Risk Stratification of QTc Prolongations in Hospitalized Cardiology and Gastroenterology Patients Using the Tisdale Score—A Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Summary of Findings
4.2. Risk Factors for QTc Prolongation and Frequency of Prescription of QTc-Prolonging Drugs
4.3. Evaluation of the Tisdale Risk Score for Risk Stratification of QTc Prolongation
4.4. Limitations
4.5. Further Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tisdale, J.E. Drug-induced QT interval prolongation and torsades de pointes: Role of the pharmacist in risk assessment, prevention and management. Can. Pharm. J. 2016, 149, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Sarganas, G.; Garbe, E.; Klimpel, A.; Hering, R.C.; Bronder, E.; Haverkamp, W. Epidemiology of symptomatic drug-induced long QT syndrome and Torsade de Pointes in Germany. Europace 2014, 16, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.M.; Silva, E.P.; Martins, R.R.; Oliveira, A.G. QTc interval prolongation in critically ill patients: Prevalence, risk factors and associated medications. PLoS ONE 2018, 13, e0199028. [Google Scholar] [CrossRef]
- Acquired Long QT Syndrome: Definitions, Pathophysiology, and Causes. UpToDate®. Available online: https://www.uptodate.com/contents/acquired-long-qt-syndrome-definitions-pathophysiology-and-causes (accessed on 8 November 2024).
- QTdrugs List. CredibleMeds®. Available online: https://www.crediblemeds.org/ (accessed on 8 November 2024).
- Curtis, L.H.; Østbye, T.; Sendersky, V.; Hutchison, S.; Allen LaPointe, N.M.; Al-Khatib, S.M.; Usdin Yasuda, S.; Dans, P.E.; Wright, A.; Califf, R.M.; et al. Prescription of QT-prolonging drugs in a cohort of about 5 million outpatients. Am. J. Med. 2003, 114, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Then, M.I.; Andrikyan, W.; Maas, R.; Fromm, M.F. The CredibleMeds® list: Usage of QT interval prolonging drugs in Germany and discordances with prescribing information. Br. J. Clin. Pharmacol. 2022, 88, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Strobach, D.; Schlattl, A.; Schiek, S.; Bertsche, T. QTc-time-prolongating drugs and additional risk factors for long-QT-syndrome at hospital admission of surgical patients—Risk assessment by pharmacists. Pharmazie 2021, 76, 562–566. [Google Scholar] [PubMed]
- Rossi, M.; Marzi, F.; Natale, M.; Porceddu, A.; Tuccori, M.; Lazzerini, P.E.; Laghi-Pasini, F.; Capecchi, P.L. Drug-Associated QTc Prolongation in Geriatric Hospitalized Patients: A Cross-Sectional Study in Internal Medicine. Drugs Real World Outcomes 2021, 8, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, K.; Lakshmanan, S.; Maan, A.; Kumar, N.; Dominic, P. Impact of Drug Induced Long QT Syndrome: A Systematic Review. J. Clin. Med. Res. 2018, 10, 384–390. [Google Scholar] [CrossRef]
- Tomaselli Muensterman, E.; Tisdale, J.E. Predictive Analytics for Identification of Patients at Risk for QT Interval Prolongation: A Systematic Review. Pharmacotherapy 2018, 38, 813–821. [Google Scholar] [CrossRef]
- Matyas, C.; Haskó, G.; Liaudet, L.; Trojnar, E.; Pacher, P. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications. Nat. Rev. Cardiol. 2021, 18, 117–135. [Google Scholar] [CrossRef]
- Lee, W.; Vandenberk, B.; Raj, S.R.; Lee, S.S. Prolonged QT Interval in Cirrhosis: Twisting Time? Gut Liver 2022, 16, 849–860. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Corey, K.E.; Byrne, C.D. NAFLD, and cardiovascular and cardiac diseases: Factors influencing risk, prediction and treatment. Diabetes Metab. 2021, 47, 101215. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qian, R.; Wang, Y.; Mo, L.; Ju, B.; Hu, N.; Wang, P.; He, L.; Wang, J. QTc interval prolongation in the patients with primary biliary cholangitis. Ann. Noninvasive Electrocardiol. 2022, 27, e12925. [Google Scholar] [CrossRef]
- Coughlan, J.J.; Wafer, M.; Fitzgerald, G.; Nawaz, A.; O’Brien, C.; Liston, R. QTc prolongation in acute medical admissions: An often overlooked and potentially serious finding. Postgrad. Med. J. 2018, 94, 123–124. [Google Scholar] [CrossRef]
- Putnikovic, M.; Jordan, Z.; Munn, Z.; Borg, C.; Ward, M. Use of Electrocardiogram Monitoring in Adult Patients Taking High-Risk QT Interval Prolonging Medicines in Clinical Practice: Systematic Review and Meta-analysis. Drug Saf. 2022, 45, 1037–1048. [Google Scholar] [CrossRef]
- Skullbacka, S.; Airaksinen, M.; Puustinen, J.; Toivo, T. Risk assessment tools for QT prolonging pharmacotherapy in older adults: A systematic review. Eur. J. Clin. Pharmacol. 2022, 78, 765–779. [Google Scholar] [CrossRef]
- Tisdale, J.E.; Jaynes, H.A.; Kingery, J.R.; Mourad, N.A.; Trujillo, T.N.; Overholser, B.R.; Kovacs, R.J. Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 479–487. [Google Scholar] [CrossRef]
- Steinbrech, J.; Klein, T.; Kirschke, S.; Mannell, H.; Clauß, S.; Bertsche, T.; Strobach, D. Determining sensitivity and specificity of risk scores for QTc interval prolongation in hemato-oncology patients prescribed systemic antifungal therapy: A retrospective cross-sectional study. Int. J. Clin. Pharm. 2024. Epub ahead of print. [Google Scholar] [CrossRef]
- Tisdale, J.E.; Jaynes, H.A.; Kingery, J.R.; Overholser, B.R.; Mourad, N.A.; Trujillo, T.N.; Kovacs, R.J. Effectiveness of a clinical decision support system for reducing the risk of QT interval prolongation in hospitalized patients. Circ. Cardiovasc. Qual. Outcomes 2014, 7, 381–390. [Google Scholar] [CrossRef]
- Newell, B.; Wirick, N.; Rigelsky, F.; Migal, K. Implementation of a Pharmacist Monitoring Process for Patients on QTc Prolonging Antibiotics: A Pilot Study. Hosp. Pharm. 2021, 56, 772–776. [Google Scholar] [CrossRef]
- Eftekhar, S.P.; Kazemi, S.; Barary, M.; Javanian, M.; Ebrahimpour, S.; Ziaei, N. Effect of Hydroxychloroquine and Azithromycin on QT Interval Prolongation and Other Cardiac Arrhythmias in COVID-19 Confirmed Patients. Cardiovasc. Ther. 2021, 2021, 6683098. [Google Scholar] [CrossRef]
- Naderi, Z.; Tajmirriahi, M.; Dolatshahi, K.; Hashemi, H.; Sadeghi, S.; Mansouri, V.; Shakibaei, N.; Nikpour, M.; Ebrahemi, S.; Mansourian, M. Tisdale score successfully predict outcomes of QT-prolonging treatment in COVID-19 patients. Immunopathol. Persa 2022, e29311. [Google Scholar] [CrossRef]
- Zolezzi, M.; Elhakim, A.; Elamin, W.M.; Homs, S.; Mahmoud, D.E.; Qubaiah, I.A. Content Validation of an Algorithm for the Assessment, Management and Monitoring of Drug-Induced QTc Prolongation in the Psychiatric Population. Neuropsychiatr. Dis. Treat. 2021, 17, 3395–3405. [Google Scholar] [CrossRef]
- Tan, M.S.; Heise, C.W.; Gallo, T.; Tisdale, J.E.; Woosley, R.L.; Antonescu, C.C.; Gephart, S.M.; Malone, D.C. Relationship between a risk score for QT interval prolongation and mortality across rural and urban inpatient facilities. J. Electrocardiol. 2023, 77, 4–9. [Google Scholar] [CrossRef]
- Bazett, H.C. An analysis of the time-relations of electrocardiograms. Ann. Noninvasive Electrocardiol. 1997, 2, 177–194. [Google Scholar] [CrossRef]
- Jiménez, J.V.; Carrillo-Pérez, D.L.; Rosado-Canto, R.; García-Juárez, I.; Torre, A.; Kershenobich, D.; Carrillo-Maravilla, E. Electrolyte and Acid-Base Disturbances in End-Stage Liver Disease: A Physiopathological Approach. Dig. Dis. Sci. 2017, 62, 1855–1871. [Google Scholar] [CrossRef]
- Chernoby, K.; Lucey, M.F.; Hartner, C.L.; Dehoorne, M.; Edwin, S.B. Impact of a clinical decision support tool targeting QT-prolonging medications. Am. J. Health Syst. Pharm. 2020, 77 (Suppl. 4), S111–S117. [Google Scholar] [CrossRef] [PubMed]
- Buss, V.H.; Lee, K.; Naunton, M.; Peterson, G.M.; Kosari, S. Identification of Patients At-Risk of QT Interval Prolongation during Medication Reviews: A Missed Opportunity? J. Clin. Med. 2018, 7, 533. [Google Scholar] [CrossRef]
- Brown, J.P.; Tazare, J.R.; Williamson, E.; Mansfield, K.E.; Evans, S.J.; Tomlinson, L.A.; Bhaskaran, K.; Smeeth, L.; Wing, K.; Douglas, I.J. Proton pump inhibitors and risk of all-cause and cause-specific mortality: A cohort study. Br. J. Clin. Pharmacol. 2021, 87, 3150–3161. [Google Scholar] [CrossRef]
- Muheim, L.; Signorell, A.; Markun, S.; Chmiel, C.; Neuner-Jehle, S.; Blozik, E.; Ursprung, P.; Rosemann, T.; Senn, O. Potentially inappropriate proton-pump inhibitor prescription in the general population: A claims-based retrospective time trend analysis. Therap. Adv. Gastroenterol. 2021, 14, 1756284821998928. [Google Scholar] [CrossRef]
- Zeltser, D.; Justo, D.; Halkin, A.; Prokhorov, V.; Heller, K.; Viskin, S. Torsade de pointes due to noncardiac drugs: Most patients have easily identifiable risk factors. Medicine 2003, 82, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Vandael, E.; Vandenberk, B.; Vandenberghe, J.; Van den Bosch, B.; Willems, R.; Foulon, V. A smart algorithm for the prevention and risk management of QTc prolongation based on the optimized RISQ-PATH model. Br. J. Clin. Pharmacol. 2018, 84, 2824–2835. [Google Scholar] [CrossRef] [PubMed]
- Kasapkara, H.A.; Ayhan, H.; Durmaz, T.; Keleş, T.; Sari, C.; Baştuğ, S.; Köseoğlu, C.; Duran Karaduman, B.; Akçay, M.; Akar Bayram, N.; et al. Short-term effect of transcatheter aortic valve implantation on QT dispersion. Turk. J. Med. Sci. 2015, 45, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Leire, U.; Eulogio, G.; Francisco José, R.R.; Francisco Javier, P.J.; Juan, M.P.; Belen, D.A.; Miguel, R.D.R.; Adolfo, F.; Rodrigo, T.; Belén, R.A. Electrocardiographic changes and conduction disturbances after transfemoral aortic valve implantation with Edwards Sapien 3 prosthesis. J. Electrocardiol. 2018, 51, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Vandael, E.; Vandenberk, B.; Vandenberghe, J.; Spriet, I.; Willems, R.; Foulon, V. Development of a risk score for QTc-prolongation: The RISQ-PATH study. Int. J. Clin. Pharm. 2017, 39, 424–432. [Google Scholar] [CrossRef]
- Aboujaoude, E.; Mathew, J.; Sobocinski, S.; Villanueva, M.; Chun, F. Development and Validation of a QTc-Prolongation Risk Score to Optimize Interruptive Medication Alerts. Authorea 2021. preprint. [Google Scholar] [CrossRef]
- Berger, F.A.; van der Sijs, H.; Becker, M.L.; van Gelder, T.; van den Bemt, P.M.L.A. Development and validation of a tool to assess the risk of QT drug-drug interactions in clinical practice. BMC Med. Inform. Decis. Mak. 2020, 20, 171. [Google Scholar] [CrossRef] [PubMed]
- Bindraban, A.N.; Rolvink, J.; Berger, F.A.; van den Bemt, P.M.L.A.; Kuijper, A.F.M.; van der Hoeven, R.T.M.; Mantel-Teeuwisse, A.K.; Becker, M.L. Development of a risk model for predicting QTc interval prolongation in patients using QTc-prolonging drugs. Int. J. Clin. Pharm. 2018, 40, 1372–1379. [Google Scholar] [CrossRef] [PubMed]
- Berger, F.A.; van der Sijs, H.; van Gelder, T.; Kuijper, A.F.M.; van den Bemt, P.M.L.A.; Becker, M.L. Comparison of two algorithms to support medication surveillance for drug-drug interactions between QTc-prolonging drugs. Int. J. Med. Inform. 2021, 145, 104329. [Google Scholar] [CrossRef]
- Postema, P.G.; Wilde, A.A. The measurement of the QT interval. Curr. Cardiol. Rev. 2014, 10, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Viskin, S.; Rosovski, U.; Sands, A.J.; Chen, E.; Kistler, P.M.; Kalman, J.M.; Rodriguez Chavez, L.; Iturralde Torres, P.; Cruz F, F.E.; Centurión, O.A.; et al. Inaccurate electrocardiographic interpretation of long QT: The majority of physicians cannot recognize a long QT when they see one. Heart Rhythm. 2005, 2, 569–574. [Google Scholar] [CrossRef]
- Postema, P.G.; De Jong, J.S.; Van der Bilt, I.A.; Wilde, A.A. Accurate electrocardiographic assessment of the QT interval: Teach the tangent. Heart Rhythm. 2008, 5, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Hongo, R.H.; Goldschlager, N. Status of computerized electrocardiography. Cardiol. Clin. 2006, 24, 491–505. [Google Scholar] [CrossRef] [PubMed]
- Stettner, S.; Adie, S.; Hanigan, S.; Thomas, M.; Pogue, K.; Zimmerman, C. Effect of Replacing Vendor QTc Alerts with a Custom QTc Risk Alert in Inpatients. Appl. Clin. Inform. 2022, 13, 19–29. [Google Scholar] [CrossRef] [PubMed]
Parameter | Weight |
---|---|
Age ≥ 68 years | 1 |
Female | 1 |
Acute myocardial infarction | 2 |
Heart failure | 3 |
Sepsis | 3 |
Potassium ≤ 3.5 mmol/L | 2 |
Admission QTc ≥ 450 ms | 2 |
Loop diuretics | 1 |
1 QTc-prolonging drug | 3 |
≥2 QTc-prolonging drugs | 3 |
<7: Low risk | |
7–10: Moderate risk | |
≥11: High risk |
Cardiology | Gastroenterology | p | |
---|---|---|---|
Number of chart reviews performed (cases) | 335 | 292 | |
Female (n (%)) | 124 (37.0) | 121 (41.4) | <0.001 |
Age [years] (median (range)) | 75 (25–94) | 57 (20–92) | 0.002 |
Duration of stay [days] (median (range)) | 9 (1–50) | 11 (1–66) | <0.001 |
Age ≥ 68 years (n (%)) | 221 (66.0) | 71 (24.3) | <0.001 |
eGFR < 60 mL/min/1.73 m2 (n (%)) | 172 (51.3) | 90 (30.8) | <0.001 |
Heart failure (n (%)) | 117 (34.9) | 4 (1.4) | <0.001 |
Acute myocardial infarction (n (%)) | 26 (7.8) | 0 (0) | <0.001 |
Sepsis (n (%)) | 0 (0) | 4 (1.4) | 0.032 |
Potassium ≤ 3.5 mmol/L (n (%)) | 10 (3.0) | 22 (7.5) | 0.010 |
ECG data | |||
ECG available in the period of one week prior to chart review (n (%)) | 315 (94.0) | 106 (36.3) | <0.001 |
Of which QTc ≥ 450 ms | 184 (54.9) | 51 (17.5) | <0.001 |
ECG available in the period after chart review (n (%)) | 176 (52.5) | 60 (20.6) | <0.001 |
ECG available in the period of one week prior to and in the period after chart review (n (%)) | 166 (49.6) | 27 (9.3) | <0.001 |
Of which with QTc-prolongation (n (%)) | 38 (22.9) | 0 (0) | <0.001 |
Number of ECGs per case (median (range)) | 4 (0–29) | 0 (0–8) | <0.001 |
Drug data and Tisdale score | |||
Number of QTc-prolonging drugs prescribed (median (range)) | 2 (0–5) | 2 (0–5) | 0.375 |
Prescription of ≥2 QTc-prolonging drugs (n (%)) | 180 (53.7) | 155 (53.1) | 0.871 |
Loop diuretic (n (%)) | 198 (59.1) | 112 (38.4) | <0.001 |
Tisdale score (median (range)) | 9 (0–18) | 6 (0–12) | <0.001 |
low risk (<7) (n (%)) | 105 (31.3) | 151 (51.7) | <0.001 |
moderate risk (7–10) (n (%)) | 131 (39.1) | 128 (43.8) | 0.230 |
high risk (≥11) (n (%)) | 99 (29.6) | 13 (4.5) | <0.001 |
Drug | Risk Classification | n (%) | |
---|---|---|---|
Overall | |||
1 | Pantoprazole | Conditional Risk of TdP | 346 (55.2) |
2 | Torasemide | Conditional Risk of TdP | 295 (47.1) |
3 | Piperacillin/Tazobactam | Conditional Risk of TdP | 85 (13.6) |
4 | Tacrolimus | Possible Risk of TdP | 43 (6.9) |
5 | Hydrochlorothiazide | Conditional Risk of TdP | 34 (5.4) |
6 | Amiodarone | Known Risk of TdP | 32 (5.1) |
7 | Mirtazapine | Possible Risk of TdP | 23 (3.7) |
8 | Quetiapine | Conditional Risk of TdP | 21 (3.4) |
9 | Levetiracetam | Possible Risk of TdP | 18 (2.9) |
10 | Fluconazole | Known Risk of TdP | 14 (2.2) |
Cardiology | |||
1 | Torasemide | Conditional Risk of TdP | 190 (56.7) |
2 | Pantoprazole | Conditional Risk of TdP | 163 (48.7) |
3 | Amiodarone | Known Risk of TdP | 31 (9.3) |
4 | Hydrochlorothiazide | Conditional Risk of TdP | 28 (8.4) |
5 | Piperacillin/Tazobactam | Conditional Risk of TdP | 15 (4.5) |
6 | Mirtazapine | Possible Risk of TdP | 14 (4.2) |
7 | Tacrolimus | Possible Risk of TdP | 9 (2.7) |
8 | Quetiapine | Conditional Risk of TdP | 9 (2.7) |
9 | Levetiracetam | Possible Risk of TdP | 8 (2.4) |
10 | Melperone | Possible Risk of TdP | 7 (2.1) |
Gastroenterology | |||
1 | Pantoprazole | Conditional Risk of TdP | 183 (62.8) |
2 | Torasemide | Conditional Risk of TdP | 105 (36.0) |
3 | Piperacillin/Tazobactam | Conditional Risk of TdP | 70 (24.0) |
4 | Tacrolimus | Possible Risk of TdP | 34 (11.6) |
5 | Quetiapine | Conditional Risk of TdP | 12 (4.1) |
6 | Fluconazole | Known Risk of TdP | 11 (3.8) |
7 | Levetiracetam | Possible Risk of TdP | 10 (3.4) |
8 | Mirtazapine | Possible Risk of TdP | 9 (3.1) |
9 | Venlafaxine | Possible Risk of TdP | 9 (3.1) |
10 | Sertraline | Conditional Risk of TdP | 9 (3.1) |
QTc Prolongation | No QTc Prolongation | p | |
---|---|---|---|
Number of chart reviews performed (cases) | 38 | 155 | |
Female (n (%)) | 16 (42.1) | 70 (45.2) | 0.734 |
Age [years] (median (range)) | 79.5 (34–94) | 75 (27–92) | 0.050 |
Duration of stay [days] (median (range)) | 13 (4–35) | 9 (1–61) | 0.034 |
Age ≥ 68 years (n (%)) | 27 (71.1) | 101 (65.2) | 0.491 |
eGFR < 60 mL/min/1.73 m2 (n (%)) | 23 (60.5) | 81 (52.3) | 0.360 |
Heart failure (n (%)) | 14 (36.8) | 35 (22.6) | 0.070 |
Acute myocardial infarction (n (%)) | 0 (0) | 11 (7.1) | 0.091 |
Sepsis (n (%)) | 0 (0) | 0 (0) | n.a. |
Potassium ≤ 3.5 mmol/L (n (%)) | 2 (5.3) | 11 (7.1) | 0.686 |
QTc ≥ 450 ms in an ECG in the period of 1 week prior to chart review | 28 (73.7) | 90 (58.1) | 0.077 |
ECG data | |||
Number of ECGs per case (median (range)) | 9 (3–18) | 5 (2–29) | <0.001 |
Number of QTc-prolonging drugs prescribed (median (range)) | 2 (0–3) | 2 (0–5) | 0.658 |
Drug data and Tisdale score | |||
Prescription of ≥2 QTc-prolonging drugs (n (%)) | 23 (60.5) | 87 (56.1) | 0.623 |
Loop diuretic (n (%)) | 26 (68.4) | 83 (53.5) | 0.097 |
Tisdale score (median (range)) | 10 (1–15) | 9 (0–18) | 0.194 |
low risk (<7) (n (%)) | 10 (26.3) | 46 (29.7) | 0.682 |
moderate risk (7–10) (n (%)) | 12 (31.6) | 72 (46.5) | 0.097 |
high risk (≥11) (n (%)) | 16 (42.1) | 37 (23.9) | 0.024 |
Case Number | Identifiable Potential Risk Factors for QTc Prolongation and Cardiac Diseases |
---|---|
1 | Age > 68 years, diabetes mellitus, obesity, coronary heart disease, aortic valve stenosis, TAVI (within 48 h before QTc prolongation) |
2 | Age > 68 years, diabetes mellitus, obesity, coronary heart disease, TAVI |
3 | Age > 68 years, eGFR < 30 mL/min/1.72 m2, coronary heart disease, atrial fibrillation, aortic valve stenosis, TAVI (within 48 h before QTc prolongation) |
4 | Age > 68 years, syncope, acute renal failure, quetiapine therapy initiation |
5 | Age > 68 years, supraventricular tachycardia |
6 | Age > 68 years, coronary heart disease, aortic valve stenosis, TAVI (within 48 h before QTc prolongation) |
7 | Age > 68 years, cardiac amyloidosis, atrial flutter, aortic valve stenosis |
8 | Heart failure, tricuspid valve stenosis, pacemaker (atrioventricular block) |
9 | Age > 68 years, aortic valve stenosis, TAVI (within 48 h before QTc prolongation) |
10 | Age > 68 years, coronary heart disease, aortic valve stenosis, tricuspid valve stenosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinbrech, J.; Amann, U.; Irlbeck, M.; Clauß, S.; Strobach, D. Risk Stratification of QTc Prolongations in Hospitalized Cardiology and Gastroenterology Patients Using the Tisdale Score—A Retrospective Analysis. J. Clin. Med. 2025, 14, 339. https://doi.org/10.3390/jcm14020339
Steinbrech J, Amann U, Irlbeck M, Clauß S, Strobach D. Risk Stratification of QTc Prolongations in Hospitalized Cardiology and Gastroenterology Patients Using the Tisdale Score—A Retrospective Analysis. Journal of Clinical Medicine. 2025; 14(2):339. https://doi.org/10.3390/jcm14020339
Chicago/Turabian StyleSteinbrech, Julian, Ute Amann, Michael Irlbeck, Sebastian Clauß, and Dorothea Strobach. 2025. "Risk Stratification of QTc Prolongations in Hospitalized Cardiology and Gastroenterology Patients Using the Tisdale Score—A Retrospective Analysis" Journal of Clinical Medicine 14, no. 2: 339. https://doi.org/10.3390/jcm14020339
APA StyleSteinbrech, J., Amann, U., Irlbeck, M., Clauß, S., & Strobach, D. (2025). Risk Stratification of QTc Prolongations in Hospitalized Cardiology and Gastroenterology Patients Using the Tisdale Score—A Retrospective Analysis. Journal of Clinical Medicine, 14(2), 339. https://doi.org/10.3390/jcm14020339