Video Head Impulse Test in Children—A Systematic Review of Literature
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Review Questions
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Data Extraction and Analysis
2.6. Quality Analysis
2.7. Statistical Methods
3. Results
3.1. Article Output
3.2. Demographics of Children Studied and Study Characteristics
3.3. Technique and Feasibility
3.4. VOR Gain Across Studies
3.5. Quality Analysis
3.6. Recommendations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dasgupta, S.; Mandala, M.; Guneri, E.A.; Bassim, M.; Tarnutzer, A.A. The pioneers of vestibular physiology in the 19th century. J. Laryngol. Otol. 2024, 138, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.; Mandala, M.; Guneri, E.A. Alexander Crum Brown: A Forgotten Pioneer in Vestibular Sciences. Otolaryngol. Neck Surg. 2020, 163, 557–559. [Google Scholar] [CrossRef]
- Halmagyi, G.M.; Curthoys, I.S. A clinical sign of canal paresis. Arch Neurol. 1988, 45, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Alhabib, S.F.; Saliba, I. Video head impulse test: A review of the literature. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Cremer, P.D.; Halmagyi, G.M.; Aw, S.T.; Curthoys, I.S.; A McGarvie, L.; Todd, M.J.; A Black, R.; Hannigan, I.P. Semicircular canal plane head impulses detect absent function of individual semicircular canals. Brain 1998, 121 Pt 4, 699–716. [Google Scholar] [CrossRef]
- Ulmer, E.; Chays, A. Curthoys and Halmagyi Head Impulse test: An analytical device. Ann. d’Otolaryngol. Chir. Cervico-Faciale 2005, 122, 84–90. [Google Scholar] [CrossRef]
- MacDougall, H.G.; Weber, K.P.; McGarvie, L.A.; Halmagyi, G.M.; Curthoys, I.S. The video head impulse test: Diagnostic accuracy in peripheral vestibulopathy. Neurology 2009, 73, 1134–1141. [Google Scholar] [CrossRef]
- MacDougall, H.G.; McGarvie, L.A.; Halmagyi, G.M.; Curthoys, I.S.; Weber, K.P. Application of the video head impulse test to detect vertical semicircular canal dysfunction. Otol. Neurotol. 2013, 34, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Curthoys, I.S.; Manzari, L. Clinical application of the head impulse test of semicircular canal function. Hear. Balance Commun. 2017, 15, 113–126. [Google Scholar] [CrossRef]
- Strupp, M.; Kim, J.S.; Murofushi, T.; Straumann, D.; Jen, J.C.; Rosengren, S.M.; Della Santina, C.C.; Kingma, H. Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Bárány Society. J. Vestib. Res. 2017, 27, 177–189, Erratum in J. Vestib. Res. 2023, 33, 87. [Google Scholar] [CrossRef] [PubMed]
- Park, H.G.; Lee, J.H.; Oh, S.H.; Park, M.K.; Suh, M.W. Proposal on the Diagnostic Criteria of Definite Isolated Otolith Dysfunction. J. Audiol. Otol. 2019, 23, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Wiener-Vacher, S.R.; Hamilton, D.A.; Wiener, S.I. Vestibular activity and cognitive development in children: Perspectives. Front. Integr. Neurosci. 2013, 7, 92. [Google Scholar] [CrossRef] [PubMed]
- Li, C.M.; Hoffman, H.J.; Ward, B.K.; Cohen, H.S.; Rine, R.M. Epidemiology of Dizziness and Balance Problems in Children in the United States: A Population-Based Study. J. Pediatr. 2016, 171, 240–247.e3. [Google Scholar] [CrossRef] [PubMed]
- Money-Nolan, L.E.; Flagge, A.G. Factors affecting variability in vestibulo-ocular reflex gain in the Video Head Impulse Test in individuals without vestibulopathy: A systematic review of literature. Front. Neurol. 2023, 14, 1125951. [Google Scholar] [CrossRef]
- McGarvie, L.A.; MacDougall, H.G.; Halmagyi, G.M.; Burgess, A.M.; Weber, K.P.; Curthoys, I.S. The Video Head Impulse Test (vHIT) of Semicircular Canal Function–Age-Dependent Normative Values of VOR Gain in Healthy Subjects. Front. Neurol. 2015, 6, 154. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.N.; Fàbregues, S.; Bartlett, G.; Boardman, F.; Cargo, M.; Dagenais, P.; Pluye, P. The Mixed Methods Appraisal Tool (MMAT) Version 2018 for Information Professionals and Researchers. Educ. Inf. 2018, 34, 285–291. [Google Scholar] [CrossRef]
- Abakay, M.A.; Küfecïler, L.; Yazici, Z.M.; Gülüstan, F.; Şimşek, B.M.; Güneş, S.; Sayin, I. Determination of Normal Video Head Impulse Test Gain Values in Different Age Group. Turk. Klin. J. Med Sci. 2020, 40, 406–409. [Google Scholar] [CrossRef]
- Abdullah, N.A.; Wahat, N.H.A.; Ian, S.C.; Abdullah, A.; Alias, H. The feasibility of testing otoliths and semicircular canals function using VEMPs and vHIT in Malaysian children. J. Sains Kesihat. Malays. 2017, 15, 179–190. Available online: http://journalarticle.ukm.my/11490 (accessed on 2 December 2024). [CrossRef]
- Alizadeh, S.; Rahbar, N.; Ahadi, M.; Sameni, S.J. Normative vestibulo-ocular reflex data in 6–12 year-old children using video head impulse test. Aud. Vestib. Res. 2017, 26, 145–150. [Google Scholar]
- Bachmann, K.; Sipos, K.; Lavender, V.; Hunter, L.L. Video head impulse testing in a pediatric population: Normative findings. J. Am. Acad. Audiol. 2018, 29, 417–426. [Google Scholar] [CrossRef]
- Bayram, A.; Kaya, A.; Mutlu, M.; Hira, İ.; Tofar, M.; Özcan, İ. Clinical practice of horizontal video head impulse test in healthy children. Kulak Burun Bogaz Ihtis. Derg. 2017, 27, 79–83. [Google Scholar] [CrossRef]
- Emekci, T.; Uğur, K.Ş.; Cengiz, D.U.; Men Kılınç, F. Normative values for semicircular canal function with the video head impulse test (vHIT) in healthy adolescents. Acta Otolaryngol. 2021, 141, 141–146. [Google Scholar] [CrossRef]
- Ertugrul, G. Clinical use of child-friendly video head impulse test in dizzy children. Am. J. Otolaryngol. 2022, 43, 103432. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S. The Video Head Impulse Test in Different Vestibular Pathologies in Children; Personal Series; Vestibular Hackathon: Peckforton, UK, 2018; Published Audit Listed online: https://www.alderhey.nhs.uk/wp-content/uploads/2023/06/Alder-Hey-Quality-Report-17-18.pdf (accessed on 2 December 2024).
- Hamilton, S.S.; Zhou, G.; Brodsky, J.R. Video head impulse testing (VHIT) in the pediatric population. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, R.; Deconinck, F.J.A.; Danneels, M.; Dhooge, I.; Uzeel, B.; Maes, L. A Clinical Framework for Video Head Impulse Testing and Vestibular Evoked Myogenic Potential Assessments in Primary School-Aged Children. Ear Hear. 2024, 45, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Hülse, R.; Hörmann, K.; Servais, J.J.; Hülse, M.; Wenzel, A. Clinical experience with video head impulse test in children. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 1288–1293. [Google Scholar] [CrossRef] [PubMed]
- Khater, A.M.; Afifif, P.O. Video head-impulse test (vHIT) in dizzy children with normal caloric responses. Int. J. Pediatr. Otorhinolaryngol. 2016, 87, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Jung, Y.K.; Hyun, K.J.; Kim, M.J.; Kim, H.J. Usefulness and practical insights of the pediatric video head impulse test. Int. J. Pediatr. Otorhinolaryngol. 2020, 139, 110424. [Google Scholar] [CrossRef] [PubMed]
- Kirbac, A.; Kaya, E.; Incesulu, S.A.; Carman, K.B.; Yarar, C.; Ozen, H.; Pinarbasli, M.O.; Gurbuz, M.K. Differentiation of peripheral and non-peripheral etiologies in children with vertigo/dizziness: The video-head impulse test and suppression head impulse paradigm. Int. J. Pediatr. Otorhinolaryngol. 2024, 179, 111935. [Google Scholar] [CrossRef] [PubMed]
- Lehnen, N.; Ramaioli, C.; Todd, N.S.; Bartl, K.; Kohlbecher, S.; Jahn, K.; Schneider, E. Clinical and video head impulses: A simple bedside test in children. J. Neurol. 2017, 264, 1002–1004. [Google Scholar] [CrossRef] [PubMed]
- Lissner VM, H.; Devantier, L.; Ovesen, T. Using the video head impulse test in healthy Danish adolescents. Hear. Balance Commun. 2019, 18, 49–54. [Google Scholar] [CrossRef]
- Martens, S.; Dhooge, I.; Dhondt, C.; Vanaudenaerde, S.; Sucaet, M.; Rombaut, L.; Maes, L. Pediatric Vestibular Assessment: Clinical Framework. Ear Hear. 2023, 44, 423–436. [Google Scholar] [CrossRef]
- Pepaś, R.; Pyda-Dulewicz, A.; Śmiechura, M.; Konopka, W. Application Video Head Impulse Test in the diagnosis of balance system in children. Pol. Otorhinolaryngol. Rev. 2015, 4. [Google Scholar] [CrossRef]
- Retamal, S.R.; Díaz, P.O.; Fernández, A.M.; Muñoz, C.G.; Espinoza, M.R.; Araya, V.S.; Rivera, J.T. Assessment protocol and reference values of vestibulo-ocular reflex (VOR) gain in the horizontal plane recorded with video-Head Impulse Test (vHIT) in a pediatric population. CoDAS 2021, 33, e20200076. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Villalba, R.; Caballero-Borrego, M. Normative values for the video Head Impulse Test in children without otoneurologic symptoms and their evolution across childhood by gender. Eur. Arch. Oto-Rhino-Laryngol. 2023, 280, 4037–4043. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.M.; Helminski, J.O. Test-retest and interrater reliability of the video head impulse test in the pediatric population. Otol. Neurotol. 2016, 37, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Sommerfleck, P.A.; Macchi ME, G.; Weinschelbaum, R.; De Bagge, M.D.; Bernáldez, P.; Carmona, S. Balance disorders in childhood: Main etiologies according to age. Usefulness of the video head impulse test. Int. J. Pediatr. Otorhinolaryngol. 2016, 87, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Wiener-Vacher, S.R.; Wiener, S. Video head impulse tests with a remote camera system: Normative values of semicircular canal vestibulo-ocular reflex gain in infants and children. Front. Neurol. 2017, 8, 434. [Google Scholar] [CrossRef]
- Yılmaz, E.; Yağcı, İ.; Kesimli, M.; Altundağ, A. Comparison of Video Head Impulse Test Results of Pediatric Patients with Dizziness with Healthy Volunteers. Turk. J. Ear Nose Throat (Tr-ENT) 2022, 32, 121. [Google Scholar] [CrossRef]
- Zhou, G.; Goutos, C.; Lipson, S.; Brodsky, J. Range of Peak Head Velocity in Video Head Impulse Testing for Pediatric Patients. Otol. Neurotol. 2018, 39, e357–e361. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Yun, A.; Wang, A.; Brodsky, J.R. Comparing Video Head Impulse Testing with Rotary Chair in Pediatric Patients: A Controlled Trial. Otolaryngol. Neck Surg. 2024, 171, 1190–1196. [Google Scholar] [CrossRef]
- Perez-Fernandez, N.; Eza-Nuñez, P. Normal Gain of VOR with Refixation Saccades in Patients with Unilateral Vestibulopathy. J. Int. Adv. Otol. 2015, 11, 133–137. [Google Scholar] [CrossRef]
- Korsager, L.E.; Faber, C.E.; Schmidt, J.H.; Wanscher, J.H. Refixation Saccades with Normal Gain Values: A Diagnostic Problem in the Video Head Impulse Test: A Case Report. Front. Neurol. 2017, 8, 81. [Google Scholar] [CrossRef]
- Dasgupta, S.; Crunkhorn, R.; Wong, J.; McMahon, A.; Ratnayake, S.; Manzari, L. Suppression head impulse test in children-experiences in a tertiary paediatric vestibular centre. Front. Neurol. 2024, 15, 1297707. [Google Scholar] [CrossRef]
- George, M.; Kolethekkat, A.A.; Yoan, P.; Maire, R. Video Head Impulse Test: A Comparison and Analysis of Three Recording Systems. Indian J. Otolaryngol. Head Neck Surg. 2023, 75, 60–66. [Google Scholar] [CrossRef]
- van Dooren, T.S.; Starkov, D.; Lucieer, F.M.P.; Vermorken, B.; Janssen, A.M.L.; Guinand, N.; Pérez-Fornos, A.; Van Rompaey, V.; Kingma, H.; van de Berg, R. Comparison of three video head impulse test systems for the diagnosis of bilateral vestibulopathy. J. Neurol. 2020, 267 (Suppl. S1), 256–264. [Google Scholar] [CrossRef]
- Suh, M.W.; Park, J.H.; Kang, S.I.; Lim, J.H.; Park, M.K.; Kwon, S.K. Effect of Goggle Slippage on the Video Head Impulse Test Outcome and Its Mechanisms. Otol. Neurotol. 2017, 38, 102–109. [Google Scholar] [CrossRef]
- Naranjo, E.N.; Cleworth, T.W.; Allum, J.H.; Inglis, J.T.; Lea, J.; Westerberg, B.D.; Carpenter, M.G. Vestibulo-spinal and vestibulo-ocular reflexes are modulated when standing with increased postural threat. J. Neurophysiol. 2016, 115, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Von Hofsten, C.; Rosander, K. Development of smooth pursuit tracking in young infants. Vis. Res. 1997, 37, 1799–1810. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, R.; Grindle, C.; Zwicky, E.F.; Morlet, T. Development of the vestibular system and balance function: Differential diagnosis in the pediatric population. Otolaryngol. Clin. N. Am. 2011, 44, 251–271. [Google Scholar] [CrossRef] [PubMed]
Study | Equipment | Method | Time Taken | Comments |
---|---|---|---|---|
Hulse 2015 [27] | EyeSeeCam Lateral canal only | At least 10 impulses with 5–15° lateral displacement at 100–200°/s 1 m target | 20 min | 1. Under 6 difficult to follow instructions 2. Use of attractive targets 3. 76% reproducible results—cervical neck muscles preclude impulses 4. Instructions are important 5. Consistent with pathology |
Renata 2015 [34] | Not given All canals | 20 impulses with 20° displacement at 70–170°/s 1 m target | Fast | 1. Instructions are important 2. Brightly lit room |
Hamilton 2015 [25] | ICS Impulse All canals | Not given | Not given | 1. Corrective saccades more 100% sensitivity and specificity 2. VOR gain 66% sensitivity and 100% specificity 3. VOR gain < 0.7 pathological and consistent with pathology 4. Blink artifacts 5. Goggles cannot be fitted under 3 years |
Khater 2016 [28] | ICS Impulse All canals | 20 impulses with 5–20° displacement at 50–250°/s 1 m target | Quick | 1. Corrective saccades may exist with normal VOR gain in pathology 2. High sensitivity and specificity |
Sommerfleck 2016 [38] | ICS Impulse Lateral canal only | 15° displacement 1 m target | Quick | VOR gain < 0.7 consistent with pathology |
Ross 2016 [37] | ICS Impulse All canals | 10 impulses with 5–10° displacement at ?50°/s 1–2 m target | <30 min | 1. Good test–retest reliability 2. Required more impulses to achieve 10 recordable results especially vertical canals 3. Achieving >100°/s velocity difficult—more difficult in vertical canals 4. Limited sensitivity to detect pathology by VOR gain alone due to confounding variables contaminating VOR gain, in particular, vertical canals may be related to maturation of cervical spine 5. Brightly lit room 6. No significant difference in VOR gain across age groups |
Alizadeh 2017 [19] | Synapsys All canals | 10–30° displacement at 160°/s 1 m target | Not given | No difference in VOR gain in gender and age |
Bayram 2017 [21] | EyeSeeCam Lateral canal only | 10 impulses with 5–15° displacement at 100–200°/s 1 m target | Not given | 1. Cervical neck stiffness plays a role in VOR gain 2. Factors precluding test were lack of interest, apprehension and fear, and failure of calibration |
Dasgupta 2018 [24] | ICS Impulse All canals | 10 impulses with 10–20° displacement at 100–250°/s 1 m target | 10 min | 1. Difficult to achieve high velocities in vertical canals 2. Lifting of eyelids 3. Corrective saccades with normal VOR gain 4. Low vertical canal gains due to possible cervical neck contamination 5. Patience and continuous engagement of children and not difficult 6. Should be accompanied by other tests 7. Goggle fitting crucial |
Abdullah 2017 [18] | ICS Impulse All canals | 10–20° displacement at 100–250°/s 1 m target | Quick | 1. Instructions are important 2. Lifting of eyelids 3. Easy to perform 4. Additional foam in goggles |
Lehnen 2017 [31] | EyeSeeCam Lateral canal only | Not given | Less than 10 min | 1. Younger children may lack attention to calibrate 2. Covert refixation saccades may occur with normal VOR gain deemed vestibular weakness 3. No age difference in groups |
Wiener-Vacher 2017 [39] | Synapsys All canals | 10–20° displacement at 100–150°/s 1–1.3 m target | Quick | 1. Under 4 years, children sit on parents’ lap 2. Instructions important 3. Attractive targets 4. As young as 3 months 5. Difficult to achieve >100°/s in vertical canals, but even then lower peak head velocities do not preclude a similar outcome as that obtained with higher velocities 6. Patience and continuous engagement of children and not difficult 7. Vergence does not play in role across age groups |
Lissner 2019 [32] | EyeSeeCam Lateral canal only | 15 impulses; 10–15° at 150°/s | 1. Easy to perform 2. Artifacts generated by moving camera in goggles 3. Blink artifacts | |
Emekci 2020 [22] | ICS Impulse All canals | 20 impulses; 10–200° displacement | 1. Goggle slippage affects gain 2. Distance from pupil affects gain, ideal between 1 and 1.2 m 3. Position mainly affects younger children | |
Retamal 2020 [35] | EyeSeeCam Lateral canal only | 20 impulses | 1. Instructions important 2. Having a short attention span 3. Correct placement of head strap and goggles | |
Kim 2020 [29] | ICS Impulse Lateral canal only | 10–15 impulses at 10–20° displacement at 100–150°/s | 1. Goggle slippage 2. Blink artifacts 3. Normal gain may not indicate normal vestibular function 4. Dependant on operator practice 5. Lack of attention may contaminate VOR gain for tracking | |
Abakay 2020 [17] | ICS Impulse All canals | 1 m target | 1. Safe and well-tolerated 2. No difference in age groups | |
Martens 2022 [33] | Synapsys All canals | 10–20° at 150–250°/s | 1. Eminently feasible over 1 year 2. Peak head velocities difficult to achieve in vertical canals 3. Requires considerable experience to interpret results | |
Etrugul 2022 [23] | Synapsys All canals | 15–20° at 150–200°/s | 1. Interpretation requires experience 2. Gaze errors may contaminate VOR gain 3. Evolution of saccades indicates compensation | |
Rodriíguez-Villalba 2023 [36] | EyeSeeCam All canals | 1 m target | 1. VOR gains more homogenous in lateral canals 2. Difficult to achieve velocities in vertical canals 3. Lack of cooperation under 3 years 4. Poor goggle fit 5. Lower vertical canal gains 6. Gains significantly lower in 306 years of age | |
Yilmaz 2023 [40] | ICS Impulse All canals | 10–20° displacement | 1. Easy to perform 2. Operator variability 3. Goggles’ fit | |
Kirbac 2024 [30] | ICS Impulse All canals | 20 impulses; 15–20° displacement at 150–200°/s 1 m target | 10 min | Feasible and easy to perform |
Van Hecke 2024 [26] | ICS Impulse All canals | 20 impulses; 10–20° displacement with 120–250°/s 1.5 m target | 10–12 min | 1. Feasible and quick test 2. Blink artefacts 3. Pulling eyelid for pupil size—wider pupils may affect VOR gain most noticeable to vertical canals—use brightly lit rooms 4. Should be accompanied by other tests 5. Goggle slippage 6. Lack of attention may add noise |
Bachman 2018 [20] | ICS Impulse All canals | 20 impulses; >100°/s | 8–17 min | 1. More than 50% saccades, magnitude greater than 50% of head amplitude 2. Max time in 4–6 years 3. Eyelid pulled up 4. Attractive targets to engage attention 5. Vertical canals most affected by pupil size 6. Paediatric sized goggles required, and foam used for good fit 7. No difference in age groups in VOR gain |
Zhou 2024 [42] | ICS Impulse All canals | 1. Low vertical canal gains 2. Saccades with normal VOR gain in vertical canals |
Series | n | Lateral Canal VOR | Vertical Canal VOR | VOR in Pathology |
---|---|---|---|---|
Hulse 2015 [27] EyeSeeCam | 42 (36 + 6); 3–16 years; 32 boys, 23 girls; case–control | 1.02 +/− 0.28 | Not performed | 0.47 +/− 0.3 |
Renata 2015 [34] | 28 (19 + 9); 10 boys and 18 girls; 5–18; case–control | Right 0.89 +/− 0.26 Left 0.90 +/− 0.21 | RA: 0.96 +/− 0.39 LP 1.03 +/− 0.35 RP: 1.06 +/− 0.33 LA: 1.11 +/− 0.26 | RL: 0.75 +/− 0.19 LL: 0.60 +/− 0.33 RA: 1.12 +/− 0.2 LP: 1.23 +/− 0.19 RP: 1.12 +/− 0.26 LA: 0.91 +/− 0.36 |
Hamilton 2015 [25] ICS Impulse | 33; 3–19 years; 15 boys and 18 girls; only pathology | Range < 0.7 suggested to demonstrate abnormal LSC function of rotatory chair Corrective saccades 100% Vertical canals < 0.7 abnormal | ||
Khater and Afifi 2016 [28] ICS Impulse | 49 (8 + 41); 22 boys and 27 girls; 13–19 years; case–control | Right 1.10 +/− 0.22 Left 1.06 +/− 0.19 | RA: 0.96 +/− 0.14 RP: 1.04 +/− 0.11 LA: 0.91 +/− 0.10 LP: 1.03 +/− 0.12 | LL: 0.47 +/− 0.21 RL: 0.43 +/− 0.14 LP: 0.38 +/− 0.19 LA: 0.42 +/− 0.24 RP: 0.32 +/− 0.18 |
Sommerfleck 2016 [38] ICS Impulse | 55; 1–18 years; only pathology | Some normal were found with balance problems | Not performed | 0.48 lateral only |
Ross and Helminski 2016 [37] ICS Impulse | 28; 4–17 years; only normal | Right Age 4–7 1.04 +/− 0.07 Age 8–12 1.03 +/− 0.05 Age 13–17 1.02 +/− 0.05 Left Age 4–7 1.02 +/− 0.07 Age 8–12 1.01 +/− 0.06 Age 13–17 1.00 +/− 0 | RA Age 4–7 1.03 +/− 0.12 Age 8–12 1.08 +/− 0.11 Age 13–17 1.09 +/− 0.11 LA Age 4–7 1.01 +/− 0.10 Age 8–12 1.07 +/− 0.13 Age 13–17 1.07 +/− 0.12 RP Age 4–7 1.04 +/− 0.11 Age 8–12 1.04 +/− 0.11 Age 13–17 1.06 +/− 0.12 LP Age 4–7 1.01 +/− 0.11 Age 8–12 1.06 +/− 0.10 Age 13–17 1.02 +/− 0.07 | Not performed |
Alizadeh 2017 [19] Synapsys | 60; 6–12 years; 35 boys and 25 girls; only normal | Right lateral 0.99 +/− 0.05 Left lateral 1.00 +/− 0.04 | Right anterior 0.98 +/− 0.06 Right posterior 0.94 +/− 0.06 Left anterior 0.98 +/− 0.06 Left posterior 0.94 +/− 0.05 | Not performed |
Bayram 2017 [21] EyeSeeCam | 100; 6–16 years; 51 boys and 49 girls; only normal | Right Age 6–7 0.9 +/− 0.1 Age 8–12 0.9 +/− 0.1 Age >12 1.00 +/− 0.1 Left Age 6–7 0.9 +/− 0.1 Age 8–12 0.9 +/− 0.1 Age >12 1.00 +/− 0.1 | Not performed | Not performed |
Dasgupta 2018 [24] ICS Impulse | 100 (39 + 61); 5–16 years; 50 boys and 50 girls; case–control | Left: 0.93 +/− 0.09 Right 0.97 +/− 0.08 | LA: 0.65 +/− 0.14 RA: 0.75 +/− 0.14 LP: 0.82 +/− 0.12 RP: 0.69 +/− 0.13 | LL: 0.90 +/− 0.18 RL: 0.87 +/− 0.24 LA: 0.6 +/− 0.15 RA: 0.55 +/− 0.24 LP: 0.76 +/− 0.14 RP: 0.53 +/− 0.10 |
Abdullah 2017 [18] ICS Impulse | 21; 6–15 years; 12 boys and 9 girls; only normal | Right: 0.98 +/− 0.07 Left: 0.94 +/− 0.07 | RA: 0.79 +/− 0.14 LP: 0.73 +/− 0.11 LA: 0.84 +/− 0.11 RP: 0.92 +/− 0.12 | Not performed |
Lehnen 2017 [31] EyeSeeCam | 44; 4–18 years; only normal | 4–7 years: 0.96 +/− 0.07 | Not performed | Not performed |
8–11 years: 0.95 +/− 0.06 | ||||
12–18 years: 0.94 +/− 0.07 | ||||
Wiener-Vacher and Wiener 2017 [39] Synapsys | 274; 1–15 years; only normal | 0.966 +/− 0.0789 | Anterior: 0.991 +/− 0.0789 Posterior: 0.965 +/− 0.0789 | Not performed |
Lissner 2019 [32] EyeSeeCam | 33; 13–16 years; 28 boys and 5 girls; only normal | Right: 1.04 +/− 0.10 Left: 1.01 +/− 0.08 | Not performed | Not performed |
Emekci 2020 [22] ICS Impulse | 100; 11–18 years; 50 boys and 50 girls; only normal | Right: 1.00 (+/−0.089); Left: 0.92 (+/−0.104) | RA: 0.84 +/− 0.163 LP: 0.87 +/− 0.122 LA: 0.94 +/− 0.158 RP: 0.86 +/− 0.198 | Not performed |
Retamal 2020 [35] EyeSeeCam | 39; 5–17 years; only normal | 5–10 years: Right: 0.96 +/− 0.21 Left: 1.11 +/− 0.17 11–17 years: Right: 0.90 +/− 0.13 Left: 1.06 +/− 0.18 | Not performed | Not performed |
Kim 2020 [29] ICS Impulse | 39; 7–18 years; 23 boys and 16 girls; only pathological | <0.8 | ||
Abakay 2020 [17] ICS Impulse | 20; 12 -20; only normal | Right 0.96 +/− 0.09 Left 0.85 +/− 0.09 | RA: 0.86 +/− 0.06 LA: 0.86 +/− 0.10 RP: 0.92 +/− 0.12 LP: 0.87 +/− 0.05 Ant—0.86 Post—0.89 | Not performed |
Martens 2022 [33] Synapsys | 133; 5–48 months; 64 boys and 69 girls; only normal | 5–12 months: 0.87 +/− 0.08 12–24 months: 0.91 +/− 0.06 24–36 months: 0.92 +/− 0.04 36–48 months: 0.96 +/− 0.04 | Anterior: 0.94 +/− 0.06 Posterior: 0.90 +/− 0.06 | Not performed |
Ertugrul 2022 [23] Synapsys | 40; 1–17 years; only pathological | <0.7 | ||
Rodriíguez-Villalba and Caballero-Borrego 2023 [36] EyeSeeCam | 187; 3–16 years; 117 boys and 70 girls; only normal | 3–6 years: RH: 0.78 +/− 0.02 LH: 0.76 +/− 0.02 7–10 years: RH: 0.83 +/− 0.04 LH: 0.81 +/− 0.04 11–16 years: RH: 0.82 +/− 0.05 LH: 0.81 +/− 0.04 | 3–6 years: RA: 0.75 +/− 0.03 LP: 0.72 +/− 0.03 LA: 0.72 +/− 0.04 RP: 0.70 +/− 0.04 7–10 years: RA: 0.78 +/− 0.04 LP: 0.76 +/− 0.04 LA: 0.76 +/− 0.04 RP: 0.74 +/− 0.04 11–16 years: RA: 0.75 +/− 0.08 LP: 0.74 +/− 0.08 LA: 0.72 +/− 0.09 RP: 0.71 +/− 0.08 | Not performed |
Yilmaz 2023 [40] ICS Impulse | 21 (9 + 12); 5–16 years; 9 boys and 13 girls; case–control | LL: 0.89 +/− 0.1 RL: 0.94 +/− 0.17 | LA: 0.84 +/− 0.11 RA: 0.84 +/− 0.13 LP: 0.90 +/− 0.18 RP: 0.86 +/− 0.15 | LA: 0.75 +/− 0.07 RA: 0.85 +/− 0.15 LL: 0.77 +/− 0.09 RL: 0.96 +/− 0.14 LP: 0.86 +/− 0.16 RP: 0.85 +/− 0.16 |
Kirbac 2024 [30] ICS Impulse | 27; 5–14 years; only pathology | Gains < 0.7 | ||
Van Hecke 2024 [26] ICS Impulse | 140; 6–13 years; 70 boys and 70 girls; only normal | Right: 1.03 +/− 0.09 Left: 0.97 +/− 0.10 1.0 | RA: 0.92 +/− 0.11 LA: 0.92 +/− 0.12 RP: 0.91 +/− 0.15 LP: 0.97 +/− 0.12 | Not performed |
Bachman 2018 [20] ICS Impulse | 41; 4–12 years; only normal | Right 1.04 +/− 0.09 Left 0.96 +/− 0.09 1.0 Age groups reported 4–6, 7–9, and 10–12 years and averaged | RA 0.9 +/− 0.19 LA 0.8 +/− 0.11 RP 0.83 +/− 0.09 LP 0.91 +/− 0.14 | Not performed |
Zhou 2024 [42] ICS Impulse | 37 (23 + 14); case–control | Right 1.04 +/− 0.08 Left 0.98 +/− 0.07 1.01 Age groups mentioned 3–7, 8–11, and 13–18 years, not individually analysed but averaged | RA 0.81 +/− 0.15 LA 0.8 +/− 0.15 RP 0.76 +/− 0.08 LP 0.81 +/− 0.14 | RL 0.83 +/− 0.3 LL 0.75 +/− 0.27 RA 0.71 +/− 0.23 LA 0.68 +/− 0.26 RP 0.77 +/− 0.24 LP 0.76 +/− 0.24 |
Average normal VOR gain across studies for lateral semicircular canals | 0.96 +/− 0.07 (range 0.8–1.08) |
Average normal VOR gain across studies for anterior semicircular canals | 0.89 +/− 0.13 (range 0.74 to 1.03) |
Average normal VOR gain across studies for posterior semicircular canals | 0.9 +/− 0.12 (range 0.72 to 1.04) |
Normal lateral semicircular canal VOR gain comparison between ICS Impulse and EyeSeeCam | p > 0.05 |
Cohen’s d pooled effect sizes for controlled studies | 1 |
Heterogeneity/inconsistencies among controlled studies | I2 = 86% |
Before Test | During Test and Output |
---|---|
Performed by tester with adequate paediatric experience and practice; skill in executing and interpreting both lateral and vertical canal impulses including artifact recognition (all studies) | 10–20° displacement [18,19,20,21,22,23,24,26,27,28,29,30,32,33,34,37,38,39,40,42] |
Using attractive targets and play techniques for engaging children [20,24,27,39] | Target at 1–1.5 m [17,18,19,24,26,27,28,30,34,36,37,38,39] |
Adequate instruction [18,24,25,26,27,29,32,34,35,39] | 100–200° per second head velocity [18,19,20,21,23,24,26,27,28,29,30,32,33,34,37,39] |
Brightly lit room [26,34,37] | 10–15 head thrusts [21,22,24,25,26,27,28,29,30,32,34,35] |
Pulling up eyelids [18,20,24,26] | Average gain as given in Table 3 |
Using remote controlled camera under 3 years [23,33,39] | Refixation saccade morphology [3,24,28,29,42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dasgupta, S.; Mukherjee, A.L.; Crunkhorn, R.; Dawabah, S.; Aslier, N.G.; Ratnayake, S.; Manzari, L. Video Head Impulse Test in Children—A Systematic Review of Literature. J. Clin. Med. 2025, 14, 369. https://doi.org/10.3390/jcm14020369
Dasgupta S, Mukherjee AL, Crunkhorn R, Dawabah S, Aslier NG, Ratnayake S, Manzari L. Video Head Impulse Test in Children—A Systematic Review of Literature. Journal of Clinical Medicine. 2025; 14(2):369. https://doi.org/10.3390/jcm14020369
Chicago/Turabian StyleDasgupta, Soumit, Aditya Lal Mukherjee, Rosa Crunkhorn, Safaa Dawabah, Nesibe Gul Aslier, Sudhira Ratnayake, and Leonardo Manzari. 2025. "Video Head Impulse Test in Children—A Systematic Review of Literature" Journal of Clinical Medicine 14, no. 2: 369. https://doi.org/10.3390/jcm14020369
APA StyleDasgupta, S., Mukherjee, A. L., Crunkhorn, R., Dawabah, S., Aslier, N. G., Ratnayake, S., & Manzari, L. (2025). Video Head Impulse Test in Children—A Systematic Review of Literature. Journal of Clinical Medicine, 14(2), 369. https://doi.org/10.3390/jcm14020369