Repeatability of Pentacam HR in Keratoconus According to Two Different Scan Protocols: 25-3D Scan and 50-Cornea Fine
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabinowitz, Y.S. Keratoconus. Surv. Ophthalmol. 1998, 42, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, P.; Lopes, B.T.; Eliasy, A.M.; Abass, A.; Vinciguerra, R.; Vinciguerra, P.; Ambrósio, R.J.; Elsheikh, A. Evaluation of corneal biomechanical behavior in vivo for healthy and keratoconic eyes using the stress–strain index. J. Cataract. Refract. Surg. 2022, 48, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Herber, R.; Hasanli, A.; Lenk, J.; Vinciguerra, R.; Terai, N.; Pillunat, L.E.; Raiskup, F. Evaluation of Corneal Biomechanical Indices in Distinguishing Between Normal, Very Asymmetric, and Bilateral Keratoconic Eyes. J. Refract. Surg. 2022, 38, 364–372. [Google Scholar] [CrossRef]
- Santodomingo-Rubido, J.; Carracedo, G.; Suzaki, A.; Villa-Collar, C.; Vincent, S.J.; Wolffsohn, J.S. Keratoconus: An updated review. Contact Lens Anterior Eye 2022, 45, 101559. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Heydarian, S.; Hooshmand, E.; Saatchi, M.; Yekta, A.A.; Aghamirsalim, M.; Valadkhan, M.; Mortazavi, M.; Hashemi, A.; Khabazkhoob, M. The Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis. Cornea 2020, 39, 263–270. [Google Scholar] [CrossRef]
- Gokul, A.; Patel, D.V.; Watters, G.A.; McGhee, C.N.J. The natural history of corneal topographic progression of keratoconus after age 30 years in non-contact lens wearers. Br. J. Ophthalmol. 2016, 101, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Meiri, Z.; Keren, S.; Rosenblatt, A.; Sarig, T.; Shenhav, L.; Varssano, D. Efficacy of Corneal Collagen Cross-Linking for the Treatment of Keratoconus. Cornea 2016, 35, 417–428. [Google Scholar] [CrossRef] [PubMed]
- Borchert, G.A.; Kandel, H.; Watson, S.L. Epithelium-on versus epithelium-off corneal collagen crosslinking for keratoconus: A systematic review and meta-analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 262, 1683–1692. [Google Scholar] [CrossRef] [PubMed]
- Karam, M.M.; Alsaif, A.M.; Aldubaikhi, A.M.; Aljebreen, M.M.; Alazaz, R.M.; Alkhowaiter, N.; Almudhaiyan, T.; Aljassar, F.F. Accelerated Corneal Collagen Cross-Linking Protocols for Progressive Keratoconus: Systematic Review and Meta-analysis. Cornea 2022, 42, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.A.P.; Tan, D.; Rapuano, C.J.; Belin, M.W.; Ambrósio, R., Jr.; Guell, J.L.; Malecaze, F.; Nishida, K.; Sangwan, V.S. Group of Panelists for the Global Delphi Panel Panel of Keratoconus and Ectatic Disease Global Consensus on Keratoconus and Ectatic Diseases. Cornea 2015, 34, 359–369. [Google Scholar] [CrossRef]
- Seiler, T.G.; Mueller, M.; Baiao, T.M. Repeatability and Comparison of Corneal Tomography in Mild to Severe Keratoconus Between the Anterior Segment OCT MS-39 and Pentacam HR. J. Refract. Surg. 2022, 38, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Khabazkhoob, M.; Pakzad, R.; Bakhshi, S.; Ostadimoghaddam, H.; Asaharlous, A.; Yekta, R.; Aghamirsalim, M.; Yekta, A. Pentacam Accuracy in Discriminating Keratoconus From Normal Corneas: A Diagnostic Evaluation Study. Eye Contact Lens Sci. Clin. Pr. 2019, 45, 46–50. [Google Scholar] [CrossRef]
- Lopes, B.; Padmanabhan, P.; Zhang, H.; Abass, A.; Eliasy, A.; Bandeira, F.; Bao, F.; Bühren, J.; Elmassry, A.; Faria-Correia, F.; et al. Clinical Validation of the Automated Characterization of Cone Size and Center in Keratoconic Corneas. J. Refract. Surg. 2021, 37, 414–421. [Google Scholar] [CrossRef]
- Kreps, E.O.; Jimenez-Garcia, M.; Issarti, I.; Claerhout, I.; Koppen, C.; Rozema, J.J. Repeatability of the Pentacam HR in Various Grades of Keratoconus. Arch. Ophthalmol. 2020, 219, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Eguileor, B.d.L.; Argaluza, J.E.; Zubizarreta, J.I.P.; Carro, A.S.; Ecenarro, J.E. Evaluation of the Reliability and Repeatability of Scheimpflug System Measurement in Keratoconus. Cornea 2017, 37, 177–181. [Google Scholar] [CrossRef]
- Kosekahya, P.; Koc, M.; Caglayan, M.; Kiziltoprak, H.; Atilgan, C.U.; Yilmazbas, P. Repeatability and reliability of ectasia display and topometric indices with the Scheimpflug system in normal and keratoconic eyes. J. Cataract. Refract. Surg. 2018, 44, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, I.; Bergström, A.; Myers, A.C.; Ivarsen, A.; Hjortdal, J. Association between keratoconus disease severity and repeatability in measurements of parameters for the assessment of progressive disease. PLoS ONE 2020, 15, e0228992. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, K.; Guber, I.; Bergin, C.; Majo, F. Reduced Precision of the Pentacam HR in Eyes with Mild to Moderate Keratoconus. Ophthalmology 2015, 122, 211–212. [Google Scholar] [CrossRef]
- McAlinden, C.; Khadka, J.; Pesudovs, K. A Comprehensive Evaluation of the Precision (Repeatability and Reproducibility) of the Oculus Pentacam HR. Investig. Opthalmol. Vis. Sci. 2011, 52, 7731–7737. [Google Scholar] [CrossRef]
- McAlinden, C.; Khadka, J.; Pesudovs, K. Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology. Ophthalmic Physiol. Opt. 2011, 31, 330–338. [Google Scholar] [CrossRef]
- Jacob, S.; Patel, S.R.; Agarwal, A.; Ramalingam, A.; Saijimol, A.I.; Raj, J.M. Corneal Allogenic Intrastromal Ring Segments (CAIRS) Combined With Corneal Cross-linking for Keratoconus. J. Refract. Surg. 2018, 34, 296–303. [Google Scholar] [CrossRef]
- Cueto, L.F.-V.; Lisa, C.; Poo-López, A.; Madrid-Costa, D.; Merayo-Lloves, J.; Alfonso, J.F. Intrastromal Corneal Ring Segment Implantation in 409 Paracentral Keratoconic Eyes. Cornea 2016, 35, 1421–1426. [Google Scholar] [CrossRef]
- Hashemi, H.; Yekta, A.; Yazdani, N.; Ostadimoghaddam, H.; Khabazkhoob, M. Comparison of Anterior Chamber Depth between Normal and Keratoconic Eyes. J. Curr. Ophthalmol. 2020, 32, 94–98. [Google Scholar] [CrossRef] [PubMed]
Measurement (Unit of Measurement) | 25-3D Scan | 50-Cornea Fine |
---|---|---|
Kmax (D) | 54.1 | 54.1 |
Pachy min (µm) | 468.9 | 467.4 |
Anterior ectasia (µm) | 28.2 | 28 |
Posterior ectasia (µm) | 58.6 | 58.6 |
K1 F (D) | 44.6 | 44.6 |
K2 F (D) | 47.7 | 47.6 |
Km F (D) | 46.1 | 46 |
Axis F | 87.7° | 90.6° |
Astigm F (D) | 3.1 | 3.1 |
K1 B (D) | −6.6 | −6.6 |
K2 B (D) | −7.3 | −7.3 |
Km B (D) | −6.9 | −6.9 |
Axis B | 98.1° | 97.4° |
Astigm B (D) | 0.7 | 0.7 |
ISV | 85 | 85.4 |
IVA | 1 | 0.98 |
Measurement | 25-3D Scan | 50-Cornea Fine | ||
---|---|---|---|---|
ICC | 95% CI | ICC | 95% CI | |
Kmax (D) | 0.9957 # | 0.9937–0.9972 | 0.9956 | 0.9934–0.9971 |
Pachy min | 0.9873 | 0.9813–0.9916 | 0.9912 # | 0.9871–0.9942 |
Anterior ectasia | 0.9888 #* | 0.9836–0.9926 | 0.9511 | 0.9286–0.9676 |
Posterior ectasia | 0.9662 # | 0.9506–0.9776 | 0.9318 | 0.9011–0.9546 |
K1 F | 0.9965 # | 0.9931–0.9969 | 0.9933 | 0.9901–0.9956 |
K2 F | 0.9948 # | 0.9924–0.9966 | 0.9921 | 0.9883–0.9948 |
Km F | 0.9966 # | 0.9949–0.9977 | 0.9940 | 0.9911–0.9960 |
Axis F | 0.7627 | 0.6740–0.8350 | 0.8017 # | 0.7244–0.8633 |
Astigm F | 0.9560 | 0.9358–0.9707 | 0.9626 # | 0.9454–0.9752 |
R per F (mm) | 0.9964 # | 0.9946–0.9976 | 0.9935 | 0.9904–0.9957 |
R min (mm) | 0.9957 # | 0.9936–0.9971 | 0.9948 | 0.9923–0.9966 |
K1 B | 0.9888 # | 0.9835–0.9926 | 0.9876 | 0.9818–0.9918 |
K2 B | 0.9893 # | 0.9843–0.9930 | 0.9798 | 0.9704–0.9867 |
Km B | 0.9933 # | 0.9901–0.9956 | 0.9890 | 0.9839–0.9928 |
Axis B | 0.8617 # | 0.8043–0.9061 | 0.8403 | 0.7754–0.8909 |
Astigmatism B | 0.8903 # | 0.8433–0.9260 | 0.8751 | 0.8225–0.9154 |
R per B | 0.9794 # | 0.9697–0.9864 | 0.9607 | 0.9427–0.9739 |
R min B | 0.9684 | 0.9538–0.9791 | 0.9768 # | 0.9659–0.9846 |
Pachy apex | 0.9885 | 0.9831–0.9924 | 0.9919 # | 0.9881–0.9947 |
C. Vol D 3 mm | 0.9763 | 0.9652–0.9843 | 0.9872 # | 0.9812–0.9916 |
C. Vol D 5 mm | 0.9855 | 0.9786–0.9904 | 0.9895 # | 0.9845–0.9931 |
C. Vol D 7 mm | 0.9837 | 0.9760–0.9892 | 0.9875 # | 0.9815–0.9917 |
C. Vol D 10 mm | 0.9799 | 0.9705–0.9867 | 0.9820 # | 0.9736–0.9881 |
ISV | 0.9952 # | 0.9930–0.9969 | 0.9951 | 0.9927–0.9968 |
IVA | 0.9891 # | 0.9839–0.9928 | 0.9886 | 0.9832–0.9925 |
KI | 0.9908 | 0.9864–0.9939 | 0.9917 # | 0.9878–0.9946 |
CKI | 0.9905 # | 0.9860–0.9937 | 0.9891 | 0.9840–0.9928 |
IHA | 0.5881 # | 0.4619–0.7009 | 0.4953 | 0.3575–0.6247 |
IHD | 0.9837 | 0.9760–0.9892 | 0.9885 # | 0.9831–0.9924 |
Measurement (Unit of Measurement) | 25-3D Scan | 50-Cornea Fine |
---|---|---|
Kmax (D) | 0.36 (1.00) | 0.37 (1.02) |
Pachy min (µm) | 4.26 (11.81) | 3.57 (9.88) |
Anterior ectasia (µm) | 1.40 (3.87) | 3.03 (8.38) |
Posterior ectasia (µm) | 3.93 (10.87) | 6.19 (17.15) |
K1 F (D) | 0.27 (0.74) | 0.33 (0.91) |
K2 F (D) | 0.31 (0.85) | 0.38 (1.05) |
Km F (D) | 0.24 (0.66) | 0.31 (0.87) |
Axis F (D) | 29.22 (80.95) | 25.95 (71.87) |
Astigm F (D) | 0.35 (0.96) | 0.33 (0.90) |
R per F (mm) | 0.02 (0.05) | 0.02 (0.07) |
R min (mm) | 0.04 (0.11) | 0.04 (0.12) |
K1 B (D) | 0.08 (0.23) | 0.09 (0.25) |
K2 B (D) | 0.09 (0.24) | 0.12 (0.33) |
Km B (D) | 0.06 (0.18) | 0.08 (0.24) |
Axis B (degree) | 24.09 (66.74) | 25.00 (69.26) |
Astigmatism B (D) | 0.11 (0.31) | 0.12 (0.34) |
R per B | 0.04 (0.10) | 0.05 (0.15) |
R min B | 0.10 (0.27) | 0.08 (0.23) |
Pachy apex (µm) | 4.29 (11.89) | 3.67 (10.18) |
C. Vol D 3 mm | 0.04 (0.11) | 0.03 (0.08) |
C. Vol. D 5 mm | 0.08 (0.23) | 0.07 (0.19) |
C. Vol D 7 mm | 0.17 (0.47) | 0.15 (0.42) |
C. Vol D 10 mm | 0.45 (1.24) | 0.43 (1.18) |
ISV | 2.25 (6.22) | 2.32 (6.43) |
IVA | 0.04 (0.12) | 0.05 (0.13) |
KI | 0.01 (0.03) | 0.01 (0.03) |
CKI | 0.01 (0.01) | 0.01 (0.02) |
IHA | 14.45 (40.02) | 15.50 (42.94) |
IHD | 0.02 (0.06) | 0.01 (0.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, D.; Coco, G.; Borgia, A.; Calza, S.; Kaye, S.; Gadhvi, K.; Semeraro, F.; Romano, V. Repeatability of Pentacam HR in Keratoconus According to Two Different Scan Protocols: 25-3D Scan and 50-Cornea Fine. J. Clin. Med. 2025, 14, 439. https://doi.org/10.3390/jcm14020439
Romano D, Coco G, Borgia A, Calza S, Kaye S, Gadhvi K, Semeraro F, Romano V. Repeatability of Pentacam HR in Keratoconus According to Two Different Scan Protocols: 25-3D Scan and 50-Cornea Fine. Journal of Clinical Medicine. 2025; 14(2):439. https://doi.org/10.3390/jcm14020439
Chicago/Turabian StyleRomano, Davide, Giulia Coco, Alfredo Borgia, Stefano Calza, Stephen Kaye, Kunal Gadhvi, Francesco Semeraro, and Vito Romano. 2025. "Repeatability of Pentacam HR in Keratoconus According to Two Different Scan Protocols: 25-3D Scan and 50-Cornea Fine" Journal of Clinical Medicine 14, no. 2: 439. https://doi.org/10.3390/jcm14020439
APA StyleRomano, D., Coco, G., Borgia, A., Calza, S., Kaye, S., Gadhvi, K., Semeraro, F., & Romano, V. (2025). Repeatability of Pentacam HR in Keratoconus According to Two Different Scan Protocols: 25-3D Scan and 50-Cornea Fine. Journal of Clinical Medicine, 14(2), 439. https://doi.org/10.3390/jcm14020439