Peripheral Extracellular Vesicles for Diagnosis and Prognosis of Resectable Lung Cancer: The LUCEx Study Protocol
Abstract
:1. Background
2. New Perspectives: Extracellular Vesicles
3. Materials and Methods
3.1. Study Design and Setting
3.2. Study Objectives
- Establish a cohort to determine the incidence of different cancer subtypes in patients with surgically resectable lesions and identify the rate of false-positive findings on CT scans suggestive of malignant lesions to assess its sensitivity.
- Evaluate and quantify the presence of exosomes in the blood plasma of patients with and without cancer, studying their content both qualitatively and quantitatively to find out if there are statistical significant differences.
- Investigate the differential expression of exosomal contents, if any, according to the pathology of the patients from whom they originate to detect if exosomes are a useful tool as a form of diagnosis.
- Determine new diagnostic biomarkers based on the study of exosomes in liquid biopsy. Evaluate the behavior of these markers depending on the clinical evolution during follow-up.
- Study of extracellular vesicles not only in liquid, but also in solid tissue to determine prognostic biomarkers to assess the differences and the systemic impact of local disease.
- Conduct a physiopathological study of the tumor microenvironment both locally and distantly based on the study of extracellular vesicles.
3.3. Participants
3.4. Measurements
3.4.1. Clinical Data
3.4.2. Primary Sample Processing
Lung Tissue
Peripheral Blood
Isolation of Exosomes
Lung Parenchyma
Peripheral Plasma
3.4.3. Exosome Characterization
Protein Characterization: ELISA
Morphological Characterization: Transmission Electron Microscopy
Quantification of Exosomes: NTA
3.4.4. Small-RNA Analysis
3.5. Power Considerations
3.6. Statistical Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index |
CD9 | Cluster of differentiation 9 |
CD63 | Cluster of differentiation 63 |
CD81 | Cluster of differentiation 81 |
COPD | Chronic obstructive pulmonary disease |
CT | Computed tomography |
DLCO | Diffusing capacity of the lungs for carbon monoxide |
DMEM | Dulbecco’s Modified Eagle Medium |
DNA | Desoxirribonucleic acid |
EDTA | Ethylenediaminetetraacetic acid |
EPCAM | Epithelial cell adhesion molecule |
ELISA | Enzyme-linked immunosorbent assay |
ESCRT | Endosomal sorting complex required for transport |
EV | Extracellular vesicles |
FDR | False discovery rate |
GO | Gene ontology |
HIV | Human immunodeficiency virus |
IQR | Interquartile range |
INMA | Institute of Nanoscience and Materials of Aragon |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LDCT | Low-dose computed tomography |
LUCEx | Lung cancer extracellular vesicles |
LNA | Locked nucleid acid |
miRNA | micro-RNA |
NTA | Nanoparticle Tracking Analysis |
NSCLC | Non-small cell lung cancer |
PBS | Phosphate-buffered saline |
PFTs | Pulmonary function tests |
RNA | Ribonucleic acid |
RNA-Seq | RNA Sequencing |
RT-qPCR | Real-time quantitative polymerase chain reaction |
SD | Standard deviation |
SPSS | Statistical package for the social sciences |
TNM | Tumor, node, and metastasis |
WHO | World Health Organization |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Ost, D.E.; Yeung, S.C.J.; Tanoue, L.T.; Gould, M.K. Clinical and organizational factors in the initial evaluation of patients with lung cancer: Diagnosis and management of lung cancer, 3rd ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 2013, 143, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung Cancer. Med. Clin. N. Am. 2019, 103, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Bade, B.C.; Cruz, C.S.D. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Cui, S.; Cheng, Z.; Qin, W.; Jiang, L. Exosomes as a liquid biopsy for lung cancer. Lung Cancer 2018, 116, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, P.J.; Silvestri, G.A.; Souter, L.H.; Caverly, T.J.; Kanne, J.P.; Katki, H.A.; Wiener, R.S.; Detterbeck, F.C. Screening for Lung Cancer: CHEST Guideline and Expert Panel Report. Chest 2021, 160, e427–e494. [Google Scholar] [CrossRef]
- Cervera Deval, J.; Barrios Benito, M.; Peñalver Cuesta, J.C.; Martínez Pérez, E.; Sandiego Contreras, S.; Cruz Mojarrieta, J.; de Aguiar Quevedo, K.; Arraras Martínez, M.; Arana, E. Lung Cancer Screening: Survival in an Extensive Early Detection Pro-gram in Spain (I-ELCAP). Arch. Bronconeumol. 2022, 58, 406–411. [Google Scholar] [CrossRef]
- Bradley, S.H.; Abraham, S.; Callister, M.E.; Grice, A.; Hamilton, W.T.; Lopez, R.R.; Shinkins, B.; Neal, R.D. Sensitivity of chest X-ray for detecting lung cancer in people presenting with symptoms: A systematic review. Br. J. Gen. Pract. 2019, 69, e827–e835. [Google Scholar] [CrossRef] [PubMed]
- Wait, S.; Alvarez-Rosete, A.; Osama, T.; Bancroft, D.; Cornelissen, R.; Marušić, A.; Garrido, P.; Adamek, M.; van Meerbeeck, J.; Snoeckx, A.; et al. Implementing Lung Cancer Screening in Europe: Taking a Systems Approach. JTO Clin. Res. Rep. 2022, 3, 100329. [Google Scholar] [CrossRef] [PubMed]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The IASLC lung cancer staging project: Proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef]
- Majem, M.; Juan, O.; Insa, A.; Reguart, N.; Trigo, J.M.; Carcereny, E.; García-Campelo, R.; García, Y.; Guirado, M.; Provencio, M. SEOM clinical guidelines for the treatment of non-small cell lung cancer (2018). Clin. Transl. Oncol. 2019, 21, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Travis, W.D. Lung Cancer Pathology. Clin. Chest Med. 2020, 41, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Matilla González, J.M.; Andreo García, F.; Cabezas Pastor, E.; Calatayud Gastardi, J.; Cilleruelo Ramos, Á.; Congregado Loscertales, M.; Cordovilla Pérez, R.; Cueto Ladrón de Guevara, A.; de la Torre Bravos, M.M.; Delgado Roel, M.; et al. Cáncer de Pulmón; SEPAR, Ed.; Respira: Barcelona, Spain, 2016; 218p. [Google Scholar]
- Dómine, M.; Moran, T.; Isla, D.; Martí, J.L.; Sullivan, I.; Provencio, M.; Olmedo, M.E.; Ponce, S.; Blasco, A.; Cobo, M. SEOM clinical guidelines for the treatment of small-cell lung cancer (SCLC) (2019). Clin. Transl. Oncol. 2020, 22, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, M.O.; Fu, P.; Margevicius, S.; Dowlati, A.; Linden, P.A. Five-year survival does not equal cure in non–small cell lung cancer: A Surveillance, Epidemiology, and End Results–based analysis of variables affecting 10- to 18-year survival. J. Thorac. Cardiovasc. Surg. 2012, 143, 1307–1313. [Google Scholar] [CrossRef]
- Morellato, J.B.F.; Guimarães, M.D.; Medeiros, M.L.L.; Carneiro, H.A.; Oliveira, A.D.; Medici, J.P.O.; Baranauskas, M.V.B.; Gross, J.L. Routine follow-up after surgical treatment of lung cancer: Is chest ct useful? J. Bras. Pneumol. 2021, 47, e20210025. [Google Scholar] [CrossRef]
- Crossland, R.E.; Norden, J.; Bibby, L.A.; Davis, J.; Dickinson, A.M. Evaluation of optimal extracellular vesicle small RNA isolation and qRT-PCR normalisation for serum and urine. J. Immunol. Methods 2016, 429, 39–49. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function and biomedical applications of exosomes. Science 2020, 367, 1–15. [Google Scholar] [CrossRef]
- Abdul Manap, A.S.; Ngwenya, F.M.; Kalai Selvan, M.; Arni, S.; Hassan, F.H.; Mohd Rudy, A.D.; Razak, N.N.A. Lung cancer cell-derived exosomes: Progress on pivotal role and its application in diagnostic and therapeutic potential. Front. Oncol. 2024, 14, 1459178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, X.; Liu, L.; Zhu, Z.; He, C. Exosomes in lung cancer metastasis, diagnosis, and im-munologically relevant advances. Front. Immunol. 2023, 14, 1326667. [Google Scholar] [CrossRef] [PubMed]
- Cazzoli, R.; Buttitta, F.; Di Nicola, M.; Malatesta, S.; Marchetti, A.; Rom, W.N.; Pass, H.I. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J. Thorac. Oncol. 2013, 8, 1156–1162. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, T.; Li, X.; Zhao, C.; Li, J.; Zhou, F.; Zhang, L.; Zhao, S.; Jia, Y.; Shi, J.; et al. Exosomes transmit T790M mutation-induced resistance in EGFR-mutant NSCLC by activating PI3K/AKT signalling pathway. J. Cell. Mol. Med. 2020, 24, 1529–1540. [Google Scholar] [CrossRef] [PubMed]
- Yuwen, D.-L.; Sheng, B.-B.; Liu, J.; Wenyu, W.; Shu, Y.-Q. MiR-146a-5p level in serum exosomes predicts therapeutic effect of cisplatin in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2650–2658. [Google Scholar]
- Cunha e Rocha, K.; Ying, W.; Olefsky, J.M. Exosome-Mediated Impact on Systemic Metabolism. Annu. Rev. Physiol. 2024, 86, 225–253. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef]
- Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm. Res. 2010, 27, 796–810. [Google Scholar] [CrossRef] [PubMed]
- IESMAT. Nanoparticle Tracking Analysis (NTA). Available online: https://iesmat.com/catalogos/WC_TECNTA/nanoparticle-tracking-analysis-nta-/ (accessed on 6 July 2024).
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2010, 10, 57–63. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Alduais, Y.; Zhang, H.; Fan, F.; Chen, J.; Chen, B. Non-small cell lung cancer (NSCLC): A review of risk factors, diagnosis, and treatment. Medicine 2023, 102, e32899. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat Rev Dis Primers. 2021, 7, 3. [Google Scholar] [CrossRef]
- Howlader, N.; Forjaz, G.; Mooradian, M.J.; Meza, R.; Kong, C.Y.; Cronin, K.A.; Mariotto, A.B.; Lowy, D.R.; Feuer, E.J. The Effect of Advances in Lung-Cancer Treatment on Population Mortality. N. Engl. J. Med. 2020, 383, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Alberg, A.J.; Brock, M.V.; Ford, J.G.; Samet, J.M.; Spivack, S.D. Epidemiology of lung cancer: Di-agnosis and management of lung cancer, 3rd ed: American college of chest physicians evi-dence-based clinical practice guidelines. Chest 2013, 143, 1–29. [Google Scholar] [CrossRef]
- Couraud, S.; Zalcman, G.; Milleron, B.; Morin, F.; Souquet, P.-J. Lung cancer in never smokers—A review. Eur. J. Cancer 2012, 48, 1299–1311. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Lin, K.-D.; Hsiao, P.-J.; Shin, S.-J. The association of diabetes mellitus with liver, colon, lung, and prostate cancer is independent of hypertension, hyperlipidemia, and gout in Taiwanese patients. Metabolism 2012, 61, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Kirk, G.D.; Merlo, C.; O’Driscoll, P.; Mehta, S.H.; Galai, N.; Vlahov, D.; Samet, J.; Engels, E.A. HIV infection is asso-ciated with an increased risk for lung cancer, independent of smoking. Clin. Infect. Dis. 2007, 45, 103–110. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Niu, X.; Ye, X.; Yu, Y.; Lu, S. The effect of CYP1A1 polymorphisms on the risk of lung cancer: A global meta-analysis based on 71 case-control studies. Mutagenesis 2011, 26, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Qiu, L.-X.; Li, Y.; Xu, W.; Wang, X.-L.; Zhao, W.-H.; Wu, J.-Q. The CYP1B1 Leu432Val polymorphism contributes to lung cancer risk: Evidence from 6501 subjects. Lung Cancer 2010, 70, 247–252. [Google Scholar] [CrossRef]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Math, M.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef]
- Jekunen, A.P. Role of Rebiopsy in Relapsed Non-Small Cell Lung Cancer for Directing On-cology Treatments. J. Oncol. 2015, 2015, 809835. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhang, C.; Du, T.; Gabriel, A.N.A.; Wang, X.; Li, X.; Sun, L.; Wang, N.; Jiang, X.; Zhang, Y. Progress of exosomes in the diagnosis and treatment of lung cancer. Biomed. Pharmacother. 2020, 134, 111111. [Google Scholar] [CrossRef] [PubMed]
- Pastor, L.; Vera, E.; Marin, J.M.; Sanz-Rubio, D. Extracellular vesicles from airway secretions: New insights in lung diseases. Int. J. Mol. Sci. 2021, 22, 583. [Google Scholar] [CrossRef] [PubMed]
- Rabinowits, G.; Gerçel-Taylor, C.; Day, J.M.; Taylor, D.D.; Kloecker, G.H. Exosomal MicroRNA: A diagnostic marker for lung cancer. Clin. Lung Cancer 2009, 10, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Silva, J.; López-Alfonso, A.; López-Muñiz, M.B.; Peña, C.; Domínguez, G.; García, J.M.; López-Gónzalez, A.; Méndez, M.; Provencio, M.; et al. Dif-ferent exosome cargo from plasma/bronchoalveolar lavage in non-small-cell lung cancer. Genes Chromosom Cancer. 2014, 53, 713–724. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Zou, Y.-Q.; Chen, X.; Huang, B.; Liu, J.; Xu, Y.-M.; Zhang, J.; Yang, W.-M.; Min, Q.-H.; et al. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumor Biol. 2016, 37, 15835–15845. [Google Scholar] [CrossRef] [PubMed]
Selection Criteria | |
---|---|
Inclusion Criteria | Exclusion Criteria |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Sanz, J.; Muñoz-González, N.; Cubero, J.P.; Ordoñez, P.; Gil, V.; Langarita, R.; Ruiz, M.; Forner, M.; Marín-Oto, M.; Vera, E.; et al. Peripheral Extracellular Vesicles for Diagnosis and Prognosis of Resectable Lung Cancer: The LUCEx Study Protocol. J. Clin. Med. 2025, 14, 411. https://doi.org/10.3390/jcm14020411
Rodríguez-Sanz J, Muñoz-González N, Cubero JP, Ordoñez P, Gil V, Langarita R, Ruiz M, Forner M, Marín-Oto M, Vera E, et al. Peripheral Extracellular Vesicles for Diagnosis and Prognosis of Resectable Lung Cancer: The LUCEx Study Protocol. Journal of Clinical Medicine. 2025; 14(2):411. https://doi.org/10.3390/jcm14020411
Chicago/Turabian StyleRodríguez-Sanz, Jorge, Nadia Muñoz-González, José Pablo Cubero, Pablo Ordoñez, Victoria Gil, Raquel Langarita, Myriam Ruiz, Marta Forner, Marta Marín-Oto, Elisabet Vera, and et al. 2025. "Peripheral Extracellular Vesicles for Diagnosis and Prognosis of Resectable Lung Cancer: The LUCEx Study Protocol" Journal of Clinical Medicine 14, no. 2: 411. https://doi.org/10.3390/jcm14020411
APA StyleRodríguez-Sanz, J., Muñoz-González, N., Cubero, J. P., Ordoñez, P., Gil, V., Langarita, R., Ruiz, M., Forner, M., Marín-Oto, M., Vera, E., Baptista, P., Polverino, F., Domingo, J. A., García-Tirado, J., Marin, J. M., & Sanz-Rubio, D. (2025). Peripheral Extracellular Vesicles for Diagnosis and Prognosis of Resectable Lung Cancer: The LUCEx Study Protocol. Journal of Clinical Medicine, 14(2), 411. https://doi.org/10.3390/jcm14020411