Detection of Acromion Types in Shoulder Magnetic Resonance Image Examination with Developed Convolutional Neural Network and Textural-Based Content-Based Image Retrieval System
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Set
2.2. Feature Extraction, Feature Selection, CBIR, and Performance Measurement Metrics
2.3. CBIR-Based System Proposed for Detection of Acromion Types
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Getz, J.D.; Recht, M.P.; Piraino, D.W.; Schils, J.P.; Latimer, B.M.; Jellema, L.M.; A Obuchowski, N. Acromial morphology: Relation to sex, age, symmetry, and subacromial enthesophytes. Radiology 1996, 199, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Mansur, D.I.; Khanal, K.; Haque, M.K.; Sharma, K. Morphometry of acromion process of human scapulae and its clinical importance amongst Nepalese population. Kathmandu Univ. Med. J. 2012, 10, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Khan, Y.; Nagy, M.T.; Malal, J.; Waseem, M. The painful shoulder: Shoulder impingement syndrome. Open Orthop. J. 2013, 7, 347–351. [Google Scholar] [CrossRef]
- Oh, J.H.; Kim, J.Y.; Lee, H.K.; Choi, J.-A. Classification and clinical significance of acromial spur in rotator cuff tear: Heel-type spur and rotator cuff tear. Clin. Orthop. Relat. Res. 2010, 468, 1542–1550. [Google Scholar] [CrossRef] [PubMed]
- Bigliani, L.U.; Ticker, J.B.; Flatow, E.L.; Soslowsky, L.J.; Mow, V.C. Relationship of acromial architecture and diseases of the rotator cuff. Der Orthopade 1991, 20, 302–309. [Google Scholar] [CrossRef]
- Stehle, J.; Moore, S.M.; Alaseirlis, D.A.; Debski, R.E.; McMahon, P.J. A reliable method for classifying acromial shape. Int. Biomech. 2015, 2, 36–42. [Google Scholar] [CrossRef]
- Balke, M.; Schmidt, C.; Dedy, N.; Banerjee, M.; Bouillon, B.; Liem, D. Correlation of acromial morphology with impingement syndrome and rotator cuff tears. Acta Orthop. 2013, 84, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Gagey, N.; Ravaud, E.; Lassau, J.P. Anatomy of the acromial arch: Correlation of anatomy and magnetic resonance imaging. Surg. Radiol. Anat. 1993, 15, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Paraskevas, G.; Tzaveas, A.; Papaziogas, B.; Kitsoulis, P.; Natsis, K.; Spanidou, S. Morphological parameters of the acromion. Folia Morphol. 2008, 67, 255–260. [Google Scholar]
- Mohamed, R.E.; Abo-Sheisha, D.M. Assessment of acromial morphology in association with rotator cuff tear using magnetic resonance imaging. Egypt. J. Radiol. Nucl. Med. 2014, 45, 169–180. [Google Scholar] [CrossRef]
- Nho, S.J.; Yadav, H.; Shindle, M.K.; MacGillivray, J.D. Rotator cuff degeneration: Etiology and pathogenesis. Am. J. Sports Med. 2008, 36, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Morag, Y.; Jacobson, J.A.; Miller, B.; De Maeseneer, M.; Girish, G.; Jamadar, D. MR imaging of rotator cuff injury: What the clinician needs to know. Radiographics 2006, 26, 1045–1065. [Google Scholar] [CrossRef] [PubMed]
- Kashif, M.; Raja, G.; Shaukat, F. An efficient content-based image retrieval system for the diagnosis of lung diseases. J. Digit. Imaging 2020, 33, 971–987. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.-C.; Phan, A.-C.; Cao, H.-P.; Trieu, T.-N. Content-based video big data retrieval with extensive features and deep learning. Appl. Sci. 2022, 12, 6753. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Blum, A.L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97, 245–271. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef]
- İncetaş, M.O.; Tanyeri, U.; Kılıçaslan, M.; Yakışır, G.B.; Demirci, R. Esik Seciminin Benzerlige Dayali Kenar Belirlemeye Etkisi. In Proceedings of the Uluslararası Multidisipliner Calismalar ve Yenilikci Teknolojiler Sempozyumu Ismsit 2017, Tokat, Turkey, 2–4 November 2017; pp. 102–106. [Google Scholar]
- Smeulders, A.W.M.; Worring, M.; Santini, S.; Gupta, A.; Jain, R. Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1349–1380. [Google Scholar] [CrossRef]
- Smith, J.R.; Chang, S.-F. Tools and techniques for color image retrieval. In Proceedings of the Storage and Retrieval for Still Image and Video Databases IV, San Jose, CA, USA, 1–2 February 1996; Volume 2670, pp. 426–437. [Google Scholar]
- Suhasini, P.S.; Krishna, K.; Krishna, I.V.M. CBIR using color histogram processing. J. Theor. Appl. Inf. Technol. 2009, 6, 116–122. [Google Scholar]
- Information Retrieval: How Search Engines Retrieve Data—IONOS. Available online: https://www.ionos.co.uk/digitalguide/online-marketing/search-engine-marketing/information-retrieval-how-search-engines-retrieve-data/ (accessed on 31 May 2024).
- Schütze, H.; Manning, C.D.; Raghavan, P. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008; Volume 39. [Google Scholar]
- Ioannakis, G.; Koutsoudis, A.; Pratikakis, I.; Chamzas, C. Retrieval an online performance evaluation tool for information retrieval methods. IEEE Trans. Multimed. 2017, 20, 119–127. [Google Scholar] [CrossRef]
- Cheng, C.; Liang, X.; Guo, D.; Xie, D. Application of Artificial Intelligence in Shoulder Pathology. Diagnostics 2024, 14, 1091. [Google Scholar] [CrossRef]
- Familiari, F.; Galasso, O.; Massazza, F.; Mercurio, M.; Fox, H.; Srikumaran, U.; Gasparini, G. Artificial Intelligence in the Management of Rotator Cuff Tears. Int. J. Environ. Res. Public Health 2022, 19, 16779. [Google Scholar] [CrossRef] [PubMed]
- Ro, K.; Kim, J.Y.; Park, H.; Cho, B.H.; Kim, I.Y.; Shim, S.B.; Choi, I.Y.; Yoo, J.C. Deep-learning Framework and Computer Assisted Fatty Infiltration Analysis for the Supraspinatus Muscle in MRI. Sci. Rep. 2021, 11, 15065. [Google Scholar] [CrossRef]
- Taghizadeh, E.; Truffer, O.; Becce, F.; Eminian, S.; Gidoin, S.; Terrier, A.; Farron, A.; Büchler, P. Deep Learning for the Rapid Automatic Quantification and Characterization of Rotator Cuff Muscle Degeneration from Shoulder CT Datasets. Eur. Radiol. 2021, 31, 181–190. [Google Scholar] [CrossRef]
- Potty, A.G.; Potty, A.S.R.; Maffulli, N.; Blumenschein, L.A.; Ganta, D.; Mistovich, R.J.; Fuentes, M.; Denard, P.J.; Sethi, P.M.; Shah, A.A.; et al. Approaching Artificial Intelligence in Orthopaedics: Predictive Analytics and Machine Learning to Prognosticate Arthroscopic Rotator Cuff Surgical Outcomes. J. Clin. Med. 2023, 12, 2369. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Li, D.; Sing, D.C.; Beeram, I.; Puvanesarajah, V.; Tornetta, P., 3rd; Fritz, J.; Yi, P.H. Detecting Upper Extremity Native Joint Dislocations Using Deep Learning: A Multicenter Study. Clin. Imaging 2022, 92, 38–43. [Google Scholar] [CrossRef]
- Chung, S.W.; Han, S.S.; Lee, J.W.; Oh, K.S.; Kim, N.R.; Yoon, J.P.; Kim, J.Y.; Moon, S.H.; Kwon, J.; Lee, H.J.; et al. Automated Detection and Classification of the Proximal Humerus Fracture by Using Deep Learning Algorithm. Acta Orthop. 2018, 89, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, Y.; Wang, X.F.; Zhang, Z.Q. Analysis of the Value of Artificial Intelligence Combined with Musculoskeletal Ultrasound in the Differential Diagnosis of Pain Rehabilitation of Scapulohumeral Periarthritis. Medicine 2023, 102, e33125. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.S.; Chen, J.L.; Tu, Y.H.; Shih, Y.X.; Lin, Y.C.; Chi, W.L.; Wu, Y.C. Using Deep Learning in Ultrasound Imaging of Bicipital Peritendinous Effusion to Grade Inflammation Severity. IEEE J. Biomed. Health Inform. 2020, 24, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Grauhan, N.F.; Niehues, S.M.; Gaudin, R.A.; Keller, S.; Vahldiek, J.L.; Adams, L.C.; Bressem, K.K. Deep Learning for Accurately Recognizing Common Causes of Shoulder Pain on Radiographs. Skelet. Radiol. 2022, 51, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M. Content-Based Image Retrieval and Image Classification System for Early Prediction of Bladder Cancer. Diagnostics 2024, 14, 2637. [Google Scholar] [CrossRef]
- Sudhish, D.K.; Nair, L.R.; Shailesh, S. Content-based image retrieval for medical diagnosis using fuzzy clustering and deep learning. Biomed. Signal Process. Control 2024, 88, 105620. [Google Scholar] [CrossRef]
- Gassner, M.; Garcia, J.B.; Tanadini-Lang, S.; Bertoldo, F.; Fröhlich, F.; Guckenberger, M.; Braun, R.P. Saliency-enhanced content-based image retrieval for diagnosis support in dermatology consultation: Reader study. JMIR Dermatol. 2023, 6, e42129. [Google Scholar] [CrossRef] [PubMed]
Model | Euclidean | PSNR | ||||||
---|---|---|---|---|---|---|---|---|
Type 1 | Type 2 | Type 3 | Type 4 | Type 1 | Type 2 | Type 3 | Type 4 | |
Densenet201 | 0.41 | 0.68 | 0.32 | 0.37 | 0.41 | 0.68 | 0.32 | 0.37 |
Darknet53 | 0.43 | 0.66 | 0.33 | 0.38 | 0.43 | 0.66 | 0.33 | 0.38 |
Efficientnetb0 | 0.41 | 0.73 | 0.37 | 0.39 | 0.41 | 0.73 | 0.37 | 0.39 |
NasnetMobile | 0.40 | 0.69 | 0.27 | 0.30 | 0.40 | 0.69 | 0.27 | 0.30 |
LBP | 0.40 | 0.70 | 0.36 | 0.44 | 0.60 | 0.76 | 0.63 | 0.65 |
HOG | 0.40 | 0.71 | 0.35 | 0.49 | 0.60 | 0.77 | 0.59 | 0.67 |
Proposed Model | 0.58 | 0.82 | 0.44 | 0.64 | 0.69 | 0.85 | 0.63 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akçiçek, M.; Karaduman, M.; Petik, B.; Ünlü, S.; Mutlu, H.B.; Yildirim, M. Detection of Acromion Types in Shoulder Magnetic Resonance Image Examination with Developed Convolutional Neural Network and Textural-Based Content-Based Image Retrieval System. J. Clin. Med. 2025, 14, 505. https://doi.org/10.3390/jcm14020505
Akçiçek M, Karaduman M, Petik B, Ünlü S, Mutlu HB, Yildirim M. Detection of Acromion Types in Shoulder Magnetic Resonance Image Examination with Developed Convolutional Neural Network and Textural-Based Content-Based Image Retrieval System. Journal of Clinical Medicine. 2025; 14(2):505. https://doi.org/10.3390/jcm14020505
Chicago/Turabian StyleAkçiçek, Mehmet, Mücahit Karaduman, Bülent Petik, Serkan Ünlü, Hursit Burak Mutlu, and Muhammed Yildirim. 2025. "Detection of Acromion Types in Shoulder Magnetic Resonance Image Examination with Developed Convolutional Neural Network and Textural-Based Content-Based Image Retrieval System" Journal of Clinical Medicine 14, no. 2: 505. https://doi.org/10.3390/jcm14020505
APA StyleAkçiçek, M., Karaduman, M., Petik, B., Ünlü, S., Mutlu, H. B., & Yildirim, M. (2025). Detection of Acromion Types in Shoulder Magnetic Resonance Image Examination with Developed Convolutional Neural Network and Textural-Based Content-Based Image Retrieval System. Journal of Clinical Medicine, 14(2), 505. https://doi.org/10.3390/jcm14020505