Ascending Aortic Aneurysms: From Pathophysiology to Surgical Repair
Abstract
1. Introduction
2. Methods
3. Epidemiology
4. Etiology and Risks Factors
5. Pathophysiology
5.1. Normal Aortic Structure and Function
5.2. Vascular Smooth Muscle Cells
5.3. Extracellular Matrix Degradation
5.4. Aortic Wall Inflammation
5.5. Outward Convection and TGF-β Pathway
5.6. Role of Aging
5.7. Bicuspid Aortic Valve and Altered Hemodynamics
5.8. Genetic Factors
6. Surgical Indications
6.1. Aortic Diameter
6.2. Imaging-Based Limitations
6.3. Other Surgical Indicators
6.3.1. Aortic Length and Volume
6.3.2. Vessel Wall Inflammation
6.3.3. Hemodynamics
6.3.4. Aortic Stiffness
- SBP = Systolic blood pressure (measured at the arm),
- DBP = Diastolic blood pressure,
- AoS = Ascending aortic diameter in systole (early T wave on ECG),
- AoD = Ascending aortic diameter in diastole (peak R wave on ECG).
6.3.5. Biological Markers
6.3.6. Integration of Artificial Intelligence and Machine Learning
6.3.7. Conclusion on Surgical Risk Markers
7. Surgical Technique
7.1. Standard Surgical Management
7.2. General Mortality and Complications
7.3. Other Techniques and Future Innovations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BAV | Bicuspid Aortic Valve |
| CPB | Cardiopulmonary Bypass |
| DHCA | Deep Hypothermic Circulatory Arrest |
| ECM | Extracellular Matrix |
| HTAD | Heritable Thoracic Aortic Disease |
| PWV | Pulse Wave Velocity |
| RRT | Relative Residence Time |
| STJ | Sinotubular Junction |
| SUVmax | Maximum Standardized Uptake Value |
| TAA | Thoracic Aortic Aneurysm |
| TAWSS | Time-Averaged Wall Shear Stress |
| TEVAR | Thoracic Endovascular Aortic Repair |
| vSMCs | Vascular Smooth Muscle Cells |
| WSS | Wall Shear Stress |
References
- Czerny, M.; Grabenwöger, M.; Berger, T.; Aboyans, V.; Della Corte, A.; Chen, E.P.; Desai, N.D.; Dumfarth, J.; Elefteriades, J.A.; Etz, C.D.; et al. EACTS/STS Guidelines for Diagnosing and Treating Acute and Chronic Syndromes of the Aortic Organ. Eur. J. Cardio-Thorac. Surg. 2024, 65, ezad426. [Google Scholar] [CrossRef] [PubMed]
- di Gioia, C.R.T.; Ascione, A.; Carletti, R.; Giordano, C. Thoracic Aorta: Anatomy and Pathology. Diagnostics 2023, 13, 2166. [Google Scholar] [CrossRef] [PubMed]
- Rombouts, K.B.; van Merrienboer, T.A.R.; Ket, J.C.F.; Bogunovic, N.; van der Velden, J.; Yeung, K.K. The Role of Vascular Smooth Muscle Cells in the Development of Aortic Aneurysms and Dissections. Eur. J. Clin. Investig. 2022, 52, e13697. [Google Scholar] [CrossRef] [PubMed]
- Altenburg, M.M.; Davis, A.M.; DeCara, J.M. Diagnosis and Management of Aortic Diseases. JAMA 2024, 331, 352–353. [Google Scholar] [CrossRef]
- Senser, E.M.; Misra, S.; Henkin, S. Thoracic Aortic Aneurysm. Cardiol. Clin. 2021, 39, 505–515. [Google Scholar] [CrossRef]
- Huang, Y.; Schaff, H.V.; Dearani, J.A.; Oderich, G.S.; Bower, T.C.; Kalra, M.; Greason, K.L.; Pochettino, A.; Viehman, J.K.; Harmsen, W.S.; et al. A Population-Based Study of the Incidence and Natural History of Degenerative Thoracic Aortic Aneurysms. Mayo Clin. Proc. 2021, 96, 2628–2638. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Z.; Shen, Z.; Lei, F.; Liu, Y.-M.; Chen, Z.; Qin, J.-J.; Liu, H.; Ji, Y.-X.; Zhang, P.; et al. Projection of Global Burden and Risk Factors for Aortic Aneurysm–Timely Warning for Greater Emphasis on Managing Blood Pressure. Ann. Med. 2022, 54, 553–564. [Google Scholar] [CrossRef]
- Dieter, R.S.; Dieter, R.A., Jr.; Dieter, R.A., III. Diseases of the Aorta; Springer Nature: London, UK, 2019; ISBN 978-3-030-11322-3. [Google Scholar]
- Gouveia e Melo, R.; Silva Duarte, G.; Lopes, A.; Alves, M.; Caldeira, D.; Fernandes e Fernandes, R.; Mendes Pedro, L. Incidence and Prevalence of Thoracic Aortic Aneurysms: A Systematic Review and Meta-Analysis of Population-Based Studies. Semin. Thorac. Cardiovasc. Surg. 2022, 34, 1–16. [Google Scholar] [CrossRef]
- McClure, R.S.; Brogly, S.B.; Lajkosz, K.; Payne, D.; Hall, S.F.; Johnson, A.P. Epidemiology and Management of Thoracic Aortic Dissections and Thoracic Aortic Aneurysms in Ontario, Canada: A Population-Based Study. J. Thorac. Cardiovasc. Surg. 2018, 155, 2254–2264.e4. [Google Scholar] [CrossRef]
- Huckaby, L.V.; Leshnower, B.G. Sex and Gender Differences in Aortic Disease. US Cardiol. 2023, 17, e14. [Google Scholar] [CrossRef]
- Crosier, R.; Lopez Laporte, M.A.; Unni, R.R.; Coutinho, T. Female-Specific Considerations in Aortic Health and Disease. CJC Open 2023, 6, 391–406. [Google Scholar] [CrossRef]
- Chew, N.W.S.; Phua, K.; Ngiam, J.N.; Cheong, C.; Kong, G.; Ng, J.L.M.; Sia, C.-H.; Loh, P.-H.; Lee, C.-H.; Wong, R.C.C.; et al. Inter-Ethnic Differences in Valvular Dysfunction, Aortopathy, and Progression of Disease of an Asian Bicuspid Aortic Valve Population. Heart Lung Circ. 2022, 31, 469–479. [Google Scholar] [CrossRef]
- LaBounty, T.M.; Kolias, T.J.; Bossone, E.; Bach, D.S. Differences in Echocardiographic Measures of Aortic Dimensions by Race. Am. J. Cardiol. 2019, 123, 2015–2021. [Google Scholar] [CrossRef] [PubMed]
- Turkbey, E.B.; Jain, A.; Johnson, C.; Redheuil, A.; Arai, A.E.; Gomes, A.S.; Carr, J.; Hundley, W.G.; Teixido-Tura, G.; Eng, J.; et al. Determinants and Normal Values of Ascending Aortic Diameter by Age, Gender, and Race/Ethnicity in the Multi-Ethnic Study of Atherosclerosis (MESA). J. Magn. Reson. Imaging 2014, 39, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Faiza, Z.; Sharman, T. Thoracic Aorta Aneurysm. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Koba, A.; Yamagishi, K.; Sairenchi, T.; Noda, H.; Irie, F.; Takizawa, N.; Tomizawa, T.; Iso, H.; Ota, H. Risk Factors for Mortality From Aortic Aneurysm and Dissection: Results From a 26-Year Follow-Up of a Community-Based Population. J. Am. Heart Assoc. 2023, 12, e027045. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.-B.; Jondeau, G.; Milewicz, D.M. From Genetics to Response to Injury: Vascular Smooth Muscle Cells in Aneurysms and Dissections of the Ascending Aorta. Cardiovasc. Res. 2018, 114, 578–589. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Dai, X.; Lin, H.; Ma, L. Type 2 Diabetes Has a Protective Causal Association with Thoracic Aortic Aneurysm: A Mendelian Randomization Study. Diabetol. Metab. Syndr. 2023, 15, 120. [Google Scholar] [CrossRef]
- Humphrey, J.D.; Milewicz, D.M.; Tellides, G.; Schwartz, M.A. Dysfunctional Mechanosensing in Aneurysms. Science 2014, 344, 477–479. [Google Scholar] [CrossRef]
- Cikach, F.S.; Germano, E.; Roselli, E.E.; Svensson, L.G. Ascending Aorta Mechanics and Dimensions in Aortopathy – from Science to Application. Indian. J. Thorac. Cardiovasc. Surg. 2022, 38, 7–13. [Google Scholar] [CrossRef]
- Shen, Y.H.; LeMaire, S.A.; Webb, N.R.; Cassis, L.A.; Daugherty, A.; Lu, H.S. Part I: Dynamics of Aortic Cells and Extracellular Matrix in Aortic Aneurysms and Dissections. Arterioscler. Thromb. Vasc. Biol. 2020, 40, e37–e46. [Google Scholar] [CrossRef]
- He, X.; Deng, J.; Yu, X.-J.; Yang, S.; Yang, Y.; Zang, W.-J. Activation of M3AChR (Type 3 Muscarinic Acetylcholine Receptor) and Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) Signaling by Choline Alleviates Vascular Smooth Muscle Cell Phenotypic Switching and Vascular Remodeling. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2649–2664. [Google Scholar] [CrossRef]
- Tang, H.-Y.; Chen, A.-Q.; Zhang, H.; Gao, X.-F.; Kong, X.-Q.; Zhang, J.-J. Vascular Smooth Muscle Cells Phenotypic Switching in Cardiovascular Diseases. Cells 2022, 11, 4060. [Google Scholar] [CrossRef]
- Chung, A.W.Y.; Yang, H.H.C.; Radomski, M.W.; van Breemen, C. Long-Term Doxycycline Is More Effective than Atenolol to Prevent Thoracic Aortic Aneurysm in Marfan Syndrome through the Inhibition of Matrix Metalloproteinase-2 and -9. Circ. Res. 2008, 102, e73-85. [Google Scholar] [CrossRef] [PubMed]
- Pisano, C.; Balistreri, C.R.; Ricasoli, A.; Ruvolo, G. Cardiovascular Disease in Ageing: An Overview on Thoracic Aortic Aneurysm as an Emerging Inflammatory Disease. Mediat. Inflamm. 2017, 2017, 1274034. [Google Scholar] [CrossRef] [PubMed]
- Salmasi, M.Y.; Pirola, S.; Mahuttanatan, S.; Fisichella, S.M.; Sengupta, S.; Jarral, O.A.; Oo, A.; O’Regan, D.; Xu, X.Y.; Athanasiou, T. Geometry and Flow in Ascending Aortic Aneurysms Are Influenced by Left Ventricular Outflow Tract Orientation: Detecting Increased Wall Shear Stress on the Outer Curve of Proximal Aortic Aneurysms. J. Thorac. Cardiovasc. Surg. 2023, 166, 11–21.e1. [Google Scholar] [CrossRef] [PubMed]
- Ganizada, B.H.; Veltrop, R.J.A.; Akbulut, A.C.; Koenen, R.R.; Accord, R.; Lorusso, R.; Maessen, J.G.; Reesink, K.; Bidar, E.; Schurgers, L.J. Unveiling Cellular and Molecular Aspects of Ascending Thoracic Aortic Aneurysms and Dissections. Basic. Res. Cardiol. 2024, 119, 371–395. [Google Scholar] [CrossRef]
- Rooprai, J.; Boodhwani, M.; Beauchesne, L.; Chan, K.; Dennie, C.; Nagpal, S.; Messika-Zeitoun, D.; Coutinho, T. Thoracic Aortic Aneurysm Growth in Bicuspid Aortic Valve Patients: Role of Aortic Stiffness and Pulsatile Hemodynamics. J. Am. Heart Assoc. 2019, 8, e010885. [Google Scholar] [CrossRef]
- Mahadevia, R.; Barker, A.J.; Schnell, S.; Entezari, P.; Kansal, P.; Fedak, P.W.M.; Malaisrie, S.C.; McCarthy, P.; Collins, J.; Carr, J.; et al. Bicuspid Aortic Cusp Fusion Morphology Alters Aortic 3D Outflow Patterns, Wall Shear Stress and Expression of Aortopathy. Circulation 2014, 129, 673–682. [Google Scholar] [CrossRef]
- Wang, J.; Deng, W.; Lv, Q.; Li, Y.; Liu, T.; Xie, M. Aortic Dilatation in Patients With Bicuspid Aortic Valve. Front. Physiol. 2021, 12, 615175. [Google Scholar] [CrossRef]
- Pasta, S.; Agnese, V.; Gallo, A.; Cosentino, F.; Giuseppe, M.D.; Gentile, G.; Raffa, G.M.; Maalouf, J.F.; Michelena, H.I.; Bellavia, D.; et al. Shear Stress and Aortic Strain Associations With Biomarkers of Ascending Thoracic Aortic Aneurysm. Ann. Thorac. Surg. 2020, 110, 1595–1604. [Google Scholar] [CrossRef]
- Karimi, A.; Milewicz, D.M. Structure of the Elastin-Contractile Units in the Thoracic Aorta and How Genes That Cause Thoracic Aortic Aneurysms and Dissections Disrupt This Structure. Can. J. Cardiol. 2016, 32, 26–34. [Google Scholar] [CrossRef]
- Cekmecelioglu, D.; Preventza, O. Aortic Aneurysmectomy: The ACC/AHA Guidelines. Semin. Thorac. Cardiovasc. Surg. 2025, in press. [Google Scholar] [CrossRef]
- 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Available online: https://www.ahajournals.org/doi/epdf/10.1161/CIR.0000000000001106 (accessed on 10 April 2025).
- ESC Guidelines for the Management of Peripheral Arterial and Aortic Diseases. Available online: https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Peripheral-Arterial-and-Aortic-Diseases (accessed on 15 September 2025).
- Coady, M.A.; Rizzo, J.A.; Hammond, G.L.; Mandapati, D.; Darr, U.; Kopf, G.S.; Elefteriades, J.A. What Is the Appropriate Size Criterion for Resection of Thoracic Aortic Aneurysms? J. Thorac. Cardiovasc. Surg. 1997, 113, 476–491; discussion 489–491. [Google Scholar] [CrossRef] [PubMed]
- Saeyeldin, A.; Zafar, M.A.; Li, Y.; Tanweer, M.; Abdelbaky, M.; Gryaznov, A.; Brownstein, A.J.; Velasquez, C.A.; Buntin, J.; Thombre, K.; et al. Decision-Making Algorithm for Ascending Aortic Aneurysm: Effectiveness in Clinical Application? J. Thorac. Cardiovasc. Surg. 2019, 157, 1733–1745. [Google Scholar] [CrossRef]
- Perez, Z.G.; Zafar, M.A.; Velasco, J.J.; Sonsino, A.; Ellauzi, H.; John, C.; Kalyanasundaram, A.; Ziganshin, B.A.; Elefteriades, J.A. Aortic Size at the Time of Type A and Type B Dissections. Ann. Thorac. Surg. 2023, 116, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, N.A.; Rorris, F.-P.; Antonopoulos, C.N.; Theodosis, A.; Argiriou, M.; Charitos, C. Ascending Aorta Dissection Before 5.5 cm Diameter; “It Wasn’t Raining When Noah Built the Ark”. Heart Lung Circ. 2023, 32, 379–386. [Google Scholar] [CrossRef]
- Zafar, M.A.; Li, Y.; Rizzo, J.A.; Charilaou, P.; Saeyeldin, A.; Velasquez, C.A.; Mansour, A.M.; Bin Mahmood, S.U.; Ma, W.-G.; Brownstein, A.J.; et al. Height Alone, Rather than Body Surface Area, Suffices for Risk Estimation in Ascending Aortic Aneurysm. J. Thorac. Cardiovasc. Surg. 2018, 155, 1938–1950. [Google Scholar] [CrossRef]
- Trimarchi, S.; Mandigers, T.J.; Bissacco, D.; Nienaber, C.; Isselbacher, E.M.; Evangelista, A.; Suzuki, T.; Bossone, E.; Pape, L.A.; Januzzi, J.L.; et al. Twenty-Five Years of Observations from the International Registry of Acute Aortic Dissection (IRAD) and Its Impact on the Cardiovascular Scientific Community. J. Thorac. Cardiovasc. Surg. 2024, 168, 977–989.e24. [Google Scholar] [CrossRef]
- Malm, B.J.; Sadeghi, M.M. Multi-Modality Molecular Imaging of Aortic Aneurysms. J. Nucl. Cardiol. 2017, 24, 1239–1245. [Google Scholar] [CrossRef]
- Heuts, S.; Adriaans, B.P.; Rylski, B.; Mihl, C.; Bekkers, S.C.A.M.; Olsthoorn, J.R.; Natour, E.; Bouman, H.; Berezowski, M.; Kosiorowska, K.; et al. Evaluating the Diagnostic Accuracy of Maximal Aortic Diameter, Length and Volume for Prediction of Aortic Dissection. Heart 2020, 106, 892–897. [Google Scholar] [CrossRef]
- Wu, J.; Zafar, M.A.; Li, Y.; Saeyeldin, A.; Huang, Y.; Zhao, R.; Qiu, J.; Tanweer, M.; Abdelbaky, M.; Gryaznov, A.; et al. Ascending Aortic Length and Risk of Aortic Adverse Events: The Neglected Dimension. J. Am. Coll. Cardiol. 2019, 74, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- Rylski, B.; Blanke, P.; Beyersdorf, F.; Desai, N.D.; Milewski, R.K.; Siepe, M.; Kari, F.A.; Czerny, M.; Carrel, T.; Schlensak, C.; et al. How Does the Ascending Aorta Geometry Change When It Dissects? J. Am. Coll. Cardiol. 2014, 63, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Saade, W.; Vinciguerra, M.; Romiti, S.; Macrina, F.; Frati, G.; Miraldi, F.; Greco, E. 3D Morphometric Analysis of Ascending Aorta as an Adjunctive Tool to Predict Type A Acute Aortic Dissection. J. Thorac. Dis. 2021, 13, 3443–3457. [Google Scholar] [CrossRef]
- Heuts, S.; Adriaans, B.P.; Gerretsen, S.; Natour, E.; Vos, R.; Cheriex, E.C.; Crijns, H.J.G.M.; Wildberger, J.E.; Maessen, J.G.; Schalla, S.; et al. Aortic Elongation Part II: The Risk of Acute Type A Aortic Dissection. Heart 2018, 104, 1778–1782. [Google Scholar] [CrossRef]
- Krüger, T.; Boburg, R.S.; Hamdoun, H.; Oikonomou, A.; Bongers, M.N.; Schlensak, C. Development of a Multivariable Prediction Model for Patient-Adjusted Aortic Risk Morphology. Eur. J. Cardio-Thorac. Surg. 2020, 58, 692–699. [Google Scholar] [CrossRef]
- Bhave, N.M.; Nienaber, C.A.; Clough, R.E.; Eagle, K.A. Multimodality Imaging of Thoracic Aortic Diseases in Adults. JACC Cardiovasc. Imaging 2018, 11, 902–919. [Google Scholar] [CrossRef]
- Reeps, C.; Essler, M.; Pelisek, J.; Seidl, S.; Eckstein, H.-H.; Krause, B.-J. Increased 18F-Fluorodeoxyglucose Uptake in Abdominal Aortic Aneurysms in Positron Emission/Computed Tomography Is Associated with Inflammation, Aortic Wall Instability, and Acute Symptoms. J. Vasc. Surg. 2008, 48, 417–423. [Google Scholar] [CrossRef]
- Sakalihasan, N.; Nienaber, C.A.; Hustinx, R.; Lovinfosse, P.; El Hachemi, M.; Cheramy-Bien, J.-P.; Seidel, L.; Lavigne, J.-P.; Quaniers, J.; Kerstenne, M.-A.; et al. (Tissue PET) Vascular Metabolic Imaging and Peripheral Plasma Biomarkers in the Evolution of Chronic Aortic Dissections. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 626–633. [Google Scholar] [CrossRef]
- Kim, H.-H.; Lee, S.; Lee, S.H.; Youn, Y.-N.; Yoo, K.-J.; Joo, H.-C. The Long-Term Fate of Ascending Aorta Aneurysm after Wrapping versus Replacement. J. Thorac. Cardiovasc. Surg. 2022, 164, 463–474.e4. [Google Scholar] [CrossRef]
- Tahara, N.; Hirakata, S.; Okabe, K.; Tahara, A.; Honda, A.; Igata, S.; Kaida, H.; Abe, T.; Akashi, H.; Tanaka, H.; et al. FDG-PET/CT Images during 5 Years before Acute Aortic Dissection. Eur. Heart J. 2016, 37, 1933. [Google Scholar] [CrossRef]
- Simsek, F.S.; Cayir, M.C.; Arslan, M.; Yuksel, D. Can 18Fluoro-Deoxy-Glukose-Positron Emission Tomography/Computed Tomography Be a Useful for Decision of Elective Surgery in Thoracic Aortic Aneurysm. Indian J. Nucl. Med. 2021, 36, 307–309. [Google Scholar] [CrossRef]
- Stendahl, J.C.; Kwan, J.M.; Pucar, D.; Sadeghi, M.M. Radiotracers to Address Unmet Clinical Needs in Cardiovascular Imaging, Part 2: Inflammation, Fibrosis, Thrombosis, Calcification, and Amyloidosis Imaging. J. Nucl. Med. 2022, 63, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Adriaans, B.P.; Wildberger, J.E.; Westenberg, J.J.M.; Lamb, H.J.; Schalla, S. Predictive Imaging for Thoracic Aortic Dissection and Rupture: Moving beyond Diameters. Eur. Radiol. 2019, 29, 6396–6404. [Google Scholar] [CrossRef]
- Al-Rawi, M.; Belkacemi, D.; Lim, E.T.A.; Khashram, M. Investigation of Type A Aortic Dissection Using Computational Modelling. Biomedicines 2024, 12, 1973. [Google Scholar] [CrossRef] [PubMed]
- Menichini, C.; Cheng, Z.; Gibbs, R.G.J.; Xu, X.Y. Predicting False Lumen Thrombosis in Patient-Specific Models of Aortic Dissection. J. R. Soc. Interface 2016, 13, 20160759. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, R.N.; Huckaby, L.V.; Emerel, L.V.; Schlosser, V.; Yang, F.; Phillippi, J.A.; Vorp, D.A.; Maiti, S.; Gleason, T.G. The Predictive Capability of Aortic Stiffness Index for Aortic Dissection among Dilated Ascending Aortas. J. Thorac. Cardiovasc. Surg. 2024, 167, 2015–2024. [Google Scholar] [CrossRef]
- Ekedi, A.V.N.B.; Rozhkov, A.N.; Shchekochikhin, D.Y.; Novikova, N.A.; Kopylov, P.Y.; Bestavashvili, A.A.; Ivanova, T.V.; Zhelankin, A.V.; Generozov, E.V.; Konanov, D.N.; et al. Evaluation of microRNA Expression Features in Patients with Various Types of Arterial Damage: Thoracic Aortic Aneurysm and Coronary Atherosclerosis. J. Pers. Med. 2023, 13, 1161. [Google Scholar] [CrossRef]
- Thijssen, C.G.E.; Dekker, S.; Bons, L.R.; Geenen, L.W.; Gökalp, A.L.; Takkenberg, J.J.M.; Mokhles, M.M.; Bekkers, J.A.; Boersma, E.; Bouwens, E.; et al. Novel Biomarkers Associated with Thoracic Aortic Disease. Int. J. Cardiol. 2023, 378, 115–122. [Google Scholar] [CrossRef]
- Li, Z.; Cong, X.; Kong, W. Matricellular Proteins: Potential Biomarkers and Mechanistic Factors in Aortic Aneurysms. J. Mol. Cell. Cardiol. 2022, 169, 41–56. [Google Scholar] [CrossRef]
- Hahn, L.D.; Baeumler, K.; Hsiao, A. Artificial Intelligence and Machine Learning in Aortic Disease. Curr. Opin. Cardiol. 2021, 36, 695. [Google Scholar] [CrossRef]
- Pirruccello, J.P.; Chaffin, M.D.; Chou, E.L.; Fleming, S.J.; Lin, H.; Nekoui, M.; Khurshid, S.; Friedman, S.F.; Bick, A.G.; Arduini, A.; et al. Deep Learning Enables Genetic Analysis of the Human Thoracic Aorta. Nat. Genet. 2022, 54, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Wahba, A.; Kunst, G.; De Somer, F.; Kildahl, H.A.; Milne, B.; Kjellberg, G.; Bauer, A.; Beyersdorf, F.; Ravn, H.B.; Debeuckelaere, G.; et al. 2024 EACTS/EACTAIC/EBCP Guidelines on Cardiopulmonary Bypass in Adult Cardiac Surgery. Br. J. Anaesth. 2025, 134, 917–1008. [Google Scholar] [CrossRef] [PubMed]
- Rukosujew, A.; Motekallemi, A.; Wisniewski, K.; Weber, R.; De Torres-Alba, F.; Ibrahim, A.; Weiss, R.; Martens, S.; Dell’Aquila, A.M. Transversal Arch Clamping for Complete Resection of Aneurysms of the Distal Ascending Aorta without Open Anastomosis. J. Clin. Med. 2022, 11, 2698. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Shioda, K.; Wang, X.; Mangi, A.A.; Yun, J.J.; Darr, U.; Elefteriades, J.A.; Geirsson, A. Perioperative Risk Profiles and Volume-Outcome Relationships in Proximal Thoracic Aortic Surgery. Ann. Thorac. Surg. 2018, 106, 1095–1104. [Google Scholar] [CrossRef]
- Nam, K.; Jang, E.J.; Jo, J.W.; Choi, J.W.; Lee, M.; Ryu, H.G. Association between Institutional Case Volume and Mortality Following Thoracic Aorta Replacement: A Nationwide Korean Cohort Study. J. Cardiothorac. Surg. 2020, 15, 156. [Google Scholar] [CrossRef]
- Hamiko, M.; Jahnel, K.; Rogaczewski, J.; Schafigh, M.; Silaschi, M.; Spaeth, A.; Velten, M.; Roell, W.; Ahmad, A.E.-S.; Bakhtiary, F. The Long-Term Outcome and Quality of Life after Replacement of the Ascending Aorta. JCM 2023, 12, 4498. [Google Scholar] [CrossRef]
- Reil, J.-C.; Marquetand, C.; Busch-Tilge, C.; Ivannikova, M.; Rudolph, V.; Aboud, A.; Ensminger, S.; Schäfers, H.-J.; Stierle, U.; Reil, G.-H. Functional Interaction of Aortic Valve and Ascending Aorta in Patients after Valve-Sparing Procedures. Sci. Rep. 2023, 13, 15340. [Google Scholar] [CrossRef]
- Spadaccio, C.; Nappi, F.; Al-Attar, N.; Sutherland, F.W.; Acar, C.; Nenna, A.; Trombetta, M.; Chello, M.; Rainer, A. Old Myths, New Concerns: The Long-Term Effects of Ascending Aorta Replacement with Dacron Grafts. Not All That Glitters Is Gold. J. Cardiovasc. Transl. Res. 2016, 9, 334–342. [Google Scholar] [CrossRef]
- Marquis, K.M.; Naeem, M.; Rajput, M.Z.; Raptis, D.A.; Steinbrecher, K.L.; Ohman, J.W.; Bhalla, S.; Raptis, C.A. CT of Postoperative Repair of the Ascending Aorta and Aortic Arch. RadioGraphics 2021, 41, 1300–1320. [Google Scholar] [CrossRef]
- Lin, T.-W.; Wu, H.-Y.; Tsai, M.-T.; Hu, Y.-N.; Wang, Y.-C.; Roan, J.-N.; Luo, C.-Y.; Kan, C.-D. Aortic Root Remodeling after Surgical Repair of Acute Type A Aortic Dissection Using Different Anastomosis Techniques. JTCVS Tech. 2023, 21, 18–25. [Google Scholar] [CrossRef]
- Araki, Y.; Konishi, Y.; Terada, T.; Teramoto, C.; Kawaguchi, O. Pericardial Sandwich Technique for End-to-End Anastomosis of Artificial Graft. Ann. Thorac. Surg. 2018, 106, e269–e271. [Google Scholar] [CrossRef]
- Zheng, H.-J.; Zhang, X.-P.; Yu, S.-J.; Lin, D.-Q.; Cheng, Y.-B.; Yan, C.-J.; He, P.; Li, J.; Cheng, W. A Modified Prosthesis Eversion Technique for Proximal Anastomosis in Ascending Aorta Replacement. J. Thorac. Dis. 2023, 15, 4596–4605. [Google Scholar] [CrossRef]
- Hori, D.; Kusadokoro, S.; Mieno, M.N.; Fujimori, T.; Shimizu, T.; Kimura, N.; Yamaguchi, A. The Effect of Aortic Arch Replacement on Pulse Wave Velocity after Surgery. Interact. Cardiovasc. Thorac. Surg. 2021, 34, 652–659. [Google Scholar] [CrossRef]
- Thomas, R.; Dhanekula, A.S.; Byers, P.; Flodin, R.; DeRoo, S.; Shalhub, S.; Burke, C.R. Elective Root Replacement Increases the Risk of Type B Dissection in Patients with Marfan Syndrome. J. Thorac. Cardiovasc. Surg. 2024. [Google Scholar] [CrossRef]
- Gupta, P.; Harky, A.; Jahangeer, S.; Adams, B.; Bashir, M. Varying Evidence on Deep Hypothermic Circulatory Arrest in Thoracic Aortic Aneurysm Surgery. Tex. Heart Inst. J. 2018, 45, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Al-Adhami, A.; Harky, A.; Bashir, M.; Kolvekar, S. Replacing the Ascending Aorta in the Elderly: Do or Do Not. Indian J. Thorac. Cardiovasc. Surg. 2019, 35, 106–111. [Google Scholar] [CrossRef] [PubMed]
- González-Santos, J.M.; Arnáiz-García, M.E. Wrapping of the Ascending Aorta Revisited—Is There Any Role Left for Conservative Treatment of Ascending Aortic Aneurysm? J. Thorac. Dis. 2017, 9, S488–S497. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.; Bail, D.H.L.; Gruler, M.; Vonthein, R.; Steger, V.; Ziemer, G. Unsupported Reduction Ascending Aortoplasty: Fate of Diameter and of Windkessel Function. Ann. Thorac. Surg. 2007, 83, 1047–1053. [Google Scholar] [CrossRef]
- Ozcan, A.V.; Alşalaldeh, M.; Boysan, E.; Goksin, I. Ascending Aortic Aneurysm Treatment with Linear Plication and External Wrapping Technique: Mid-Term Results. J. Card. Surg. 2013, 28, 421–426. [Google Scholar] [CrossRef]
- Niclauss, L.; Delay, D.; Ruchat, P.; von Segesser, L.K. Reduction Aortoplasty: Safe and Durable Treatment for Borderline Dilatation in Selected Patients. J. Heart Valve Dis. 2012, 21, 584–590. [Google Scholar]
- Feindt, P.; Litmathe, J.; Börgens, A.; Boeken, U.; Kurt, M.; Gams, E. Is Size-Reducing Ascending Aortoplasty with External Reinforcement an Option in Modern Aortic Surgery? Eur. J. Cardiothorac. Surg. 2007, 31, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Rovas, G.; Reymond, P.; Van Steenberghe, M.; Diaper, J.; Bikia, V.; Cikirikcioglu, M.; Habre, W.; Huber, C.; Stergiopulos, N. Evaluation of a Novel Compliance-Matching Aortic Graft in a Swine Model. J. Biomech. 2025, 183, 112629. [Google Scholar] [CrossRef] [PubMed]
- De Paulis, R.; Scaffa, R.; Salica, A.; Weltert, L.; Chirichilli, I. Biological Solutions to Aortic Root Replacement: Valve-Sparing versus Bioprosthetic Conduit. J. Vis. Surg. 2018, 4, 94. [Google Scholar] [CrossRef] [PubMed]
- Angerer, M.; Pollari, F.; Hitzl, W.; Weber, L.; Sirch, J.; Fischlein, T. Isolated or Combined Ascending Aortic Replacement through a Partial Sternotomy: Early and Midterm Outcomes. Thorac. Cardiovasc. Surg. 2025, 73, 43–50. [Google Scholar] [CrossRef]
- Hamiko, M.; Salamate, S.; Nassari, M.A.; Spaeth, A.; Sirat, S.; Doss, M.; Amer, M.; Silaschi, M.; Ahmad, A.E.-S.; Bakhtiary, F. Totally Endoscopic Replacement of the Ascending Aorta and the Aortic Root Including the Aortic Valve via Right Mini-Thoracotomy: A Multicenter Study. J. Clin. Med. 2024, 13, 2648. [Google Scholar] [CrossRef]
- Huo, W.; He, M.; Bao, X.; Lu, Y.; Tian, W.; Feng, J.; Zeng, Z.; Feng, R. Minimally Invasive Endovascular Repair for Nondissected Ascending Aortic Disease: A Systematic Review. Emerg. Med. Int. 2023, 2023, 5592622. [Google Scholar] [CrossRef]
- Klonaris, C.; Georgopoulos, S.; Katsargyris, A. Endovascular Treatment of the Ascending Aorta: New Frontiers for Thoracic Endovascular Aneurysm Repair? J. Thorac. Dis. 2016, 8, 1901–1903. [Google Scholar] [CrossRef]
- Preventza, O.; Henry, M.J.; Cheong, B.Y.C.; Coselli, J.S. Endovascular Repair of the Ascending Aorta: When and How to Implement the Current Technology. Ann. Thorac. Surg. 2014, 97, 1555–1560. [Google Scholar] [CrossRef]
| Gene | Full Name | Protein Type Involved | Inheritance Pattern | Pathophysiological Role | Estimated Frequency | |
|---|---|---|---|---|---|---|
| Marfan syndrome | FBN1 | Fibrillin-1 | Extracellular matrix (ECM) glycoprotein | Autosomal dominant | Deficient ECM integrity; impaired TGF-β sequestration; leads to medial degeneration | ~2–3% of all TAAs; ~75% of syndromic TAAs |
| ACTA2, MYH11, MYLK, PRKG1, MAT2A, MFAP5, FOXE3, THSD4 | Various (actin, myosin, kinases, ECM regulators) | Smooth muscle and ECM regulators | Autosomal dominant | Impaired smooth muscle contraction and ECM stability | Variable and rare | |
| Loeys–Dietz syndrome (types 1–5) | TGFBR1, TGFBR2, SMAD3, TGFB2, TGFB3 | TGF-β receptors, SMAD proteins, TGF-β isoforms | TGF-β signaling proteins | Autosomal dominant | Dysregulated TGF-β signaling; excessive ECM remodeling and medial degeneration | <1% of all TAAs |
| Ehlers–Danlos syndrome (type IV) | COL3A1 | Type III collagen | Fibrillar collagen | Autosomal dominant | Fragile vasculature due to collagen defect; spontaneous dissection or rupture | <1% of all TAAs |
| Turner syndrome | 45,X (monosomy X) | - | Chromosomal anomaly | Sporadic (X-linked monosomy) | Congenital aortic disease: bicuspid valve, coarctation, ascending dilation | Common among females with Turner syndrome |
| Shprintzen–Goldberg syndrome | SKI | SKI proto-oncogene | TGF-β pathway regulator | Autosomal dominant | Aortic aneurysm due to dysregulated TGF-β signaling | Extremely rare |
| Alport syndrome (X-linked) | COL4A5 | Type IV collagen alpha-5 chain | Basement membrane collagen | X-linked recessive | Type IV collagen defect affecting vasculature and renal basement membranes | Rare; <1% of TAAs |
| Gene | Full Name | Protein Type Involved | Inheritance Pattern | Pathophysiological Role | Estimated Frequency |
|---|---|---|---|---|---|
| ACTA2 | Actin alpha 2, smooth muscle | Smooth muscle contractile protein | Autosomal dominant | Impaired vascular smooth muscle contractility | ~10–15% |
| MYH11 | Myosin heavy chain 11 | Smooth muscle myosin protein | Autosomal dominant | Defect in actin–myosin sliding; occasionally associated with coarctation | <5% |
| MYLK | Myosin light chain kinase | Kinase regulating muscle contraction | Autosomal dominant | Disrupts myosin phosphorylation, reducing medial tone | Rare (~1–2%) |
| PRKG1 | Protein kinase, cGMP-dependent, type I | Kinase modulating vascular tone | Autosomal dominant | Gain-of-function mutation leading to excessive aortic wall relaxation | Very rare |
| LOX | Lysyl oxidase | Collagen/elastin cross-linking enzyme | Autosomal dominant | Compromises the mechanical integrity of the medial layer | Rare (~1–2%) |
| Context/Condition | ACC/AHA 2022 | EACTS/STS 2024 | ESC 2024 |
|---|---|---|---|
| Asymptomatic TAA, tricuspid valve | Surgery ≥5.5 cm (COR 1) | Surgery ≥5.5 cm (Class I, Level B) | Surgery ≥5.5 cm (Class I, Level B) |
| Asymptomatic, experienced center | Consider surgery ≥5.0 cm in experienced centers (COR 2a) | Consider ≥5.0 cm in selected patients with risk modifiers (Class IIa, Level C) | Consider ≥5.0 cm with risk modifiers (Class IIa) |
| Marfan syndrome | Surgery ≥5.0 cm (≥4.5 cm if risk factors) (COR 2a) | Same (Class IIa, Level C) | Same (Class IIa, Level C) |
| Loeys–Dietz | ≥4.0–4.5 cm depending on variant (COR 2a) | Similar (Class IIa, Level C) | Similar (Class IIa, Level C) |
| Pregnancy planning for women with connective tissue disorder | Surgery ≥4.0 cm recommended (COR 2b) | Not specifically addressed | Not specifically addressed |
| Imaging Modality | Strengths | Limitations | ACC/AHA 2022 (Recommended Interval) | EACTS/STS 2024 (Recommended Interval) | ESC 2024 (Recommended Interval) |
|---|---|---|---|---|---|
| Transthoracic echocardiography | Bedside, inexpensive, no radiation | Limited acoustic window, incomplete visualization of distal ascending aorta | Every 6–12 months if diameter ≥ 4.0 cm; every 6–24 months if stable (COR 2a) | Surveillance intervals should be considered after 5 years based on an individual protocol (Class IIa, Level C) | Every 6–12 months if stable; every 6 if growth rate > 3 mm/y (Class IIa, Level C) |
| CT angiography | High spatial resolution, 3D reconstruction, reproducible | Radiation exposure, contrast nephrotoxicity, motion artefact | Same intervals as TTE (COR 2a) | Similar to TTE (Class IIa, Level C) | Same intervals as TTE (Class IIa, Level C) |
| MRI | No radiation, excellent for serial follow-up | Longer exam time, less available, contraindications (implants) | Same intervals as TTE (COR 2a) | Similar to TTE (Class IIa, Level C) | Same intervals as TTE (Class IIa, Level C) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oweini, W.; Jolou, J.; Sologashvili, T.; Murith, N.; Huber, C.; Cikirikcioglu, M. Ascending Aortic Aneurysms: From Pathophysiology to Surgical Repair. J. Clin. Med. 2025, 14, 6993. https://doi.org/10.3390/jcm14196993
Oweini W, Jolou J, Sologashvili T, Murith N, Huber C, Cikirikcioglu M. Ascending Aortic Aneurysms: From Pathophysiology to Surgical Repair. Journal of Clinical Medicine. 2025; 14(19):6993. https://doi.org/10.3390/jcm14196993
Chicago/Turabian StyleOweini, Waël, Jalal Jolou, Tornike Sologashvili, Nicolas Murith, Christoph Huber, and Mustafa Cikirikcioglu. 2025. "Ascending Aortic Aneurysms: From Pathophysiology to Surgical Repair" Journal of Clinical Medicine 14, no. 19: 6993. https://doi.org/10.3390/jcm14196993
APA StyleOweini, W., Jolou, J., Sologashvili, T., Murith, N., Huber, C., & Cikirikcioglu, M. (2025). Ascending Aortic Aneurysms: From Pathophysiology to Surgical Repair. Journal of Clinical Medicine, 14(19), 6993. https://doi.org/10.3390/jcm14196993

