Assessing the Impact of the Prone Position on Acute Kidney Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
- Patient demographics: gender, age, comorbidities, and BMI.
- ICU-related data: length of stay, vital signs, vasopressor requirements, concurrent medications, use of diuretics, hourly urine output, and levels of creatinine, urea, and lactate.
- Stage 1: serum creatinine increase of at least 1.5 times baseline or absolute increase of 0.3 mg/dL (AKINCr 1) or urine output < 0.5 mL/kg/h for 6–12 h (AKINUO 1).
- Stage 2: serum creatinine increase of 2.0 times baseline (AKINCr 2) or urine output < 0.5 mL/kg/h for over 12 h (AKINUO 2).
2.3. Statistical Analysis
3. Results
3.1. General Information
3.2. AKIN Criteria
3.3. Obesity Subgroup Analysis
3.4. Age Subgroup Analysis
3.5. Multivariable Logistic Regression
3.6. Time to AKI Post Prone
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; Van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788. [Google Scholar] [CrossRef] [PubMed]
- Fan, E.; Brodie, D.; Slutsky, A.S. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA 2018, 319, 698. [Google Scholar] [CrossRef] [PubMed]
- Guérin, C.; Reignier, J.; Richard, J.-C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; et al. Prone Positioning in Severe Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2013, 368, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Taccone, P.; Carlesso, E.; Marini, J.J. Prone Position in Acute Respiratory Distress Syndrome. Rationale, Indications, and Limits. Am. J. Respir. Crit. Care Med. 2013, 188, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Coppo, A.; Bellani, G.; Winterton, D.; Di Pierro, M.; Soria, A.; Faverio, P.; Cairo, M.; Mori, S.; Messinesi, G.; Contro, E.; et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): A prospective cohort study. Lancet Respir. Med. 2020, 8, 765–774. [Google Scholar] [CrossRef]
- Parker, E.M.; Bittner, E.A.; Berra, L.; Pino, R.M. Efficiency of Prolonged Prone Positioning for Mechanically Ventilated Patients Infected with COVID-19. J. Clin. Med. 2021, 10, 2969. [Google Scholar] [CrossRef]
- Weiss, T.T.; Cerda, F.; Scott, J.B.; Kaur, R.; Sungurlu, S.; Mirza, S.H.; Alolaiwat, A.A.; Augustynovich, A.E.; Li, J. Prone positioning for patients intubated for severe acute respiratory distress syndrome (ARDS) secondary to COVID-19: A retrospective observational cohort study. Br. J. Anaesth. 2021, 126, 48–55. [Google Scholar] [CrossRef]
- Henderson, W.R.; Griesdale, D.E.; Dominelli, P.; Ronco, J.J. Does prone positioning improve oxygenation and reduce mortality in patients with acute respiratory distress syndrome? Can. Respir. J. 2014, 21, 213–215. [Google Scholar] [CrossRef]
- Gong, M.N.; Bajwa, E.K.; Thompson, B.T.; Christiani, D.C. Body mass index is associated with the development of acute respiratory distress syndrome. Thorax 2010, 65, 44–50. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef]
- Flegal, K.M.; Kruszon-Moran, D.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Trends in Obesity Among Adults in the United States, 2005 to 2014. JAMA 2016, 315, 2284–2291. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, K.; Lewandowski, M. Intensive care in the obese. Best Pract. Res. Clin. Anaesthesiol. 2011, 25, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Sakr, Y.; Madl, C.; Filipescu, D.; Moreno, R.; Groeneveld, J.; Artigas, A.; Reinhart, K.; Vincent, J.-L. Obesity is associated with increased morbidity but not mortality in critically ill patients. Intensive Care Med. 2008, 34, 1999–2009. [Google Scholar] [CrossRef] [PubMed]
- Akinnusi, M.E.; Pineda, L.A.; El Solh, A.A. Effect of obesity on intensive care morbidity and mortality: A meta-analysis. Crit. Care Med. 2008, 36, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Flaatten, H.; Gjerde, S.; Guttormsen, A.B.; Haugen, O.; Høivik, T.; Onarheim, H.; Aardal, S. Outcome after acute respiratory failure is more dependent on dysfunction in other vital organs than on the severity of the respiratory failure. Crit. Care 2003, 7, R72–R77. [Google Scholar] [CrossRef]
- Hoste, E.A.J.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef]
- Rewa, O.; Bagshaw, S.M. Acute kidney injury—Epidemiology, outcomes and economics. Nat. Rev. Nephrol. 2014, 10, 193–207. [Google Scholar] [CrossRef]
- Fuchs, L.; Lee, J.; Novack, V.; Baumfeld, Y.; Scott, D.; Celi, L.; Mandelbaum, T.; Howell, M.; Talmor, D. Severity of Acute Kidney Injury and Two-Year Outcomes in Critically Ill Patients. Chest 2013, 144, 866–875. [Google Scholar] [CrossRef]
- Soto, G.J.; Frank, A.J.; Christiani, D.C.; Gong, M.N. Body mass index and acute kidney injury in the acute respiratory distress syndrome. Crit. Care Med. 2012, 40, 2601–2608. [Google Scholar] [CrossRef]
- Druml, W.; Metnitz, B.; Schaden, E.; Bauer, P.; Metnitz, P.G.H. Impact of body mass on incidence and prognosis of acute kidney injury requiring renal replacement therapy. Intensive Care Med. 2010, 36, 1221–1228. [Google Scholar] [CrossRef]
- Billings, F.T.; Pretorius, M.; Schildcrout, J.S.; Mercaldo, N.D.; Byrne, J.G.; Ikizler, T.A.; Brown, N.J. Obesity and oxidative stress predict AKI after cardiac surgery. J. Am. Soc. Nephrol. 2012, 23, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Danziger, J.M.; Chen, K.P.; Lee, J.; Feng, M.; Mark, R.G.; Celi, L.A.; Mukamal, K.J. Obesity, Acute Kidney Injury, and Mortality in Critical Illness. Crit. Care Med. 2016, 44, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Edgcombe, H.; Carter, K.; Yarrow, S. Anaesthesia in the prone position. Br. J. Anaesth. 2008, 100, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, A.W.; Pelosi, P.; De Waele, J.J.; Malbrain, M.L.; Ball, C.G.; Meade, M.O.; Stelfox, H.T.; Laupland, K.B. Clinical review: Intra-abdominal hypertension: Does it influence the physiology of prone ventilation? Crit. Care 2010, 14, 232. [Google Scholar] [CrossRef]
- Hering, R.; Wrigge, H.; Vorwerk, R.; Brensing, K.A.; Schröder, S.; Zinserling, J.; Hoeft, A.; Spiegel, T.V.; Putensen, C. The Effects of Prone Positioning on Intraabdominal Pressure and Cardiovascular and Renal Function in Patients with Acute Lung Injury. Anesth. Analg. 2001, 92, 1226–1231. [Google Scholar] [CrossRef]
- Weig, T.; Janitza, S.; Zoller, M.; Dolch, M.E.; Miller, J.; Frey, L.; Kneidinger, N.; Johnson, T.; Schubert, M.I.; Irlbeck, M. Influence of abdominal obesity on multiorgan dysfunction and mortality in acute respiratory distress syndrome patients treated with prone positioning. J. Crit. Care 2014, 29, 557–561. [Google Scholar] [CrossRef]
- The ARDS Definition Task Force. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801. [Google Scholar] [CrossRef]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef]
- Cruz, D.N.; Ricci, Z.; Ronco, C. Clinical review: RIFLE and AKIN—Time for reappraisal. Crit. Care 2009, 13, 211. [Google Scholar] [CrossRef]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef] [PubMed]
- Salazar, D.E.; Corcoran, G.B. Predicting creatinine clearance and renal drug clearance in obese patients from estimated fat-free body mass. Am. J. Med. 1988, 84, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.; Capotondo, M.M.; Quaintenne, M.; Musso-Enz, G.M.; Aroca-Martinez, G.; Musso, C.G. Obesity and glomerular filtration rate. Int. Urol. Nephrol. 2024, 56, 1663–1668. [Google Scholar] [CrossRef]
- Chang-Panesso, M. Acute kidney injury and aging. Pediatr. Nephrol. 2021, 36, 2997–3006. [Google Scholar] [CrossRef] [PubMed]
- Coca, S.G. Acute Kidney Injury in Elderly Persons. Am. J. Kidney Dis. 2010, 56, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.T.; Tsai, H.B.; Wu, C.Y.; Lin, Y.-F.; Hsu, N.-C.; Chen, J.-S.; Hung, K.-Y. The severity of initial acute kidney injury at admission of geriatric patients significantly correlates with subsequent in-hospital complications. Sci. Rep. 2015, 5, 13925. [Google Scholar] [CrossRef]
- Ishani, A.; Xue, J.L.; Himmelfarb, J.; Eggers, P.W.; Kimmel, P.L.; Molitoris, B.A.; Collins, A.J. Acute Kidney Injury Increases Risk of ESRD among Elderly. J. Am. Soc. Nephrol. 2009, 20, 223–228. [Google Scholar] [CrossRef]
- Jin, S.-J.; Park, Y.-S.; Kim, S.-H.; Kim, D.; Shim, W.-H.; Jang, D.-M.; Shaffrey, C.I.; Naik, B.I. Effect of Prone Positional Apparatus on the Occurrence of Acute Kidney Injury after Spine Surgery. World Neurosurg. 2019, 128, e597–e602. [Google Scholar] [CrossRef]
- De Waele, J.J.; De Laet, I.; Kirkpatrick, A.W.; Hoste, E. Intra-abdominal Hypertension and Abdominal Compartment Syndrome. Am. J. Kidney Dis. 2011, 57, 159–169. [Google Scholar] [CrossRef]
- Shashaty, M.G.S.; Stapleton, R.D. Physiological and Management Implications of Obesity in Critical Illness. Ann. Am. Thorac. Soc. 2014, 11, 1286–1297. [Google Scholar] [CrossRef]
- Dalfino, L.; Tullo, L.; Donadio, I.; Malcangi, V.; Brienza, N. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 2008, 34, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Biancofiore, G.; Bindi, M.L.; Romanelli, A.; Boldrini, A.; Consani, G.; Bisà, M.; Filipponi, F.; Vagelli, A.; Mosca, F. Intra-abdominal pressure monitoring in liver transplant recipients: A prospective study. Intensive Care Med. 2003, 29, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Doty, J.M.; Saggi, B.H.; Sugerman, H.J.; Blocher, C.R.; Pin, R.; Fakhry, I.; Gehr, T.W.B.; Sica, D.A. Effect of increased renal venous pressure on renal function. J. Trauma Acute Care Surg. 1999, 47, 1000–1003. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Sun, H.; Sun, Z.; Yang, X.; Zhou, S.; Wei, J. Intra-abdominal hypertension and increased acute kidney injury risk: A systematic review and meta-analysis. J. Int. Med. Res. 2021, 49, 03000605211016627. [Google Scholar] [CrossRef] [PubMed]
- Holodinsky, J.K.; Roberts, D.J.; Ball, C.G.; Blaser, A.R.; Starkopf, J.; A Zygun, D.; Stelfox, H.T.; Malbrain, M.L.; Jaeschke, R.C.; Kirkpatrick, A.W. Risk factors for intra-abdominal hypertension and abdominal compartment syndrome among adult intensive care unit patients: A systematic review and meta-analysis. Crit. Care 2013, 17, R249. [Google Scholar] [CrossRef]
- Smit, M.; Werner, M.J.M.; Lansink-Hartgring, A.O.; Dieperink, W.; Zijlstra, J.G.; van Meurs, M. How central obesity influences intra-abdominal pressure: A prospective, observational study in cardiothoracic surgical patients. Ann. Intensive Care 2016, 6, 99. [Google Scholar] [CrossRef]
- Akhavan, A.; Gainsburg, D.M.; Stock, J.A. Complications Associated with Patient Positioning in Urologic Surgery. Urology 2010, 76, 1309–1316. [Google Scholar] [CrossRef]
- Boyer, N.; Eldridge, J.; Prowle, J.R.; Forni, L.G. Postoperative Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2022, 17, 1535. [Google Scholar] [CrossRef]
- Bozorgmehri, S.; Gilbert, S.; Cook, R.L.; Beyth, R.; Ozrazgat-Baslanti, T.; Bihorac, A.; Canales, M. PD13-09 Acute Kidney Injury After Urologic Surgeries. J. Urol. 2018, 199, e302. [Google Scholar] [CrossRef]
- Caddeo, G.; Williams, S.T.; McIntyre, C.W.; Selby, N.M. Acute Kidney Injury in Urology Patients: Incidence, Causes and Outcomes. Nephro-Urol. Mon. 2013, 5, 955–961. [Google Scholar] [CrossRef]
- Schmid, M.; Dalela, D.; Tahbaz, R.; Langetepe, J.; Randazzo, M.; Dahlem, R.; Fisch, M.; Trinh, Q.-D.; Chun, F.K. Novel biomarkers of acute kidney injury: Evaluation and evidence in urologic surgery. World J. Nephrol. 2015, 4, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Gal, J.; Hyman, J.; Gainsburg, D.M. Positioning for Urological Procedures. In Anesthesia for Urologic Surgery; Gainsburg, D.M., Bryson, E.O., Frost, E.A.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 243–269. [Google Scholar] [CrossRef]
- Abroug, F.; Ouanes-Besbes, L.; Elatrous, S.; Brochard, L. The effect of prone positioning in acute respiratory distress syndrome or acute lung injury: A meta-analysis. Areas of uncertainty and recommendations for research. Intensive Care Med. 2008, 34, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Charron, C.; Repesse, X.; Bouferrache, K.; Bodson, L.; Castro, S.; Page, B.; Jardin, F.; Vieillard-Baron, A. PaCO2 and alveolar dead space are more relevant than PaO2/FiO2 ratio in monitoring the respiratory response to prone position in ARDS patients: A physiological study. Crit. Care 2011, 15, R175. [Google Scholar] [CrossRef] [PubMed]
- Langer, T.; Brioni, M.; Guzzardella, A.; Carlesso, E.; Cabrini, L.; Castelli, G.; Dalla Corte, F.; De Robertis, E.; Favarato, M.; Forastieri, A.; et al. Prone position in intubated, mechanically ventilated patients with COVID-19: A multi-centric study of more than 1000 patients. Crit. Care 2021, 25, 128. [Google Scholar] [CrossRef]
- Blanch, L.; Mancebo, J.; Perez, M.; Martinez, M.; Mas, A.; Betbese, A.J.; Joseph, D.; Ballús, J.; Lucangelo, U.; Bak, E. Short-term effects of prone position in critically ill patients with acute respiratory distress syndrome. Intensive Care Med. 1997, 23, 1033–1039. [Google Scholar] [CrossRef]
- Mathews, K.S.; Soh, H.; Shaefi, S.; Wang, W.; Bose, S.; Coca, S.; Gupta, S.; Hayek, S.S.; Srivastava, A.; Brenner, S.K.; et al. Prone Positioning and Survival in Mechanically Ventilated Patients with Coronavirus Disease 2019—Related Respiratory Failure. Crit. Care Med. 2021. Publish Ahead of Print. [Google Scholar] [CrossRef]
- Sud, S.; Friedrich, J.O.; Taccone, P.; Polli, F.; Adhikari, N.K.J.; Latini, R.; Pesenti, A.; Guérin, C.; Mancebo, J.; Curley, M.A.Q.; et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: Systematic review and meta-analysis. Intensive Care Med. 2010, 36, 585–599. [Google Scholar] [CrossRef]
- Gattinoni, L.; Busana, M.; Giosa, L.; Macrì, M.M.; Quintel, M. Prone Positioning in Acute Respiratory Distress Syndrome. Semin. Respir. Crit. Care Med. 2019, 40, 94–100. [Google Scholar] [CrossRef]
- Abebe, A.; Kumela, K.; Belay, M.; Kebede, B.; Wobie, Y. Mortality and predictors of acute kidney injury in adults: A hospital-based prospective observational study. Sci. Rep. 2021, 11, 15672. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef]
- Waikar, S.S.; Liu, K.D.; Chertow, G.M. Diagnosis, Epidemiology and Outcomes of Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2008, 3, 844–861. [Google Scholar] [CrossRef]
- Chiumello, D.; Cressoni, M.; Racagni, M.; Landi, L.; Bassi, G.L.; Polli, F.; Carlesso, E.; Gattinoni, L. Effects of thoraco-pelvic supports during prone position in patients with acute lung injury/acute respiratory distress syndrome: A physiological study. Crit. Care 2006, 10, R87. [Google Scholar] [CrossRef]
Characteristics | Total (N = 56) |
---|---|
Age | |
Mean ± SD (N) | 58 ± 15 (55) |
Median (IQR) | 59 (48, 70) |
Range | 22, 81 |
Sex | |
Female | 16/56 (29%) |
Male | 40/56 (71%) |
Weight | |
Mean ± SD (N) | 93 ± 20 (55) |
Median (IQR) | 90 (80, 100) |
Range | 60, 150 |
Body mass index (BMI) | |
Mean ± SD (N) | 33 ± 7 (44) |
Median (IQR) | 31 (28, 35) |
Range | 20, 52 |
COVID-19 infection | 39/56 (70%) |
Baseline creatinine, mg/dL | |
Mean ± SD (N) | 0.79 ± 0.22 (55) |
Median (IQR) | 0.80 (0.65, 0.89) |
Range | 0.31, 1.40 |
PaO2/FiO2 | |
Mean ± SD (N) | 74 ± 44 (50) |
Median (IQR) | 64 (57, 77) |
Range | 38, 324 |
SOFA pre prone | |
Mean ± SD (N) | 7.84 ± 2.66 (56) |
Median (IQR) | 8.00 (5.75, 9.00) |
Range | 1.00, 14.00 |
Prone | Supine | ||||||
---|---|---|---|---|---|---|---|
AKIN Prior to Pronation (Event/Base) | AKIN After Pronation (24 h/Base) | p-Value | AKIN Prior to Supination (Event/Base) | AKIN After Supination (24 h/Base) | p-Value | ||
All Patients | Prone (N = 86 cases, 56 patients) | Supine (N = 59 cases, 39 patients) | |||||
Mean ± SD (N) | 0.53 ± 0.97 (85) | 0.93 ± 1.16 (81) | <0.01 | 0.59 ± 1.07 (59) | 0.71 ± 1.17 (55) | 0.07 | |
Median (IQR) | 0.00 (0.00, 1.00) | 0.00 (0.00, 2.00) | 0.00 (0.00, 1.00) | 0.00 (0.00, 1.00) | |||
Range | 0.00, 3.00 | 0.00, 3.00 | 0.00, 3.00 | 0.00, 3.00 | |||
Patients with BMI < 25 | Prone (N = 11 cases, 5 patients) | Supine (N = 11 cases, 4 patients) | |||||
Mean ± SD (N) | 0.09 ± 0.30 (11) | 0.13 ± 0.35 (8) | NA | 0.00 ± 0.00 (11) | 0.00 ± 0.00 (9) | NA | |
Median (IQR) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | |||
Range | 0.00, 1.00 | 0.00, 1.00 | 0.00, 0.00 | 0.00, 0.00 | |||
Patients with BMI ≥ 25 | Prone (N = 57 cases, 39 patients) | (Supine N = 37 cases, 17 patients) | |||||
Mean ± SD (N) | 0.58 ± 0.96 (57) | 0.96 ± 1.10 (57) | <0.01 | 0.76 ± 1.14 (37) | 0.95 ± 1.27 (37) | 0.07 | |
Median (IQR) | 0.00 (0.00, 1.00) | 1.00 (0.00, 2.00) | 0.00 (0.00, 2.00) | 0.00 (0.00, 2.00) | |||
Range | 0.00, 3.00 | 0.00, 3.00 | 0.00, 3.00 | 0.00, 3.00 |
Prone | Supine | ||||||
---|---|---|---|---|---|---|---|
AKIN Prior to Pronation | AKIN After Pronation | p-Value | AKIN Prior to Supination | AKIN After Supination | p-Value | ||
All Patients | Prone (N = 86 cases, 56 patients) | Supine (N = 59 cases, 39 patients) | |||||
Mean ± SD (N) | 0.67 ± 1.07 (85) | 1.22 ± 1.28 (86) | <0.01 | 0.93 ± 1.17 (59) | 0.98 ± 1.20 (59) | 0.62 | |
Median (IQR) | 0.00 (0.00, 1.00) | 1.00 (0.00, 2.00) | 0.00 (0.00, 2.00) | 0.00 (0.00, 2.00) | |||
Range | 0.00, 3.00 | 0.00, 3.00 | 0.00, 3.00 | 0.00, 3.00 | |||
Patients with BMI < 25 | Prone (N = 11 cases, 5 patients) | Supine (N = 11 cases, 4 patients) | |||||
Mean ± SD (N) | 0.09 ± 0.30 (11) | 0.45 ± 1.04 (11) | 0.34 | 0.18 ± 0.60 (11) | 0.45 ± 0.82 (11) | 0.37 | |
Median (IQR) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.00) | 0.00 (0.00, 0.50) | |||
Range | 0.00, 1.00 | 0.00, 3.00 | 0.00, 2.00 | 0.00, 2.00 | |||
Patients with BMI ≥ 25 | Prone (N = 57 cases, 39 patients) | Supine (N = 37 cases, 17 patients) | |||||
Mean ± SD (N) | 0.84 ± 1.18 (57) | 1.35 ± 1.26 (57) | <0.01 | 1.27 ± 1.17 (37) | 1.32 ± 1.27 (37) | 0.74 | |
Median (IQR) | 0.00 (0.00, 2.00) | 2.00 (0.00, 2.00) | 2.00 (0.00, 2.00) | 1.00 (0.00, 3.00) | |||
Range | 0.00, 3.00 | 0.00, 3.00 | 0.00, 3.00 | 0.00, 3.00 |
Characteristic | OR | 95% CI | p-Value |
---|---|---|---|
Change in patient position to prone position | 2.38 | 1.05, 5.36 | 0.037 |
Age | 1.04 | 1.02, 1.07 | <0.001 |
Lactate difference | 1.25 | 0.92, 1.71 | 0.2 |
Time Points | Before Prone Position (N = 36) | After Prone Position (N = 36) | Before Supine Position (N = 21) | p-Value 1 Before vs. After Prone | p-Value 2 (After Prone vs. Before Supine) | |
---|---|---|---|---|---|---|
Patients with AKI development | Mean ± SD (N) | 0.72 ± 1.03 (36) | 2.14 ± 0.96 (36) | 1.33 ± 1.35 (21) | <0.01 | <0.01 |
Median (IQR) | 0.00 (0.00, 1.25) | 2.00 (2.00, 3.00) | 2.00 (0.00, 3.00) | |||
Range | 0.00, 3.00 | 0.00, 3.00 | 0.00, 3.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezra, E.; Hazan, I.; Braiman, D.; Gaufberg, R.; Taylor, J.; Alyagon, A.; Babievb, A.S.; Fuchs, L. Assessing the Impact of the Prone Position on Acute Kidney Injury. J. Clin. Med. 2025, 14, 631. https://doi.org/10.3390/jcm14020631
Ezra E, Hazan I, Braiman D, Gaufberg R, Taylor J, Alyagon A, Babievb AS, Fuchs L. Assessing the Impact of the Prone Position on Acute Kidney Injury. Journal of Clinical Medicine. 2025; 14(2):631. https://doi.org/10.3390/jcm14020631
Chicago/Turabian StyleEzra, Eden, Itai Hazan, Dana Braiman, Rachel Gaufberg, Jonathan Taylor, Adva Alyagon, Amit Shira Babievb, and Lior Fuchs. 2025. "Assessing the Impact of the Prone Position on Acute Kidney Injury" Journal of Clinical Medicine 14, no. 2: 631. https://doi.org/10.3390/jcm14020631
APA StyleEzra, E., Hazan, I., Braiman, D., Gaufberg, R., Taylor, J., Alyagon, A., Babievb, A. S., & Fuchs, L. (2025). Assessing the Impact of the Prone Position on Acute Kidney Injury. Journal of Clinical Medicine, 14(2), 631. https://doi.org/10.3390/jcm14020631