EEG Abnormalities and Phenotypic Correlates in Preschoolers with Autism Spectrum Disorder: A Single-Center Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Investigations in ASD Subjects
2.3. EEG Recording and Analysis
- Focal, multifocal, or diffuse epileptiform discharges (spikes, polyspike discharges, sharp waves, spike-and-slow-wave complexes);
- Non-epileptiform abnormalities, which include:
- ○
- Focal or diffuse slow-wave activity (including the slowing of background activity);
- ○
- Fast activity.
2.4. Statistical Analysis
3. Results
- Focal, which were found in 25 participants, mostly during sleep;
- Multifocal, which were found in 27 participants, mostly during sleep;
- Diffuse, which were found in 31 participants, mostly during drowsiness.
4. Discussion
4.1. Relationship Between SEAs and Clinical Features
4.2. Frequency of SEAs
4.3. Relationship Between SEDs and ASD Pathogenesis
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABNORMAL_EEG | Abnormal EEG tracing |
ADOS-2 | Autism Diagnostic Observation Schedule-2 |
ADOS-CSS | ADOS Calibrated Severity Score |
ADOS-G | Autism Diagnostic Observation Schedule-Generic |
ASMs | Anti-seizure medications |
APA | American Psychiatric Association |
ASD | Autism spectrum disorder |
CASP7 | Caspase-7 |
CBCL | Child Behavior Checklist |
CBCL 1½-5 | Child Behavior Checklist 1½-5 |
CBCL-ED | Child Behavior Checklist—Emotional Dysregulation Profile |
CBCL-EXT | Child Behavior Checklist—Externalizing Problems Scale |
CBCL-INT | Child Behavior Checklist—Internalizing Problems Scale |
CBCL-TOTAL | Child Behavior Checklist—Total Problems Scale |
CHD5 | Chromodomain helicase DNA-binding protein 5 |
CNTNAP2 | Contactin-associated protein 2 |
CYFIP1 | Cytoplasmic FMRP-interacting protein 1 |
D | Diffuse discharges |
DR | Drowsiness |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, 5th Edition |
DSM-IV-TR | Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, Text Revision |
EEG | Electroencephalogram |
EEG_ED | Epileptiform discharges |
EEG_FAST | Fast abnormalities |
EEG_SLOW | Slow abnormalities |
EMG | Electromyographic |
F | Females |
f | Frequency |
F-M | Frontal midline brain region |
Full-scale IQ | Full-scale intelligence quotient |
HMGB1 | High mobility group box-1 protein |
HV | Hyperventilation |
ID | Intellectual disability |
ILAE | International League Against Epilepsy |
IPS | Intermittent photic stimulation |
IQ | Intelligence quotient |
M | Males |
MN | Mean |
N | Number of observations |
n | Number of participants |
NDD | Neurodevelopmental disorder |
NREM | Non-rapid eye movement |
p | p value |
P | Posterior brain region |
PIQ | Performance intelligence quotient |
S | Sleep |
SD | Standard deviation |
SEAs | Subclinical electroencephalographic abnormalities |
SEDs | Subclinical epileptiform discharge |
SWA | Slow-wave activity |
T | Temporal brain region |
W | Wakefulness |
WPPSI-III | Wechsler Preschool and Primary Scale of Intelligence—Third Edition |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Text Revision (DSM-5-TR); American Psychiatric Association Publishing: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef]
- Talantseva, O.I.; Romanova, R.S.; Shurdova, E.M.; Dolgorukova, T.A.; Sologub, P.S.; Titova, O.S.; Kleeva, D.F.; Grigorenko, E.L. The global prevalence of autism spectrum disorder: A three-level meta-analysis. Front. Psychiatry 2023, 14, 1071181. [Google Scholar] [CrossRef] [PubMed]
- McPartland, J.C.; Law, K.; Dawson, G.; Friedman, H. Encyclopedia of Mental Health; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Corbett, B.A.; Schwartzman, J.M.; Libsack, E.J.; Muscatello, R.A.; Lerner, M.D.; Simmons, G.L.; White, S.W. Camouflaging in autism: Examining sex-based and compensatory models in social cognition and communication. Autism Res. 2021, 14, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Werling, D.M. The role of sex-differential biology in risk for autism spectrum disorder. Biol. Sex Differ. 2016, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Elsabbagh, M. Linking risk factors and outcomes in autism spectrum disorder: Is there evidence for resilience? BMJ 2020, 368, l6880. [Google Scholar] [CrossRef]
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Leachman, C.; Nichols, E.S.; Al-Saoud, S.; Duerden, E.G. Anxiety in children and adolescents with autism spectrum disorder: Behavioural phenotypes and environmental factors. BMC Psychol. 2024, 12, 534. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Lecavalier, L. Depression in young autistic people: A scoping review. Res. Autism Spectr. Disord. 2021, 88, 101841. [Google Scholar] [CrossRef]
- Baweja, R.; Waschbusch, D.A.; Mayes, S.D. Physical aggression toward others and self: Correlates in autism, attention-deficit/hyperactivity disorder, and population-based child samples. JAACAP Open 2023, 1, 274–283. [Google Scholar] [CrossRef]
- Rong, Y.; Yang, C.J.; Jin, Y.; Wang, Y. Prevalence of attention-deficit/hyperactivity disorder in individuals with autism spectrum disorder: A meta-analysis. Res. Autism Spectr. Disord. 2021, 83, 101759. [Google Scholar] [CrossRef]
- Kose, S.; Erermis, S.; Ozturk, O.; Ozbaran, B.; Demiral, N.; Bildik, T.; Aydin, C. Health related quality of life in children with autism spectrum disorders: The clinical and demographic related factors in Turkey. Res. Autism Spectr. Disord. 2013, 7, 213–220. [Google Scholar] [CrossRef]
- Estes, A.; Rivera, V.; Bryan, M.; Cali, P.; Dawson, G. Discrepancies Between Academic Achievement and Intellectual Ability in Higher-Functioning School-Aged Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2011, 41, 1044–1052. [Google Scholar] [CrossRef]
- Mayes, S.D.; Calhoun, S.L. Frequency of reading, math, and writing disabilities in children with clinical disorders. Learn. Individ. Differ. 2006, 16, 145–157. [Google Scholar] [CrossRef]
- Khachadourian, V.; Mahjani, B.; Sandin, S.; Kolevzon, A.; Buxbaum, J.D.; Reichenberg, A.; Janecka, M. Comorbidities in autism spectrum disorder and their etiologies. Transl. Psychiatry 2023, 13, 71. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.N. Is motor impairment in autism spectrum disorder distinct from developmental coordination disorder? A report from the SPARK study. Phys. Ther. 2020, 100, 633–644. [Google Scholar] [CrossRef]
- Kilroy, E.; Ring, P.; Hossain, A.; Nalbach, A.; Butera, C.; Harrison, L.; Jayashankar, A.; Vigen, C.; Aziz-Zadeh, L.; Cermak, S.A. Motor performance, praxis, and social skills in autism spectrum disorder and developmental coordination disorder. Autism Res. 2022, 15, 1649–1664. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Hirota, T.; Sakamoto, Y.; Adachi, M.; Takahashi, M.; Osato-Kaneda, A.; Kim, Y.S.; Leventhal, B.; Shui, A.; Kato, S.; et al. Prevalence and cumulative incidence of autism spectrum disorders and the patterns of co-occurring neurodevelopmental disorders in a total population sample of 5-year-old children. Mol. Autism 2020, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Ming, X.; Brimacombe, M.; Wagner, G.C. Prevalence of motor impairment in autism spectrum disorders. Brain Dev. 2007, 29, 565–570. [Google Scholar] [CrossRef]
- Kielinen, M.; Rantala, H.; Timonen, E.; Linna, S.L.; Moilanen, I. Associated medical disorders and disabilities in children with autistic disorder: A population-based study. Autism 2004, 8, 49–60. [Google Scholar] [CrossRef]
- Takano, T.; Sawai, C. Early and Late-Onset Epilepsy in Autism: High Rate of Secondarily Generalized Seizures. Autism Open Access 2014, 4, 1–4. [Google Scholar] [CrossRef]
- Jokiranta, E.; Sourander, A.; Suominen, A.; Timonen-Soivio, L.; Brown, A.S.; Sillanpää, M. Epilepsy among children and adolescents with autism spectrum disorders: A population-based study. J. Autism Dev. Disord. 2014, 44, 2547–2557. [Google Scholar] [CrossRef] [PubMed]
- Kantzer, A.K.; Fernell, E.; Gillberg, C.; Miniscalco, C. Autism in community pre-schoolers: Developmental profiles. Res. Dev. Disabil. 2013, 34, 2900–2908. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.E.; Giarelli, E.; Lee, L.C.; Schieve, L.A.; Kirby, R.S.; Cunniff, C.; Nicholas, J.; Reaven, J.; Rice, C.E. Autism spectrum disorder and co-occurring developmental, psychiatric, and medical conditions among children in multiple populations of the United States. J. Dev. Behav. Pediatr. 2010, 31, 267–275. [Google Scholar] [CrossRef]
- Surén, P.; Bakken, I.J.; Aase, H.; Chin, R.; Gunnes, N.; Lie, K.K.; Magnus, P.; Reichborn-Kjennerud, T.; Schjølberg, S.; Øyen, A.-S.; et al. Autism Spectrum Disorder, ADHD, Epilepsy, and Cerebral Palsy in Norwegian Children. Pediatrics 2012, 130, e152–e158. [Google Scholar] [CrossRef]
- Sæmundsen, E.; Magnússon, P.; Georgsdóttir, I.; Egilsson, E.; Rafnsson, V. Prevalence of autism spectrum disorders in an Icelandic birth cohort. BMJ Open 2013, 3, e002748. [Google Scholar] [CrossRef] [PubMed]
- Schendel, D.E.; Overgaard, M.; Christensen, J.; Hjort, L.; Jørgensen, M.; Vestergaard, M.; Parner, E.T. Association of Psychiatric and Neurologic Comorbidity With Mortality Among Persons With Autism Spectrum Disorder in a Danish Population. JAMA Pediatr. 2016, 170, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Viscidi, E.W.; Triche, E.W.; Pescosolido, M.F.; McLean, R.L.; Joseph, R.M.; Spence, S.J.; Morrow, E.M. Clinical Characteristics of Children with Autism Spectrum Disorder and Co-Occurring Epilepsy. PLoS ONE 2013, 8, e67797. [Google Scholar] [CrossRef] [PubMed]
- Cederlund, M.; Gillberg, C. One hundred males with Asperger syndrome: A clinical study of background and associated factors. Dev. Med. Child Neurol. 2004, 46, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Mouridsen, S.E.; Rich, B.; Isager, T. Epilepsy in individuals with a history of Asperger’s syndrome: A Danish nationwide register-based cohort study. J. Autism Dev. Disord. 2013, 43, 1308–1313. [Google Scholar] [CrossRef] [PubMed]
- Mouridsen, S.E.; Rich, B.; Isager, T. Epilepsy and other central nervous system diseases in atypical autism: A case control study. J. Neural Transm. 2011, 118, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Giannotti, F.; Cortesi, F.; Cerquiglini, A.; Miraglia, D.; Vagnoni, C.; Sebastiani, T.; Bernabei, P. An investigation of sleep characteristics, EEG abnormalities and epilepsy in developmentally regressed and non-regressed children with autism. J. Autism Dev. Disord. 2008, 38, 1888–1897. [Google Scholar] [CrossRef]
- Aldinger, K.A.; Lane, C.J.; Veenstra-VanderWeele, J.; Levitt, P. Patterns of Risk for Multiple Co-Occurring Medical Conditions Replicate Across Distinct Cohorts of Children with Autism Spectrum Disorder. Autism Res. 2015, 8, 771–781. [Google Scholar] [CrossRef]
- Amiet, C.; Gourfinkel-An, I.; Laurent, C.; Bodeau, N.; Génin, B.; Leguern, E.; Tordjman, S.; Cohen, D. Does epilepsy in multiplex autism pedigrees define a different subgroup in terms of clinical characteristics and genetic risk? Mol. Autism 2013, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Icasiano, F.; Hewson, P.; Machet, P.; Cooper, C.; Marshall, A. Childhood autism spectrum disorder in the Barwon region: A community based study. J. Paediatr. Child Health 2004, 40, 696–701. [Google Scholar] [CrossRef]
- Ko, C.; Kim, N.; Kim, E.; Song, D.H.; Cheon, K.A. The effect of epilepsy on autistic symptom severity assessed by the social responsiveness scale in children with autism spectrum disorder. Behav. Brain Funct. 2016, 12, 20. [Google Scholar] [CrossRef]
- Kohane, I.S.; McMurry, A.; Weber, G.; MacFadden, D.; Rappaport, L.; Kunkel, L.; Bickel, J.; Wattanasin, N.; Spence, S.; Murphy, S.; et al. The Co-Morbidity Burden of Children and Young Adults with Autism Spectrum Disorders. PLoS ONE 2012, 7, e33224. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hubbard, J.A.; Fabes, R.A.; Adam, J.B. Sleep Disturbances and Correlates of Children with Autism Spectrum Disorders. Child Psychiatry Hum. Dev. 2006, 37, 179–191. [Google Scholar] [CrossRef]
- Nomura, Y.; Nagao, Y.; Kimura, K.; Hachimori, K.; Segawa, M. Epilepsy in autism: A pathophysiological consideration. Brain Dev. 2010, 32, 799–804. [Google Scholar] [CrossRef]
- Viscidi, E.W.; Johnson, A.L.; Spence, S.J.; Buka, S.L.; Morrow, E.M.; Triche, E.W. The association between epilepsy and autism symptoms and maladaptive behaviors in children with autism spectrum disorder. Autism 2014, 18, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Ming, X.; Brimacombe, M.; Chaaban, J.; Zimmerman-Bier, B.; Wagner, G.C. Autism Spectrum Disorders: Concurrent Clinical Disorders. J. Child Neurol. 2008, 23, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Cuccaro, M.L.; Tuchman, R.F.; Hamilton, K.L.; Wright, H.H.; Abramson, R.K.; Haines, J.L.; Gilbert, J.R.; Pericak-Vance, M. Exploring the Relationship Between Autism Spectrum Disorder and Epilepsy Using Latent Class Cluster Analysis. J. Autism Dev. Disord. 2012, 42, 1630–1641. [Google Scholar] [CrossRef] [PubMed]
- Baghdadli, A.; Pascal, C.; Grisi, S.; Aussilloux, C. Risk factors for self-injurious behaviours among 222 young children with autistic disorders. J. Intellect. Disabil. Res. 2003, 47, 622–627. [Google Scholar] [CrossRef]
- Williams, E.; Thomas, K.; Sidebotham, H.; Emond, A. Prevalence and characteristics of autistic spectrum disorders in the ALSPAC cohort. Dev. Med. Child Neurol. 2008, 50, 672–677. [Google Scholar] [CrossRef]
- Baghdadli, A.; Assouline, B.; Sonié, S.; Pernon, E.; Darrou, C.; Michelon, C.; Picot, M.-C.; Aussilloux, C.; Pry, R. Developmental Trajectories of Adaptive Behaviors from Early Childhood to Adolescence in a Cohort of 152 Children with Autism Spectrum Disorders. J. Autism Dev. Disord. 2012, 42, 1314–1325. [Google Scholar] [CrossRef]
- Hughes, J.R.; Melyn, M. EEG and Seizures in Autistic Children and Adolescents: Further Findings with Therapeutic Implications. Clin. EEG Neurosci. 2005, 36, 15–20. [Google Scholar] [CrossRef]
- Burman, D.; Ramanujam, K.; Manzar, D.; Chattu, V.K.; Spence, D.W.; Zaki, N.F.W.; Jahrami, H.; Pandi-Perumal, S.R. Sleep and Autism Spectrum Disorder: A Comprehensive Review of Diagnosis, Markers, Interventions, and Treatments. Sleep Vigil. 2023, 7, 9–22. [Google Scholar] [CrossRef]
- Leader, G.; Abberton, C.; Cunningham, S.; Gilmartin, K.; Grudzien, M.; Higgins, E.; Joshi, L.; Whelan, S.; Mannion, A. Gastrointestinal symptoms in autism spectrum disorder: A systematic review. Nutrients 2022, 14, 1471. [Google Scholar] [CrossRef]
- Emberti Gialloreti, L.; Mazzone, L.; Benvenuto, A.; Fasano, A.; Alcon, A.G.; Kraneveld, A.; Moavero, R.; Raz, R.; Riccio, M.P.; Siracusano, M.; et al. Risk and Protective Environmental Factors Associated with Autism Spectrum Disorder: Evidence-Based Principles and Recommendations. J. Clin. Med. 2019, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health. About Autism. National Human Genome Research Institute; 2019. Available online: https://www.genome.gov/Genetic-Disorders/Autism (accessed on 5 May 2024).
- Won, H.; Mah, W.; Kim, E. Autism spectrum disorder causes, mechanisms, and treatments: Focus on neuronal synapses. Front. Mol. Neurosci. 2013, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Bozzi, Y.; Provenzano, G.; Casarosa, S. Neurobiological bases of autism-epilepsy comorbidity: A focus on excitation/inhibition imbalance. Eur. J. Neurosci. 2018, 47, 534–548. [Google Scholar] [CrossRef]
- Hussman, J.P. Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J. Autism Dev. Disord. 2001, 31, 247–248. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Reutiman, T.J.; Folsom, T.D.; Rooney, R.J.; Patel, D.H.; Thuras, P.D. mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. J. Autism Dev. Disord. 2010, 40, 743–750. [Google Scholar] [CrossRef]
- Lawrence, Y.A.; Kemper, T.L.; Bauman, M.L.; Blatt, G.J. Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurol. Scand. 2010, 121, 99–108. [Google Scholar] [CrossRef]
- Tyzio, R.; Nardou, R.; Ferrari, D.C.; Tsintsadze, T.; Shahrokhi, A.; Eftekhari, S.; Khalilov, I.; Tsintsadze, V.; Brouchoud, C.; Chazal, G.; et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 2014, 343, 675–679. [Google Scholar] [CrossRef]
- Ben-Ari, Y. Is birth a critical period in the pathogenesis of autism spectrum disorders? Nat. Rev. Neurosci. 2015, 16, 498–505. [Google Scholar] [CrossRef]
- Hughes, J.R. Autism: The first firm finding = underconnectivity? Epilepsy Behav. 2007, 11, 20–24. [Google Scholar] [CrossRef]
- Noonan, S.K.; Haist, F.; Müller, R.A. Aberrant functional connectivity in autism: Evidence from low-frequency BOLD signal fluctuations. Brain Res. 2009, 1262, 48–63. [Google Scholar] [CrossRef]
- O’Reilly, C.; Lewis, J.D.; Elsabbagh, M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS ONE 2017, 12, e0175870. [Google Scholar] [CrossRef] [PubMed]
- Supekar, K.; Uddin, L.Q.; Khouzam, A.; Phillips, J.; Gaillard, W.D.; Kenworthy, L.E.; Yerys, B.E.; Vaidya, C.J.; Menon, V. Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep. 2013, 5, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, M.K.; Allen, G.; Beckel-Mitchener, A.; Boulanger, L.M.; Carper, R.A.; Webb, S.J. Autism and abnormal development of brain connectivity. J. Neurosci. 2004, 24, 9228–9231. [Google Scholar] [CrossRef] [PubMed]
- Ahring, P.K.; Liao, V.W.Y.; Gardella, E.; Johannesen, K.M.; Krey, I.; Selmer, K.K.; Stadheim, B.F.; Davis, H.; Peinhardt, C.; Koko, M.; et al. Gain-of-function variants in GABRD reveal a novel pathway for neurodevelopmental disorders and epilepsy. Brain 2022, 145, 1299–1309. [Google Scholar] [CrossRef]
- Lee, E.; Lee, J.; Kim, E. Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders. Biol. Psychiatry 2017, 81, 838–847. [Google Scholar] [CrossRef]
- Filice, F.; Vörckel, K.J.; Sungur, A.Ö.; Wöhr, M.; Schwaller, B. Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol. Brain 2016, 9, 10. [Google Scholar] [CrossRef]
- Nebel, R.A.; Zhao, D.; Pedrosa, E.; Kirschen, J.; Lachman, H.M.; Zheng, D.; Abrahams, B.S. Reduced CYFIP1 in Human Neural Progenitors Results in Dysregulation of Schizophrenia and Epilepsy Gene Networks. PLoS ONE 2016, 11, e0148039. [Google Scholar] [CrossRef]
- De Rubeis, S.; Pasciuto, E.; Li, K.W.; Fernández, E.; Di Marino, D.; Buzzi, A.; Ostroff, L.E.; Klann, E.; Zwartkruis, F.J.; Komiyama, N.H.; et al. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron 2013, 79, 1169–1182. [Google Scholar] [CrossRef] [PubMed]
- Parenti, I.; Lehalle, D.; Nava, C.; Torti, E.; Leitão, E.; Person, R.; Mizuguchi, T.; Matsumoto, N.; Kato, M.; Nakamura, K.; et al. Missense and truncating variants in CHD5 in a dominant neurodevelopmental disorder with intellectual disability, behavioral disturbances, and epilepsy. Hum. Genet. 2021, 140, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Rodenas-Cuadrado, P.; Pietrafusa, N.; Francavilla, T.; La Neve, A.; Striano, P.; Vernes, S.C. Characterisation of CASPR2 deficiency disorder--a syndrome involving autism, epilepsy and language impairment. BMC Med. Genet. 2016, 17, 8. [Google Scholar] [CrossRef] [PubMed]
- Hughes, H.K.; Moreno, R.J.; Ashwood, P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav. Immun. 2023, 108, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Dipasquale, V.; Cutrupi, M.C.; Colavita, L.; Manti, S.; Cuppari, C.; Salpietro, C. Neuroinflammation in autism spectrum disorders: Role of high mobility group box 1 protein. Int. J. Mol. Cell. Med. 2017, 6, 148. [Google Scholar] [PubMed]
- El-Ansary, A.; Al-Ayadhi, L. Neuroinflammation in autism spectrum disorders. J. Neuroinflamm. 2012, 9, 768. [Google Scholar] [CrossRef]
- Marín, O. Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 2012, 13, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Lachance, M.; Rossignol, E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. Prog. Brain Res. 2016, 226, 81–126. [Google Scholar] [CrossRef]
- Leonzino, M.; Busnelli, M.; Antonucci, F.; Verderio, C.; Mazzanti, M.; Chini, B. The Timing of the Excitatory-to-Inhibitory GABA Switch Is Regulated by the Oxytocin Receptor via KCC2. Cell Rep. 2016, 15, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Sarlo, G.L.; Holton, K.F. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure 2021, 91, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Akyuz, E.; Polat, A.K.; Eroglu, E.; Kullu, I.; Angelopoulou, E.; Paudel, Y.N. Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci. 2021, 265, 118826. [Google Scholar] [CrossRef] [PubMed]
- Medina-Ceja, L.; García-Barba, C. The glutamate receptor antagonists CNQX and MPEP decrease fast ripple events in rats treated with kainic acid. Neurosci. Lett. 2017, 655, 137–142. [Google Scholar] [CrossRef]
- Peret, A.; Christie, L.A.; Ouedraogo, D.W.; Gorlewicz, A.; Epsztein, J.; Mulle, C.; Crépel, V. Contribution of aberrant GluK2-containing kainate receptors to chronic seizures in temporal lobe epilepsy. Cell Rep. 2014, 8, 347–354. [Google Scholar] [CrossRef]
- Rogawski, M.A. AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol. Scand. 2013, 127, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hrdlicka, M.; Komarek, V.; Propper, L.; Kulisek, R.; Zumrova, A.; Faladova, L.; Havlovicova, M.; Sedlacek, Z.; Blatny, M.; Urbanek, T. Not EEG abnormalities but epilepsy is associated with autistic regression and mental functioning in childhood autism. Eur. Child Adolesc. Psychiatry 2004, 13, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Besag, F.M.C.; Vasey, M.J. Seizures and Epilepsy in Autism Spectrum Disorder. Child Adolesc. Psychiatr. Clin. N. Am. 2020, 29, 483–500. [Google Scholar] [CrossRef]
- Lee, B.H.; Smith, T.; Paciorkowski, A.R. Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav. 2015, 47, 191–201. [Google Scholar] [CrossRef]
- Spence, S.J.; Schneider, M.T. The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr. Res. 2009, 65, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Amiet, C.; Gourfinkel-An, I.; Bouzamondo, A.; Tordjman, S.; Baulac, M.; Lechat, P.; Mottron, L.; Cohen, D. Epilepsy in autism is associated with intellectual disability and gender: Evidence from a meta-analysis. Biol. Psychiatry 2008, 64, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Britton, J.W.; Frey, L.C.; Hopp, J.L.; Korb, P.; Koubeissi, M.Z.; Lievens, W.E.; Pestana-Knight, E.M.; St. Louis, E.K. Electroencephalography (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants; American Epilepsy Society: Chicago, IL, USA, 2016. [Google Scholar] [CrossRef]
- Milovanovic, M.; Radivojevic, V.; Radosavljev-Kircanski, J.; Grujicic, R.; Toskovic, O.; Aleksić-Hil, O.; Pejovic-Milovancevic, M. Epilepsy and interictal epileptiform activity in patients with autism spectrum disorders. Epilepsy Behav. 2019, 92, 45–52. [Google Scholar] [CrossRef]
- Akshoomoff, N.; Farid, N.; Courchesne, E.; Haas, R. Abnormalities on the neurological examination and EEG in young children with pervasive developmental disorders. J. Autism Dev. Disord. 2007, 37, 887–893. [Google Scholar] [CrossRef]
- Mulligan, C.K.; Trauner, D.A. Incidence and behavioral correlates of epileptiform abnormalities in autism spectrum disorders. J. Autism Dev. Disord. 2014, 44, 452–458. [Google Scholar] [CrossRef]
- Canitano, R.; Luchetti, A.; Zappella, M. Epilepsy, electroencephalographic abnormalities, and regression in children with autism. J. Child Neurol. 2005, 20, 27–31. [Google Scholar] [CrossRef]
- Chez, M.G.; Chang, M.; Krasne, V.; Coughlan, C.; Kominsky, M.; Schwartz, A. Frequency of epileptiform EEG abnormalities in a sequential screening of autistic patients with no known clinical epilepsy from 1996 to 2005. Epilepsy Behav. 2006, 8, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Baird, G.; Robinson, R.O.; Boyd, S.; Charman, T. Sleep electroencephalograms in young children with autism with and without regression. Dev. Med. Child Neurol. 2006, 48, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Capal, J.K.; Carosella, C.; Corbin, E.; Horn, P.S.; Caine, R.; Manning-Courtney, P. EEG endophenotypes in autism spectrum disorder. Epilepsy Behav. 2018, 88, 341–348. [Google Scholar] [CrossRef]
- Nicotera, A.G.; Hagerman, R.J.; Catania, M.V.; Buono, S.; Di Nuovo, S.; Liprino, E.M.; Stracuzzi, E.; Giusto, S.; Di Vita, G.; Musumeci, S.A. EEG Abnormalities as a Neurophysiological Biomarker of Severity in Autism Spectrum Disorder: A Pilot Cohort Study. J. Autism Dev. Disord. 2019, 49, 2337–2347. [Google Scholar] [CrossRef]
- Romero-González, M.; Navas-Sánchez, P.; Marín-Gámez, E.; Barbancho-Fernández, M.A.; Fernández-Sánchez, V.E.; Lara-Muñoz, J.P.; Guzmán-Parra, J. EEG abnormalities and clinical phenotypes in pre-school children with autism spectrum disorder. Epilepsy Behav. 2022, 129, 108619. [Google Scholar] [CrossRef] [PubMed]
- Bosetti, C.; Ferrini, L.; Ferrari, A.R.; Bartolini, E.; Calderoni, S. Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review. J. Clin. Med. 2024, 13, 279. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Lord, C.; Risi, S.; Lambrecht, L.; Cook, J.E.H.; Leventhal, B.L.; DiLavore, P.C.; Pickles, A.; Rutter, M. The Autism Diagnostic Observation Schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 2000, 30, 205–223. [Google Scholar] [CrossRef]
- Lord, C.; Rutter, M.; DiLavore, P.; Risi, S.; Gotham, K.; Bishop, S. Autism Diagnostic Observation Schedule–2nd Edition (ADOS-2); WPS: Los Angeles, CA, USA, 2012. [Google Scholar]
- Sansavini, A.; Favilla, M.E.; Guasti, M.T.; Marini, A.; Millepiedi, S.; Di Martino, M.V.; Vecchi, S.; Battajon, N.; Bertolo, L.; Capirci, O.; et al. Developmental language disorder: Early predictors, age for the diagnosis, and diagnostic tools. A scoping review. Brain Sci. 2021, 11, 654. [Google Scholar] [CrossRef] [PubMed]
- Wolraich, M.L.; Hagan, J.F.; Allan, C.; Chan, E.; Davison, D.; Earls, M.; Evans, S.W.; Flinn, S.K.; Froehlich, T.; Frost, J.; et al. Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics 2019, 144, e20192528. Available online: https://publications.aap.org/pediatrics/article-abstract/144/4/e20192528/81590 (accessed on 19 December 2024). [CrossRef] [PubMed]
- Green, E.; Stroud, L.; Bloomfield, S.; Cronje, J.; Foxcroft, C.; Hurter, K.; Lane, H.; Marais, R.; Marx, C.; McAlinden, P. Griffiths Scales of Child Development, 3rd ed.; Part II: Administration and Scoring; Hogrefe: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence—Fourth Edition; The Psychological Corporation: San Antonio, TX, USA, 2012. [Google Scholar]
- Achenbach, T.M. Manual for ASEBA School-Age Forms & Profiles; University of Vermont, Research Center for Children, Youth & Families: Burlington, VT, USA, 2001. [Google Scholar]
- Frigerio, A.; Cozzi, P.; Pastore, V.; Molteni, M.; Borgatti, R.; Montirosso, R. The evaluation of behavioral and emotional problems in a sample of Italian preschoolers using the Child Behavior Checklist and the Caregiver-Teacher Report Form. Infanz. E Adolesc. 2006, 5, 24–32. [Google Scholar]
- Peltola, M.E.; Leitinger, M.; Halford, J.J.; Vinayan, K.P.; Kobayashi, K.; Pressler, R.M.; Mindruta, I.; Mayor, L.C.; Lauronen, L.; Beniczky, S. Routine and sleep EEG: Minimum recording standards of the International Federation of Clinical Neurophysiology and the International League Against Epilepsy. Epilepsia 2023, 64, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Ahdab, R.; Riachi, N. Reexamining the Added Value of Intermittent Photic Stimulation and Hyperventilation in Routine EEG Practice. Eur. Neurol. 2013, 71, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Roupakiotis, S.C.; Gatzonis, S.D.; Triantafyllou, N.; Mantouvalos, V.; Chioni, A.; Zournas, C.; Siafakas, A. The usefulness of sleep and sleep deprivation as activating methods in electroencephalographic recording Contribution to a long-standing discussion. Seizure 2000, 9, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Kane, N.; Acharya, J.; Beniczky, S.; Caboclo, L.; Finnigan, S.; Kaplan, P.W.; Shibasaki, H.; Pressler, R.; van Putten, M.J. A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017. Clin. Neurophysiol. Pract. 2017, 2, 170. [Google Scholar] [CrossRef]
- Pellicano, E.; Cribb, S.; Kenny, L. Patterns of Continuity and Change in the Psychosocial Outcomes of Young Autistic People: A Mixed-Methods Study. J. Abnorm. Child Psychol. 2020, 48, 301–313. [Google Scholar] [CrossRef]
- Kammoun, I.; BenTouhemi, D.; Hadjkacem, I.; Zouari, H.; Kamoun, F.; Khemekhem, K.; Ayadi, H.; Ellouze, E.; Hsairi, I.; Ghribi, F.; et al. Autism spectrum disorder and eeg specificity: A cross—Sectional tunisian study specificite de l’eeg dans le trouble du spectre autistique: Une etude transversale tunisienne. J. L’inf. Méd. Sfax 2022, 41, 41–47. [Google Scholar]
- Yousef, A.M.; Youssef, U.M.; El-Shabrawy, A.; Fattah, N.R.A.A.; Khedr, H. EEG abnormalities and severity of symptoms in non-epileptic autistic children. Egypt. J. Psychiatry 2017, 38, 59. [Google Scholar] [CrossRef]
- Anukirthiga, B.; Mishra, D.; Pandey, S.; Juneja, M.; Sharma, N. Prevalence of Epilepsy and Inter-Ictal Epileptiform Discharges in Children with Autism and Attention-Deficit Hyperactivity Disorder. Indian. J. Pediatr. 2019, 86, 897–902. [Google Scholar] [CrossRef]
- Emad, E.; Thabit, G. Association of Epileptiform Discharge and Autism Spectrum Disorder Severity in Children Attending the Outpatient Clinics, Child Welfare Teaching Hospital, Baghdad. J. Fac. Med. Baghdad 2023, 65, 266–271. [Google Scholar] [CrossRef]
- Wing, L. Sex ratios in early childhood autism and related conditions. Psychiatry Res. 1981, 5, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Schopler, E. Brief report: Differences in sex ratios in autism as a function of measured intelligence. J. Autism Dev. Disord. 1985, 15, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Volkmar, F.R.; Szatmari, P.; Sparrow, S.S. Sex differences in pervasive developmental disorders. J. Autism Dev. Disord. 1993, 23, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Giarelli, E.; Wiggins, L.D.; Rice, C.E.; Levy, S.E.; Kirby, R.S.; Pinto-Martin, J.; Mandell, D. Sex differences in the evaluation and diagnosis of autism spectrum disorders among children. Disabil. Health J. 2010, 3, 107–116. [Google Scholar] [CrossRef]
- Katusic, M.Z.; Myers, S.M.; Weaver, A.L.; Voigt, R.G. IQ in Autism Spectrum Disorder: A Population-Based Birth Cohort Study. Pediatrics 2021, 148, e2020049899. [Google Scholar] [CrossRef]
- Ryland, H.K.; Hysing, M.; Posserud, M.B.; Gillberg, C.; Lundervold, A.J. Autistic features in school age children: IQ and gender effects in a population-based cohort. Res. Autism Spectr. Disord. 2014, 8, 266–274. [Google Scholar] [CrossRef]
- de Giambattista, C.; Ventura, P.; Trerotoli, P.; Margari, F.; Margari, L. Sex Differences in Autism Spectrum Disorder: Focus on High Functioning Children and Adolescents. Front. Psychiatry 2021, 12, 539835. [Google Scholar] [CrossRef]
- Al-Mamari, W.; Idris, A.B.; Gabr, A.; Jalees, S.; Al-Jabri, M.; Abdulraheem, R.; Al-Mujaini, A.; Islam, M.M.; Al-Alawi, M.; Al-Adawi, S. Intellectual Profiles of Children with Autism Spectrum Disorder: Identification of verbal and nonverbal subscales predicting intellectual quotient. Sultan Qaboos Univ. Med. J. 2021, 21, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.V.; McQuaid, G.A.; Wallace, G.L.; Neuhaus, E.; Lopez, A.; Ratto, A.B.; Jack, A.; Khuu, A.; Webb, S.J.; Verbalis, A.; et al. Time is of the essence: Age at autism diagnosis, sex assigned at birth, and psychopathology. Autism 2024, 28, 2909–2922. [Google Scholar] [CrossRef] [PubMed]
- Begeer, S.; Mandell, D.; Wijnker-Holmes, B.; Venderbosch, S.; Rem, D.; Stekelenburg, F.; Koot, H.M. Sex Differences in the Timing of Identification Among Children and Adults with Autism Spectrum Disorders. J. Autism Dev. Disord. 2013, 43, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Howe, Y.J.; O’Rourke, J.A.; Yatchmink, Y.; Viscidi, E.W.; Jones, R.N.; Morrow, E.M. Female Autism Phenotypes Investigated at Different Levels of Language and Developmental Abilities. J. Autism Dev. Disord. 2015, 45, 3537–3549. [Google Scholar] [CrossRef]
- Kanemura, H.; Sano, F.; Tando, T.; Sugita, K.; Aihara, M. Can EEG characteristics predict development of epilepsy in autistic children? Eur. J. Paediatr. Neurol. 2013, 17, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Akhter, S.; Shefa, J.; Mannan, M. EEG changes and their relationship with intellectual disability in children with autism spectrum disorders in a tertiary care hospital. J. Int. Child Neurol. Assoc. 2021, 1. [Google Scholar] [CrossRef]
- Pisula, E.; Pudło, M.; Słowińska, M.; Kawa, R.; Strząska, M.; Banasiak, A.; Wolańczyk, T. Behavioral and emotional problems in high-functioning girls and boys with autism spectrum disorders: Parents’ reports and adolescents’ self-reports. Autism 2017, 21, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Muratori, F.; Turi, M.; Prosperi, M.; Narzisi, A.; Valeri, G.; Guerrera, S.; Santocchi, E.; Apicella, F.; Lattarulo, C.; Calderoni, S.; et al. Parental Perspectives on Psychiatric Comorbidity in Preschoolers With Autism Spectrum Disorders Receiving Publicly Funded Mental Health Services. Front. Psychiatry 2019, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Oswald, T.M.; Winter-Messiers, M.A.; Gibson, B.; Schmidt, A.M.; Herr, C.M.; Solomon, M. Sex Differences in Internalizing Problems During Adolescence in Autism Spectrum Disorder. J. Autism Dev. Disord. 2016, 46, 624–636. [Google Scholar] [CrossRef]
- Hartley, S.L.; Sikora, D.M. Sex Differences in Autism Spectrum Disorder: An Examination of Developmental Functioning, Autistic Symptoms, and Coexisting Behavior Problems in Toddlers. J. Autism Dev. Disord. 2009, 39, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Mandy, W.; Chilvers, R.; Chowdhury, U.; Salter, G.; Seigal, A.; Skuse, D. Sex Differences in Autism Spectrum Disorder: Evidence from a Large Sample of Children and Adolescents. J. Autism Dev. Disord. 2012, 42, 1304–1313. [Google Scholar] [CrossRef]
- Rynkiewicz, A.; Schuller, B.; Marchi, E.; Piana, S.; Camurri, A.; Lassalle, A.; Baron-Cohen, S. An investigation of the ‘female camouflage effect’ in autism using a computerized ADOS-2 and a test of sex/gender differences. Mol. Autism 2016, 7, 10. [Google Scholar] [CrossRef]
- Solomon, M.; Miller, M.; Taylor, S.L.; Hinshaw, S.P.; Carter, C.S. Autism Symptoms and Internalizing Psychopathology in Girls and Boys with Autism Spectrum Disorders. J. Autism Dev. Disord. 2012, 42, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Hiller, R.M.; Young, R.L.; Weber, N. Sex Differences in Autism Spectrum Disorder based on DSM-5 Criteria: Evidence from Clinician and Teacher Reporting. J. Abnorm. Child Psychol. 2014, 42, 1381–1393. [Google Scholar] [CrossRef]
- May, T.; Cornish, K.; Rinehart, N.J. Gender Profiles of Behavioral Attention in Children With Autism Spectrum Disorder. J. Atten. Disord. 2012, 20, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Salazar, F.; Baird, G.; Chandler, S.; Tseng, E.; O’sullivan, T.; Howlin, P.; Pickles, A.; Simonoff, E. Co-occurring Psychiatric Disorders in Preschool and Elementary School-Aged Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2015, 45, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Hiller, R.M.; Young, R.L.; Weber, N. Sex differences in pre-diagnosis concerns for children later diagnosed with autism spectrum disorder. Autism 2016, 20, 75–84. [Google Scholar] [CrossRef]
- So, P.; Wierdsma, A.I.; van Boeijen, C.; Vermeiren, R.R.; Mulder, N.C. Gender differences between adolescents with autism in emergency psychiatry. Autism 2021, 25, 2331–2340. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.W.; Georgiades, S.; Bishop, S.L.; Hardan, A.Y. Behavioral and Cognitive Characteristics of Females and Males With Autism in the Simons Simplex Collection. J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 329–340.e3. [Google Scholar] [CrossRef] [PubMed]
- Holtmann, M.; Bölte, S.; Poustka, F. Autism spectrum disorders: Sex differences in autistic behaviour domains and coexisting psychopathology. Dev. Med. Child Neurol. 2007, 49, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Prosperi, M.; Turi, M.; Guerrera, S.; Napoli, E.; Tancredi, R.; Igliozzi, R.; Apicella, F.; Valeri, G.; Lattarulo, C.; Gemma, A.; et al. Sex Differences in Autism Spectrum Disorder: An Investigation on Core Symptoms and Psychiatric Comorbidity in Preschoolers. Front. Integr. Neurosci. 2021, 14, 594082. [Google Scholar] [CrossRef] [PubMed]
- Hartley-McAndrew, M.; Weinstock, A. Autism Spectrum Disorder: Correlation between aberrant behaviors, EEG abnormalities and seizures. Neurol. Int. 2010, 2, e10. [Google Scholar] [CrossRef] [PubMed]
- Valvo, G.; Baldini, S.; Brachini, F.; Apicella, F.; Cosenza, A.; Ferrari, A.R.; Guerrini, R.; Muratori, F.; Romano, M.F.; Santorelli, F.M.; et al. Somatic Overgrowth Predisposes to Seizures in Autism Spectrum Disorders. PLoS ONE 2013, 8, e75015. [Google Scholar] [CrossRef]
- Li, Y.W.; Chen, H.J.; Hung, K.L. Electroencephalographic abnormalities in non-epileptic children with attention-deficit/hyperactivity disorder. Neuropsychiatry 2018, 8, 677–683. [Google Scholar]
- Boutros, N. Standard EEG in Personality and Anxiety Disorders. In Standard Electroencephalography in Clinical Psychiatry, 1st ed.; Boutros, N., Galderisi, S., Pogarell, O., Riggio, S., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 133–146. [Google Scholar] [CrossRef]
- Eeg-Olofsson, O.; Petersén, I.; Selldén, U. The development of the electroencephalogram in normal children from the age of 1 through 15 years. Paroxysmal activity. Neuropadiatrie 1971, 2, 375–404. [Google Scholar] [CrossRef] [PubMed]
- Miskin, C.; Carvalho, K.S.; Valencia, I.; Legido, A.; Khurana, D.S. EEG Duration: The Long and the Short of It. J. Child Neurol. 2015, 30, 1767–1769. [Google Scholar] [CrossRef] [PubMed]
- Valvo, G.; Baldini, S.; Retico, A.; Rossi, G.; Tancredi, R.; Ferrari, A.R.; Calderoni, S.; Apicella, F.; Muratori, F.; Santorelli, F.M.; et al. Temporal lobe connects regression and macrocephaly to autism spectrum disorders. Eur. Child Adolesc. Psychiatry 2016, 25, 421–429. [Google Scholar] [CrossRef]
- Santarone, M.E.; Zambrano, S.; Zanotta, N.; Mani, E.; Minghetti, S.; Pozzi, M.; Villa, L.; Molteni, M.; Zucca, C. EEG Features in Autism Spectrum Disorder: A Retrospective Analysis in a Cohort of Preschool Children. Brain Sci. 2023, 13, 345. [Google Scholar] [CrossRef]
- Barbosa de Matos, M.; Nau, A.L.; Fezer, G.F.; Zeigelboim, B.S.; Liberalesso, P.B.N. Epilepsy and eeg abnormalities in children with autism spectrum disorder. J. Epilepsy Clin. Neurophysiol. 2015. Available online: http://files.bvs.br/upload/S/1676-2649/2015/v21n3/a5377.pdf (accessed on 6 November 2023).
- Parmeggiani, A.; Barcia, G.; Posar, A.; Raimondi, E.; Santucci, M.; Scaduto, M.C. Epilepsy and EEG paroxysmal abnormalities in autism spectrum disorders. Brain Dev. 2010, 32, 783–789. [Google Scholar] [CrossRef]
- Rossi, M.; Chatron, N.; Labalme, A.; Ville, D.; Carneiro, M.; Edery, P.; Portes, V.D.; Lemke, J.R.; Sanlaville, D.; Lesca, G. Novel homozygous missense variant of GRIN1 in two sibs with intellectual disability and autistic features without epilepsy. Eur. J. Hum. Genet. 2017, 25, 376–380. [Google Scholar] [CrossRef]
- Sharma, V.; Saini, A.G.; Malhi, P.; Singhi, P. Epilepsy and EEG Abnormalities in Children with Autism Spectrum Disorders. Indian J. Pediatr. 2022, 89, 975–982. [Google Scholar] [CrossRef]
- Calderoni, S. Sex/gender differences in children with autism spectrum disorder: A brief overview on epidemiology, symptom profile, and neuroanatomy. J. Neurosci. Res. 2023, 101, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Polat, İ.; Hız, A.S.; Yiş, U.; Ayanoğlu, M.; Okur, D.; Bayram, E.; Baykara, H.B. Epilepsy and Electroencephalographic Abnormalities in Children with Autistic Spectrum Disorder. J. Behcet Child. Hosp. 2022, 12, 107–115. [Google Scholar] [CrossRef]
- Werling, D.M.; Geschwind, D.H. Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 2013, 26, 146. [Google Scholar] [CrossRef] [PubMed]
- McVicar, K.A.; Ballaban-Gil, K.; Rapin, I.; Moshé, S.L.; Shinnar, S. Epileptiform EEG abnormalities in children with language regression. Neurology 2005, 65, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Gabis, L.; Pomeroy, J.; Andriola, M.R. Autism and epilepsy: Cause, consequence, comorbidity, or coincidence? Epilepsy Behav. 2005, 7, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; Donnelly, J.H.; Tournay, A.E.; Book, T.M.; Filipek, P. Absence of Seizures Despite High Prevalence of Epileptiform EEG Abnormalities in Children with Autism Monitored in a Tertiary Care Center. Epilepsia 2006, 47, 394–398. [Google Scholar] [CrossRef] [PubMed]
- El Achkar, C.M.; Spence, S.J. Clinical characteristics of children and young adults with co-occurring autism spectrum disorder and epilepsy. Epilepsy Behav. 2015, 47, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, J.L.R.; Merzenich, M.M. Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003, 2, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Vignoli, A.; Fabio, R.A.; La Briola, F.; Giannatiempo, S.; Antonietti, A.; Maggiolini, S.; Canevini, M.P. Correlations between neurophysiological, behavioral, and cognitive function in Rett syndrome. Epilepsy Behav. 2010, 17, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Schmeiser, B.; Zentner, J.; Prinz, M.; Brandt, A.; Freiman, T.M. Extent of mossy fiber sprouting in patients with mesiotemporal lobe epilepsy correlates with neuronal cell loss and granule cell dispersion. Epilepsy Res. 2017, 129, 51–58. [Google Scholar] [CrossRef]
- Stringer, J.L.; Agarwal, K.S.; Dure, L.S. Is cell death necessary for hippocampal mossy fiber sprouting? Epilepsy Res. 1997, 27, 67–76. [Google Scholar] [CrossRef]
- Jarero-Basulto, J.J.; Gasca-Martínez, Y.; Rivera-Cervantes, M.C.; Ureña-Guerrero, M.E.; Feria-Velasco, A.I.; Beas-Zarate, C. Interactions Between Epilepsy and Plasticity. Pharmaceuticals 2018, 11, 17. [Google Scholar] [CrossRef]
- McNamara, J.O.; Huang, Y.Z.; Leonard, A.S. Molecular signaling mechanisms underlying epileptogenesis. Sci. STKE 2006, 2006, re12. [Google Scholar] [CrossRef] [PubMed]
- Fairless, R.; Williams, S.K.; Diem, R. Calcium-Binding Proteins as Determinants of Central Nervous System Neuronal Vulnerability to Disease. Int. J. Mol. Sci. 2019, 20, 2146. [Google Scholar] [CrossRef] [PubMed]
- Vizi, S.; Bagosi, A.; Krisztin-Péva, B.; Gulya, K.; Mihály, A. Repeated 4-aminopyridine seizures reduce parvalbumin content in the medial mammillary nucleus of the rat brain. Brain Res. Mol. Brain Res. 2004, 131, 110–118. [Google Scholar] [CrossRef]
- Godoy, L.D.; Prizon, T.; Rossignoli, M.T.; Leite, J.P.; Liberato, J.L. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front. Integr. Neurosci. 2022, 16, 765324. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.R.; Harris, G.J.; Adrien, K.T.; Ziegler, D.A.; Makris, N.; Kennedy, D.N.; Lange, N.T.; Chabris, C.F.; Bakardjiev, A.; Hodgson, J.; et al. Abnormal asymmetry in language association cortex in autism. Ann. Neurol. 2002, 52, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, C.C.; Evans, D.W.; Katuwal, G.J.; Michael, A.M. Asymmetry of fusiform structure in autism spectrum disorder: Trajectory and association with symptom severity. Mol. Autism 2016, 7, 28. [Google Scholar] [CrossRef]
- Floris, D.L.; Wolfers, T.; Zabihi, M.; Holz, N.E.; Zwiers, M.P.; Charman, T.; Tillmann, J.; Ecker, C.; Dell’Acqua, F.; Banaschewski, T.; et al. Atypical brain asymmetry in autism—A candidate for clinically meaningful stratification. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Jang, Y.; Hong, S.J.; Park, H.; Valk, S.L.; Bernhardt, B.C.; Park, B.-Y. Whole-brain structural connectome asymmetry in autism. NeuroImage 2024, 288, 120534. [Google Scholar] [CrossRef] [PubMed]
- Donovan, A.P.A.; Basson, M.A. The neuroanatomy of autism—A developmental perspective. J. Anat. 2017, 230, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Postema, M.C.; van Rooij, D.; Anagnostou, E.; Arango, C.; Auzias, G.; Behrmann, M.; Filho, G.B.; Calderoni, S.; Calvo, R.; Daly, E.; et al. Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nat. Commun. 2019, 10, 4958. [Google Scholar] [CrossRef]
- Sha, Z.; van Rooij, D.; Anagnostou, E.; Arango, C.; Auzias, G.; Behrmann, M.; Bernhardt, B.; Bolte, S.; Busatto, G.F.; Calderoni, S.; et al. Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Mol. Psychiatry 2022, 27, 2114–2125. [Google Scholar] [CrossRef] [PubMed]
- Hara, H. Autism and epilepsy: A retrospective follow-up study. Brain Dev. 2007, 29, 486–490. [Google Scholar] [CrossRef]
- Yasuhara, A. Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD). Brain Dev. 2010, 32, 791–798. [Google Scholar] [CrossRef]
- Rossi, P.G.; Posar, A.; Parmeggiani, A. Epilepsy in adolescents and young adults with autistic disorder. Brain Dev. 2000, 22, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Gendry Meresse, I.; Zilbovicius, M.; Boddaert, N.; Robel, L.; Philippe, A.; Sfaello, I.; Laurier, L.; Brunelle, F.; Samson, Y.; Mouren, M.-C.; et al. Autism severity and temporal lobe functional abnormalities. Ann. Neurol. 2005, 58, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Salmond, C.H.; Ashburner, J.; Connelly, A.; Friston, K.J.; Gadian, D.G.; Vargha-Khadem, F. The role of the medial temporal lobe in autistic spectrum disorders. Eur. J. Neurosci. 2005, 22, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Schumann, C.M.; Hamstra, J.; Goodlin-Jones, B.L.; Lotspeich, L.J.; Kwon, H.; Buonocore, M.H.; Lammers, C.R.; Reiss, A.L.; Amaral, D.G. The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J. Neurosci. 2004, 24, 6392–6401. [Google Scholar] [CrossRef]
- Margaret, L.; Bauman, M.D.; Thomas, L.; Kemper, M.D. The Neurobiology of Autism; Johns Hopkins University Press: Baltimore, MD, USA, 2006. [Google Scholar] [CrossRef]
- Damasio, A.R.; Maurer, R.G. A neurological model for childhood autism. Arch. Neurol. 1978, 35, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Ozonoff, S. Executive functions in autism. In Learning and Cognition in Autism; Current Issues in Autism; Plenum Press: New York, NY, USA, 1995; pp. 199–219. [Google Scholar] [CrossRef]
- Mundy, P. Annotation: The neural basis of social impairments in autism: The role of the dorsal medial-frontal cortex and anterior cingulate system. J. Child Psychol. Psychiatry 2003, 44, 793–809. [Google Scholar] [CrossRef]
- Gorgoni, M.; D′Atri, A.; Lauri, G.; Rossini, P.M.; Ferlazzo, F.; De Gennaro, L. Is Sleep Essential for Neural Plasticity in Humans, and How Does It Affect Motor and Cognitive Recovery? Neural Plast. 2013, 2013, 103949. [Google Scholar] [CrossRef]
- Wang, G.; Grone, B.; Colas, D.; Appelbaum, L.; Mourrain, P. Synaptic plasticity in sleep: Learning, homeostasis and disease. Trends Neurosci. 2011, 34, 452–463. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep and synaptic homeostasis: A hypothesis. Brain Res. Bull. 2003, 62, 143–150. [Google Scholar] [CrossRef]
- Tononi, G.; Cirelli, C. Sleep function and synaptic homeostasis. Sleep Med. Rev. 2006, 10, 49–62. [Google Scholar] [CrossRef]
- Tononi, G. Slow Wave Homeostasis and Synaptic Plasticity. J. Clin. Sleep Med. 2009, 5 (Suppl. 2), S16–S19. [Google Scholar] [CrossRef]
- Marshall, L.; Helgadóttir, H.; Mölle, M.; Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 2006, 444, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Ngo, H.V.V.; Martinetz, T.; Born, J.; Mölle, M. Auditory Closed-Loop Stimulation of the Sleep Slow Oscillation Enhances Memory. Neuron 2013, 78, 545–553. [Google Scholar] [CrossRef]
- Miyamoto, D.; Hirai, D.; Murayama, M. The roles of cortical slow waves in synaptic plasticity and memory consolidation. Front. Neural Circuits 2017, 11, 92. [Google Scholar] [CrossRef]
- Sanchez-Vives, M.V.; Mattia, M. Slow wave activity as the default mode of the cerebral cortex. Arch. Ital. Biol. 2014, 152, 147–155. [Google Scholar]
- Wilckens, K.A.; Hall, M.H.; Nebes, R.D.; Monk, T.H.; Buysse, D.J. Changes in Cognitive Performance Are Associated with Changes in Sleep in Older Adults with Insomnia. Behav. Sleep Med. 2016, 14, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Wilckens, K.A.; Ferrarelli, F.; Walker, M.P.; Buysse, D.J. Slow-wave activity enhancement to improve cognition. Trends Neurosci. 2018, 41, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Y.; Xu, F.; Li, Y.; Sun, J.; Niu, K.; Wang, P.; Li, Y.; Zhang, K.; Wu, D.; et al. Impact of interictal epileptiform discharges on brain network in self-limited epilepsy with centrotemporal spikes: A magnetoencephalography study. Brain Behav. 2023, 13, e3038. [Google Scholar] [CrossRef] [PubMed]
- Cortesi, F.; Giannotti, F.; Ivanenko, A.; Johnson, K. Sleep in children with autistic spectrum disorder. Sleep Med. 2010, 11, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jiang, L.; Tang, X. Levetiracetam is associated with decrease in subclinical epileptiform discharges and improved cognitive functions in pediatric patients with autism spectrum disorder. Neuropsychiatr. Dis. Treat. 2017, 13, 2321–2326. [Google Scholar] [CrossRef] [PubMed]
- Hollander, E.; Dolgoff-Kaspar, R.; Cartwright, C.; Novotny, S. An Open Trial of Divalproex Sodium in Autism Spectrum Disorders. J. Clin. Psychiatry 2001, 62, 13438. [Google Scholar] [CrossRef]
- Plioplys, A.V. Autism: Electroencephalogram Abnormalities and Clinical Improvement With Valproic Acid. Arch. Pediatr. Adolesc. Med. 1994, 148, 220–222. [Google Scholar] [CrossRef]
- Precenzano, F.; Parisi, L.; Lanzara, V.; Vetri, L.; Operto, F.F.; Pastorino, G.M.G.; Ruberto, M.; Messina, G.; Risoleo, M.C.; Santoro, C.; et al. Electroencephalographic Abnormalities in Autism Spectrum Disorder: Characteristics and Therapeutic Implications. Medicina 2020, 56, 419. [Google Scholar] [CrossRef] [PubMed]
- Deykin, E.Y.; MacMahon, B. The incidence of seizures among children with autistic symptoms. Am. J. Psychiatry 1979, 136, 1310–1312. [Google Scholar] [CrossRef]
- Button, K.S.; Ioannidis, J.P.A.; Mokrysz, C.; Nosek, B.A.; Flint, J.; Robinson, E.S.J.; Munafò, M.R. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 2013, 14, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Indrayan, A.; Mishra, A. The importance of small samples in medical research. J. Postgrad. Med. 2021, 67, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef]
Total (n) | Females (n) | Males (n) | |
---|---|---|---|
Abnormal EEG | 77 | 17 | 60 |
Epileptiform Discharges | 68 | 15 | 53 |
Slow Abnormalities | 24 | 4 | 20 |
Fast Abnormalities | 5 | 2 | 3 |
A | C | ||||||
Normal EEG | Abnormal EEG | TOT | Normal EEG | Abnormal EEG | TOT | ||
F | 9 | 17 | 26 | No seizures | 62 | 69 | 131 |
M | 54 | 60 | 114 | Seizures | 1 | 8 | 9 |
TOT | 63 | 77 | 140 | TOT | 63 | 77 | 140 |
B | D | ||||||
Absence of EEG_ED | Presence of EEG_ED | TOT | Absence of EEG_ED | Presence of EEG_ED | TOT | ||
F | 11 | 15 | 26 | No seizures | 70 | 61 | 131 |
M | 61 | 53 | 114 | Seizures | 1 | 8 | 9 |
TOT | 72 | 68 | 140 | TOT | 71 | 69 | 140 |
Wakefulness (n) | Drowsiness (n) | Sleep (n) | |
---|---|---|---|
Abnormal EEG—TOT | 28 | 26 | 59 |
Abnormal EEG—M | 21 | 19 | 47 |
Abnormal EEG—F | 7 | 7 | 12 |
EEG_ED—TOT | 16 | 26 | 51 |
EEG_ED—M | 13 | 19 | 40 |
EEG_ED—F | 3 | 7 | 11 |
EEG_SLOW—TOT | 13 | / | 19 |
EEG_SLOW—M | 9 | / | 17 |
EEG_SLOW—F | 4 | / | 2 |
Complete EEG (n) | Wakefulness (n) | Drowsiness (n) | Sleep (n) | |
---|---|---|---|---|
Focal—TOT | 25 (36.76%) | 9 | / | 24 |
Focal—M | 21 | 7 | / | 20 |
Focal—F | 4 | 2 | / | 4 |
Multifocal—TOT | 27 (39.71%) | 6 | / | 26 |
Multifocal—M | 21 | 5 | / | 20 |
Multifocal—F | 6 | 1 | / | 6 |
Diffuse—TOT | 31 (45.59%) | 2 | 26 | 4 |
Diffuse—M | 24 | 2 | 19 | 3 |
Diffuse—F | 7 | 0 | 7 | 1 |
Total (n) | Females (n) | Males (n) | |
---|---|---|---|
Participants with EEG_ED | 68 (100%) | 15 | 53 |
F/M EEG_ ED in frontal-midline region | 25 (36.76%) | 6 | 19 |
F/M EEG_ ED in temporal region | 9 (13.24%) | 1 | 8 |
F/M EEG_ ED in posterior region | 3 (4.42%) | 1 | 2 |
Diffuse EEG_ ED | 20 (29.41%) | 5 | 15 |
F/M EEG_ ED in frontal-midline region + Diffuse EEG_ ED | 6 (8.82%) | 0 | 6 |
F/M EEG_ ED in temporal region + Diffuse EEG_ ED | 5 (7.35%) | 2 | 3 |
Participants with EEG_SLOW | 24 (100%) | 4 | 20 |
F/M EEG_SLOW in frontal-midline region | 3 (12.50%) | 0 | 3 |
F/M EEG_SLOW in temporal region | 12 (50.00%) | 0 | 12 |
F/M EEG_SLOW in posterior region | 9 (37.50%) | 4 | 5 |
General | Females | Males | ||||
---|---|---|---|---|---|---|
p(ABNORMNAL_EEG, AGE_EEG) | 0.031 * | 0.699 | 0.018 * | |||
Cohen’s d(ANORMAL_EEG, AGE_EEG) | 0.382 | 0.168 | 0.457 | |||
Mean Age at first EEG recording | 0 = 46.65 | 1 = 39.55 | 0 = 38.79 | 1 = 41.02 | 0 = 47.96 | 1 = 39.14 |
p(EEG_ED, AGE_EEG) | 0.144 # | 0.305 | 0.095 # | |||
Cohen’s d(EEG_ED, AGE_EEG) | 0.248 | 0.424 | 0.310 | |||
Mean Age at first EEG recording | 0 = 44.97 | 1 = 40.46 | 0 = 37.15 | 1 = 42.52 | 0 = 46.05 | 1 = 40.17 |
p(EEG_SLOW, AGE_EEG) | <0.001 * | 0.017 * | 0.001 * | |||
Cohen’s d(EEG_SLOW, AGE_EEG) | 0.761 | 1.406 | 0.697 | |||
Mean Age at first EEG recording | 0 = 44.73 | 1 = 33.13 | 0 = 42.32 | 1 = 28.84 | 0 = 45.30 | 1 = 33.99 |
General (n) | Females (n) | Males (n) | |
---|---|---|---|
Minimal-to-no evidence of autistic features (ADOS-CSS score range: 1–2) | 2 | 1 | 1 |
Low levels of autistic features (ADOS-CSS score range: 3–4) | 10 | 3 | 7 |
Moderate levels of autistic features (ADOS-CSS score range: 5–7) | 91 | 18 | 73 |
High levels of autistic features (ADOS-CSS score range: 8–10) | 31 | 4 | 27 |
General | Females | Males | ||||
---|---|---|---|---|---|---|
f(ABNORMAL_EEG when ADOS-CSS score ≤ 4) | 58.33% | 75.00% | 50.00% | |||
f(ABNORMAL_EEG when ADOS-CSS score ≥ 5) | 54.92% | 63.63% | 53.00% | |||
f(EEG_ED when ADOS-CSS score ≤ 4) | 58.33% | 75.00% | 50.00% | |||
f(EEG_ED when ADOS-CSS score ≥ 5) | 47.54% | 54.54% | 46.00% | |||
f(EEG_SLOW when ADOS-CSS score ≤ 4) | 8.33% | 0% | 12.50% | |||
f(EEG_SLOW when ADOS-CSS score ≥ 5) | 18.85% | 18.18% | 19.00% | |||
p(ABNORMAL_EEG, ADOS-CSS) | 0.714 | 0.737 | 0.914 | |||
Cohen’s d(ABNORMAL_EEG, ADOS-CSS) | 0.064 | 0.149 | 0.021 | |||
Mean ADOS-CSS score as regards ABNORMAL_EEG | 0 = 6.63 | 1 = 6.53 | 0 = 6.56 | 1 = 6.23 | 0 = 6.65 | 1 = 6.61 |
p(EEG_ED, ADOS-CSS) | 0.994 | 0.824 | 0.953 | |||
Cohen’s d(EEG_ED, ADOS-CSS) | 0.001 | 0.091 | 0.011 | |||
Mean ADOS-CSS score as regards EEG_ED | 0 = 6.573 | 1 = 6.576 | 0 = 6.45 | 1 = 6.27 | 0 = 6.64 | 1 = 6.62 |
p(EEG_SLOW, ADOS-CSS) | 0.250 | 0.870 | 0.231 | |||
Cohen’s d(EEG_SLOW, ADOS-CSS) | 0.231 | 0.069 | 0.278 | |||
Mean ADOS-CSS score as regards EEG_SLOW | 0 = 6.64 | 1 = 6.29 | 0 = 6.36 | 1 = 6.25 | 0 = 6.70 | 1 = 6.30 |
General | Females | Males | ||||
---|---|---|---|---|---|---|
p(ABNORMAL_EEG, PIQ) | 0.059 # | 0.099 # | 0.532 | |||
Cohen’s d(ABNORMAL_EEG, PIQ) | 0.389 | 0.719 | 0.149 | |||
Mean PIQ score as regards ABNORMAL_EEG | 0 = 98.00 | 1 = 88.00 | 0 = 88.00 | 1 = 69.00 | 0 = 95.97 | 1 = 93.15 |
p(EEG_ED, PIQ) | 0.190 # | 0.453 | 0.662 | |||
Cohen’s d(EEG_ED, PIQ) | 0.272 | 0.314 | 0.106 | |||
Mean PIQ score as regards EEG_ED | 0 = 92.73 | 1 = 86.44 | 0 = 80.60 | 1 = 71.57 | 0 = 95.43 | 1 = 93.40 |
p(EEG_SLOW, CBCL_INT) | 0.307 | 0.971 | 0.175 # | |||
Cohen’s d(EEG_SLOW, CBCL_INT) | 0.245 | 0.025 | 0.339 | |||
Mean CBCL_INT score as regards EEG_SLOW | 0 = 59.92 | 1 = 62.38 | 0 = 60.14 | 1 = 59.75 | 0 = 59.86 | 1 = 62.90 |
p(ABNORMAL_EEG, CBCL_EXT) | 0.223 | 0.052 # | 0.586 | |||
Cohen’s d(ABNORMAL_EEG, CBCL_EXT) | 0.209 | 0.847 | 0.102 | |||
Mean CBCL_EXT score as regards ABNORMAL_EEG | 0 = 53.81 | 1 = 55.52 | 0 = 50.78 | 1 = 56.76 | 0 = 54.31 | 1 = 55.17 |
p(EEG_ED, CBCL_EXT) | 0.197 # | 0.193 # | 0.419 | |||
Cohen’s d(EEG_ED, CBCL_EXT) | 0.219 | 0.548 | 0.153 | |||
Mean CBCL_EXT score as regards EEG_ED | 0 = 53.87 | 1 = 55.68 | 0 = 52.27 | 1 = 56.47 | 0 = 54.16 | 1 = 55.45 |
p(ABNORMAL_EEG, CBCL_TOTAL) | 0.182 # | 0.133 # | 0.474 | |||
Cohen’s d(ABNORMAL_EEG, CBCL_TOTAL) | 0.227 | 0.650 | 0.135 | |||
Mean CBCL_TOTAL score as regards ABNORMAL_EEG | 0 = 56.95 | 1 = 59.30 | 0 = 54.00 | 1 = 61.00 | 0 = 57.44 | 1 = 58.82 |
p(ABNORMAL_EEG, CBCL_ED) | 0.154 # | 0.124 # | 0.346 | |||
Cohen’s d(ABNORMAL_EEG, CBCL_ED) | 0.244 | 0.647 | 0.178 | |||
Mean CBCL_ED score as regards ABNORMAL_EEG | 0 = 167.78 | 1 = 171.77 | 0 = 162.11 | 1 = 172.18 | 0 = 168.72 | 1 = 171.65 |
p(EEG_ED, CBCL_ED) | 0.159 # | 0.478 | 0.202 | |||
Cohen’s d(EEG_ED, CBCL_ED) | 0.239 | 0.289 | 0.241 | |||
Mean CBCL_ED score as regards EEG_ED | 0 = 168.04 | 1 = 171.96 | 0 = 165.91 | 1 = 170.73 | 0 = 168.43 | 1 = 172.38 |
Mean Score | p-Value | Cohen’s d | ||
---|---|---|---|---|
ADOS-CSS | F = 6.35 | M = 6.63 | 0.500 | 0.159 |
PIQ | F = 75.33 | M = 94.54 | 0.004 * | 0.790 |
CBCL_INT | F = 60.08 | M = 60.43 | 0.889 | 0.033 |
CBCL_EXT | F = 54.69 | M = 54.76 | 0.967 | 0.009 |
CBCL_TOTAL | F = 58.58 | M = 58.17 | 0.864 | 0.038 |
CBCL_ED | F = 168.69 | M = 170.26 | 0.663 | 0.096 |
General | Females | Males | ||||
---|---|---|---|---|---|---|
p(ABNORMAL_EEG_S, PIQ) | 0.100 # | 0.013 * | 0.987 | |||
Cohen’s d(ABNORMAL_EEG_S, PIQ) | 0.357 | 1.127 | 0.004 | |||
Mean PIQ score as regards ABNORMAL_EEG | 0 = 93.46 | 1 = 85.01 | 0 = 90.45 | 1 = 61.33 | 0 = 94.40 | 1 = 94.48 |
p(EEG_ED_S, PIQ) | 0.388 | 0.088 # | 0.488 | |||
Cohen’s d(EEG_ED_S, PIQ) | 0.191 | 0.747 | 0.177 | |||
Mean PIQ score as regards EEG_ED | 0 = 91.31 | 1 = 86.70 | 0 = 85.25 | 1 = 64.36 | 0 = 93.13 | 1 = 96.53 |
p(EEG_SLOW_S, PIQ) | 0.333 | 0.491 | 0.288 | |||
Cohen’s d(EEG_SLOW_S, PIQ) | 0.297 | 0.809 | 0.361 | |||
Mean PIQ score as regards EEG_SLOW | 0 = 90.57 | 1 = 83.38 | 0 = 77.48 | 1 = 52.00 | 0 = 95.75 | 1 = 88.61 |
General | Males | |||||||
---|---|---|---|---|---|---|---|---|
p(ADOS-CSS) | 0.549 | 0.325 | ||||||
ω2(ADOS-CSS) | −0.017 | 0.004 | ||||||
Mean ADOS-CSS score | F-M = 6.56 | T = 6.22 | P = 5.33 | D = 6.74 | F-M = 6.53 | T = 5.87 | P = 6.00 | D = 7.07 |
p(PIQ) | 0.713 | NE | ||||||
ω2(PIQ) | −0.022 | NE | ||||||
Mean PIQ score | F-M = 89.94 | T = 90.81 | P = 109.00 | D = 83.00 | F-M = 96.70 | T = 97.79 | P = 126.00 | D = 77.80 |
p(CBCL_INT) | 0.777 | 0.918 | ||||||
ω2(CBCL_INT) | −0.036 | −0.063 | ||||||
Mean CBCL_INT score | F-M = 61.52 | T = 58.89 | P = 61.67 | D = 62.84 | F-M = 61.41 | T = 59.37 | P = 61.00 | D = 62.50 |
p(CBCL_EXT) | 0.469 | 0.754 | ||||||
ω2(CBCL_EXT) | 0.007 | −0.041 | ||||||
MeanCBCL_EXT score | F-M = 55.32 | T = 52.22 | P = 59.33 | D = 57.75 | F-M = 55.00 | T = 53.25 | P = 57.50 | D = 57.33 |
p(CBCL_TOTAL) | 0.658 | 0.898 | ||||||
ω2(CBCL_TOTAL) | −0.017 | −0.052 | ||||||
Mean CBCL_TOTAL score | F-M = 59.52 | T = 56.00 | P = 61.67 | D = 61.50 | F-M = 59.95 | T = 56.62 | P = 60.00 | D = 60.67 |
p(CBCL_ED) | 0.497 | 0.818 | ||||||
ω2(CBCL_ED) | −0.007 | −0.047 | ||||||
Mean CBCL_ED score | F-M = 169.56 | T = 168.44 | P = 172.67 | D = 176.55 | F-M = 170.05 | T = 170.50 | P = 175.50 | D = 175.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrini, L.; Bartolini, E.; Mancini, A.; Tancredi, R.; Ferrari, A.R.; Calderoni, S. EEG Abnormalities and Phenotypic Correlates in Preschoolers with Autism Spectrum Disorder: A Single-Center Study. J. Clin. Med. 2025, 14, 529. https://doi.org/10.3390/jcm14020529
Ferrini L, Bartolini E, Mancini A, Tancredi R, Ferrari AR, Calderoni S. EEG Abnormalities and Phenotypic Correlates in Preschoolers with Autism Spectrum Disorder: A Single-Center Study. Journal of Clinical Medicine. 2025; 14(2):529. https://doi.org/10.3390/jcm14020529
Chicago/Turabian StyleFerrini, Luca, Emanuele Bartolini, Alice Mancini, Raffaella Tancredi, Anna Rita Ferrari, and Sara Calderoni. 2025. "EEG Abnormalities and Phenotypic Correlates in Preschoolers with Autism Spectrum Disorder: A Single-Center Study" Journal of Clinical Medicine 14, no. 2: 529. https://doi.org/10.3390/jcm14020529
APA StyleFerrini, L., Bartolini, E., Mancini, A., Tancredi, R., Ferrari, A. R., & Calderoni, S. (2025). EEG Abnormalities and Phenotypic Correlates in Preschoolers with Autism Spectrum Disorder: A Single-Center Study. Journal of Clinical Medicine, 14(2), 529. https://doi.org/10.3390/jcm14020529