Karanasios, S.; Korakakis, V.; Moutzouri, M.; Drakonaki, E.; Koci, K.; Pantazopoulou, V.; Tsepis, E.; Gioftsos, G. Diagnostic accuracy of examination tests for lateral elbow tendinopathy (LET)—A systematic review. J. Hand Ther. Off. J. Am. Soc. Hand Ther. 2021, 4, 541–551. [Google Scholar] [CrossRef]
- Clarke, A.W.; Ahmad, M.; Curtis, M.; Connell, D.A. Lateral elbow tendinopathy: Correlation of ultrasound findings with pain and functional disability. Am. J. Sports Med. 2010, 38, 1209–1214. [Google Scholar] [CrossRef]
- Krogh, T.P.; Fredberg, U.; Ammitzbøll, C.; Ellingsen, T. Clinical Value of Ultrasonographic Assessment in Lateral Epicondylitis Versus Asymptomatic Healthy Controls. Am. J. Sports Med. 2020, 48, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Nirschl, R.P.; Pettrone, F.A. Tennis elbow. The surgical treatment of lateral epicondylitis. J. Bone Joint Surg. Am. 1979, 61, 832–839. [Google Scholar] [CrossRef]
- Kraushaar, B.S.; Nirschl, R.P. Tendinosis of the elbow (tennis elbow). Clinical features and findings of histological, immunohistochemical, and electron microscopy studies. J. Bone Joint Surg. Am. 1999, 81, 259–278. [Google Scholar] [CrossRef]
- Enomae, T.; Han, Y.-H.; Isogai, A. Nondestructive determination of fiber orientation distribution of paper surface by image analysis. Nord. Pulp Pap. Res. J. 2006, 21, 253–259. [Google Scholar] [CrossRef]
- Tsutsumi, M.; Saiki, A.; Yamaguchi, I.; Nimura, A.; Utsunomiya, H.; Akita, K.; Kudo, S. In vivo interrelationships between the gluteus minimus and hip joint capsule in the hip internal rotation position with flexion. BMC Musculoskelet. Disord. 2024, 25, 87. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, D.; Otsubo, H.; Adachi, T.; Suzuki, T.; Nagoya, S.; Yamashita, T.; Shino, K. Functional Adaptation of the Fibrocartilage and Bony Trabeculae at the Attachment Sites of the Anterior Cruciate Ligament. Clin. Anat. 2020, 33, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Asano, H.; Terabayashi, N.; Kawashima, K.; Goto, A.; Watanabe, T.; Ishihara, T.; Akiyama, H. Blood flow in the anterior humeral circumflex artery reflects synovial inflammation of the shoulder joint in rotator cuff tears. JSES Int. 2022, 6, 623–630. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, Y.; Miyashita, T.; Kitano, M.; Okuno, Y.; Kudo, S. Characteristics of the descending genicular artery blood flow velocity in patients with knee osteoarthritis. Knee 2021, 33, 143–149. [Google Scholar] [CrossRef]
- Espahbodi, S.; Doré, C.J.; Humphries, K.N.; Hughes, S.P. Color Doppler ultrasonography of lumbar artery blood flow in patients with low back pain. Spine 2013, 38, E230–E236. [Google Scholar] [CrossRef]
- Kaneko, F.; Katayama, S.; Kudo, S. Posterior Tibial Artery Blood Flow Velocity Is Increased in Patients with Plantar Heel Pain. J. Clin. Med. 2024, 13, 3153. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Sweet, F.A.; Bindra, R.; Morrey, B.F.; Gelberman, R.H. The extraosseous and intraosseous arterial anatomy of the adult elbow. J. Bone Jt. Surg. —Ser. A 1997, 79, 1653–1662. [Google Scholar] [CrossRef]
- Krogh, T.P.; Fredberg, U.; Ammitzbøl, C.; Ellingsen, T. Ultrasonographic Characteristics of the Common Extensor Tendon of the Elbow in Asymptomatic Individuals: Thickness, Color Doppler Activity, and Bony Spurs. Orthop. J. Sports Med. 2017, 5, 2325967117704186. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.H.; Chen, Y.J.; Chang, K.V.; Wu, W.T.; Özçakar, L. Ultrasound measurements of superficial and deep masticatory muscles in various postures: Reliability and influencers. Sci. Rep. 2020, 10, 14357. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, A.; Xu, J.; Zheng, M. In chronic lateral epicondylitis, apoptosis and autophagic cell death occur in the extensor carpi radialis brevis tendon. J. Shoulder Elb. Surg. 2010, 19, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Lake, S.P.; Miller, K.S.; Elliott, D.M.; Soslowsky, L.J. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading. J. Orthop. Res. 2009, 27, 1596–1602. [Google Scholar] [CrossRef]
- Williams, R.M.; Zipfel, W.R.; Webb, W.W. Interpreting second-harmonic generation images of collagen I fibrils. Biophys. J. 2005, 88, 1377–1386. [Google Scholar] [CrossRef]
- Rabello, L.M.; Dams, O.C.; van den Akker-Scheek, I.; Zwerver, J.; O’Neill, S. Substantiating the Use of Ultrasound Tissue Characterization in the Analysis of Tendon Structure: A Systematic Review. Clin. J. Sport. Med. 2021, 31, e161–e175. [Google Scholar] [CrossRef]
- Tanaka, Y.; Aoki, M.; Izumi, T.; Wada, T.; Fujimiya, M.; Yamashita, T. Effect of elbow and forearm position on contact pressure between the extensor origin and the lateral side of the capitellum. J. Hand Surg. Am. 2011, 36, 81–88. [Google Scholar] [CrossRef]
- Järvinen, T.A. Neovascularisation in tendinopathy: From eradication to stabilisation? Br. J. Sports Med. 2020, 54, 1–2. [Google Scholar] [CrossRef]
- Iwamoto, W.; Okuno, Y.; Matsumura, N.; Kaneko, T.; Ikegami, H. Transcatheter arterial embolization of abnormal vessels as a treatment for lateral epicondylitis refractory to conservative treatment: A pilot study with a 2-year follow-up. J. Shoulder Elb. Surg. 2017, 26, 1335–1341. [Google Scholar] [CrossRef]
- Yoon, S.Y.; Kim, Y.W.; Shin, I.S.; Kang, S.; Moon, H.I.; Lee, S.C. The Beneficial Effects of Eccentric Exercise in the Management of Lateral Elbow Tendinopathy: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 3968. [Google Scholar] [CrossRef]
- Yao, G.; Chen, J.; Duan, Y.; Chen, X. Efficacy of Extracorporeal Shock Wave Therapy for Lateral Epicondylitis: A Systematic Review and Meta-Analysis. Biomed. Res. Int. 2020, 2020, 2064781. [Google Scholar] [CrossRef]
- Arias-Vázquez, P.I.; Castillo-Avila, R.G.; Tovilla-Zárate, C.A.; Quezada-González, H.R.; Arcila-Novelo, R.; Loeza-Magaña, P. Efficacy of prolotherapy in pain control and function improvement in individuals with lateral epicondylitis: A Systematic Review and Meta-analysis. ARP Rheumatol. 2022, 1, 152–167. [Google Scholar]
- Kim, C.H.; Park, Y.B.; Lee, J.S.; Jung, H.S. Platelet-rich plasma injection vs. operative treatment for lateral elbow tendinosis: A systematic review and meta-analysis. J. Shoulder Elbow Surg. 2021, 31, 428–436. [Google Scholar] [CrossRef]
- Ang, B.F.H.; Mohan, P.C.; Png, M.A.; Allen, J.C., Jr.; Howe, T.S.; Koh, J.S.B.; Lee, B.P.; Morrey, B.F. Ultrasonic Percutaneous Tenotomy for Recalcitrant Lateral Elbow Tendinopathy: Clinical and Sonographic Results at 90 Months. Am. J. Sports Med. 2021, 49, 1854–1860. [Google Scholar] [CrossRef]
LET Group (50 Elbows) | Control Group (50 Elbows) | p Value | |
---|---|---|---|
Age (years) | 53.64 ± 8.54 | 49.50 ± 14.77 | 0.09 |
Sex | 0.13 | ||
Male | 21 | 28 | 0.16 |
Female | 29 | 22 | |
Height (cm) | 165.16 ± 7.80 | 165.78 ± 9.30 | 0.72 |
Weight (kg) | 61.26 ± 12.45 | 60.68 ± 11.43 | 0.81 |
BMI (kg/m2) | 22.30 ± 3.23 | 21.90 ± 2.53 | 0.49 |
Duration of symptoms (months) | 13.62 ± 15.65 | ||
NRS | 6.30 ± 2.62 | ||
DASH | 35.32 ± 18.75 |
ICC (1, 3) | 95%CI | SEM | MDC95% | |
---|---|---|---|---|
PSV | 0.822 | 0.461–0.952 | 1.824 | 5.055 |
Fiber orientation intensity | 0.841 | 0.509–0.957 | 0.024 | 0.067 |
Variable | PC1 | PC2 |
---|---|---|
NRS | 0.878 | 0.016 |
PSV | 0.819 | −0.071 |
DASH | 0.750 | 0.374 |
Duration of symptoms | −0.069 | 0.801 |
Fiber orientation intensity | 0.295 | −0.613 |
Variable | PC1 | PC2 |
---|---|---|
PSV | 0.391 | −0.061 |
Fiber orientation intensity | 0.141 | −0.527 |
NRS | 0.419 | 0.014 |
Duration of symptoms | −0.033 | 0.689 |
DASH | 0.358 | 0.321 |
Cluster 1 (24 Elbows) | Cluster 2 (15 Elbows) | Cluster 3 (11 Elbows) | p Value | |
---|---|---|---|---|
Age (years) | 54.71 ± 9.73 | 53.73 ± 8.60 | 51.18 ± 5.17 | 0.53 |
Sex | 0.50 | |||
Male | 12 | 6 | 3 | |
Female | 12 | 9 | 8 | |
Height (cm) | 167.25 ± 7.94 | 162.80 ± 6.25 | 163.82 ± 8.83 | 0.18 |
Weight (kg) | 63.63 ± 13.03 | 59.73 ± 13.31 | 58.18 ± 9.68 | 0.42 |
BMI (kg/m2) | 22.59 ± 3.38 | 22.41 ± 3.83 | 21.54 ± 1.84 | 0.67 |
Duration of symptoms (months) | 18.58 ± 20.38 | 11.07 ± 9.31 | 6.27 ± 4.34 | 0.07 |
Cluster 1 | Cluster 2 | Cluster 3 | |
---|---|---|---|
PC1 | −0.258 ± 0.529 | 1.221 ± 0.406 | −1.102 ± 0.543 |
PC2 | 0.561 ± 1.029 | −0.236 ± 0.647 | −0.901 ± 0.384 |
Cluster 1 | Cluster 2 | Cluster 3 | |
---|---|---|---|
PSV | within normal limits | severe | within normal limits |
Fiber orientation intensity | severe | within normal limits | within normal limits |
NRS | moderate | severe | mild |
DASH | moderate | severe | mild |
Duration of symptoms | long | intermediate | short |
Phase | degeneration phase | inflammatory phase | mild phase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikezu, M.; Kudo, S.; Yoshioka, K.; Hirata, M.; Hayashi, H. Pathological Classification of Lateral Elbow Tendinopathy Based on Fiber Orientation, Blood Flow Velocity of Radial Recurrent Artery, and Patient-Reported Outcome Measures. J. Clin. Med. 2025, 14, 6979. https://doi.org/10.3390/jcm14196979
Ikezu M, Kudo S, Yoshioka K, Hirata M, Hayashi H. Pathological Classification of Lateral Elbow Tendinopathy Based on Fiber Orientation, Blood Flow Velocity of Radial Recurrent Artery, and Patient-Reported Outcome Measures. Journal of Clinical Medicine. 2025; 14(19):6979. https://doi.org/10.3390/jcm14196979
Chicago/Turabian StyleIkezu, Masahiro, Shintarou Kudo, Kanta Yoshioka, Masazumi Hirata, and Hidetoshi Hayashi. 2025. "Pathological Classification of Lateral Elbow Tendinopathy Based on Fiber Orientation, Blood Flow Velocity of Radial Recurrent Artery, and Patient-Reported Outcome Measures" Journal of Clinical Medicine 14, no. 19: 6979. https://doi.org/10.3390/jcm14196979
APA StyleIkezu, M., Kudo, S., Yoshioka, K., Hirata, M., & Hayashi, H. (2025). Pathological Classification of Lateral Elbow Tendinopathy Based on Fiber Orientation, Blood Flow Velocity of Radial Recurrent Artery, and Patient-Reported Outcome Measures. Journal of Clinical Medicine, 14(19), 6979. https://doi.org/10.3390/jcm14196979