Comprehensive Review of Lipid Management in Chronic Kidney Disease and Hemodialysis Patients: Conventional Approaches, and Challenges for Cardiovascular Risk Reduction
Abstract
:1. Introduction
2. Methods
3. Prevalence of Lipid Disorders in Hemodialysis Patients
4. Risk Factors for the Development of Lipid Disorders in Hemodialysis Patients
5. The Role of Physical Activity in Patients with CKD and ESRD
6. Management of Hyperlipidemia in CKD and ESRD Patients
6.1. Statins and Ezetemib
6.1.1. Atorvastatin
6.1.2. Rosuvastatin
6.1.3. Simvastatin and Ezetimibe
6.2. Other Lipid Lowering Agents
6.2.1. Fibrates
6.2.2. Bile Acid Sequestrants
6.2.3. Omega–3 Fatty Acids
6.2.4. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors
6.3. Novel Lipid Lowering Agents
6.3.1. Cholesteryl Ester Transfer Protein (CETP) Inhibitors
6.3.2. ApoCIII Antisense Oligonucleotide
6.3.3. Angiopoietin-like Protein 3 (ANGPTL3) Inhibitors
7. Current Guidelines for the Use of Lipid-Lowering Agents in CKD and ESRD
8. The Outcomes of Long-Term Dialysis Patients on Lipid-Lowering Medications
9. Future Directions
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J.; et al. The Heart of the World. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Burrows, N.R.; Koyama, A.; Pavkov, M.E. Reported Cases of End-Stage Kidney Disease—United States, 2000-2019. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 412–415. [Google Scholar] [CrossRef]
- Herzog, C.A.; Ma, J.Z.; Collins, A.J. Poor Long-Term Survival after Acute Myocardial Infarction among Patients on Long-Term Dialysis. N. Engl. J. Med. 1998, 339, 799–805. [Google Scholar] [CrossRef]
- Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in patients with chronic kidney disease: Etiology and management. Int. J. Nephrol. Renov. Dis. 2017, 10, 35–45. [Google Scholar] [CrossRef]
- Baek, J.; He, C.; Afshinnia, F.; Michailidis, G.; Pennathur, S. Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat. Rev. Nephrol. 2022, 18, 38–55. [Google Scholar] [CrossRef]
- Fellström, B.C.; Jardine, A.G.; Schmieder, R.E.; Holdaas, H.; Bannister, K.; Beutler, J.; Chae, D.-W.; Chevaile, A.; Cobbe, S.M.; Grönhagen-Riska, C.; et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 2009, 360, 1395–1407. [Google Scholar] [CrossRef]
- Wanner, C.; Krane, V.; März, W.; Olschewski, M.; Mann, J.F.; Ruf, G.; Ritz, E. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 2005, 353, 238–248. [Google Scholar] [CrossRef]
- Baigent, C.; Landray, M.J.; Reith, C.; Emberson, J.; Wheeler, D.C.; Tomson, C.; Wanner, C.; Krane, V.; Cass, A.; Craig, J.; et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet 2011, 377, 2181–2192. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease. J. Am. Coll. Cardiol. 2019, 74, e177–e232. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Mathew, R.O.; Rosenson, R.S.; Lyubarova, R.; Chaudhry, R.; Costa, S.P.; Bangalore, S.; Sidhu, M.S. Concepts and Controversies: Lipid Management in Patients with Chronic Kidney Disease. Cardiovasc. Drugs Ther. 2021, 35, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Hasan, Y.K.; Alsultan, M.; Anan, M.T.; Hassn, Q.; Basha, K. The prevalence of dyslipidemia in patients on hemodialysis: A cross-sectional study from Syria. Ann. Med. Surg. 2023, 85, 3838–3844. [Google Scholar] [CrossRef] [PubMed]
- Mohamed-Yassin, M.-S.; Baharudin, N.; Abdul-Razak, S.; Ramli, A.S.; Lai, N.M. Global prevalence of dyslipidaemia in adult populations: A systematic review protocol. BMJ Open 2021, 11, e049662. [Google Scholar] [CrossRef] [PubMed]
- Tóth, P.P.; Potter, D.; Ming, E.E. Prevalence of lipid abnormalities in the United States: The National Health and Nutrition Examination Survey 2003–2006. J. Clin. Lipidol. 2012, 6, 325–330. [Google Scholar] [CrossRef]
- Kaysen, G. Dyslipidemia in chronic kidney disease: Causes and consequences. Kidney Int. 2006, 70, S55–S58. [Google Scholar] [CrossRef]
- Tölle, M.; Huang, T.; Schuchardt, M.; Jankowski, V.; Prüfer, N.; Jankowski, J.; Tietge, U.J.; Zidek, W.; van der Giet, M. High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A. Cardiovasc. Res. 2012, 94, 154–162. [Google Scholar] [CrossRef]
- Valdivielso, J.M.; Rodríguez-Puyol, D.; Pascual, J.; Barrios, C.; Bermúdez-López, M.; Sánchez-Niño, M.D.; Pérez-Fernández, M.; Ortiz, A. Atherosclerosis in Chronic Kidney Disease: More, Less, or Just Different? Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1938–1966. [Google Scholar] [CrossRef]
- Gyurászová, M.; Gurecká, R.; Bábíčková, J.; Tóthová, Ľ. Oxidative Stress in the Pathophysiology of Kidney Disease: Implications for Noninvasive Monitoring and Identification of Biomarkers. Oxidative Med. Cell. Longev. 2020, 2020, 5478708. [Google Scholar] [CrossRef]
- Hung, S.C.; Kuo, K.L.; Wu, C.C.; Tarng, D.-C. Indoxyl sulfate: A novel cardiovascular risk factor in chronic kidney disease. J. Am. Heart Assoc. 2017, 6, e005022. [Google Scholar] [CrossRef]
- Navarro-García, J.A.; Rodríguez-Sánchez, E.; Aceves-Ripoll, J.; Abarca-Zabalía, J.; Susmozas-Sánchez, A.; Lafuente, L.G.; Bada-Bosch, T.; Hernández, E.; Mérida-Herrero, E.; Praga, M.; et al. Oxidative Status before and after Renal Replacement Therapy: Differences between Conventional High Flux Hemodialysis and on-Line Hemodiafiltration. Nutrients 2019, 11, 2809. [Google Scholar] [CrossRef]
- MacLaughlin, H.L.; Friedman, A.N.; Ikizler, T.A. Nutrition in Kidney Disease: Core Curriculum 2022. Am. J. Kidney Dis. 2022, 79, 437–449. [Google Scholar] [CrossRef]
- Santesso, N.; Akl, E.A.; Bianchi, M.; Mente, A.; Mustafa, R.; Heels-Ansdell, D.; Schunemann, H.J. Effects of higher- versus lower-protein diets on health outcomes: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2012, 66, 780–788. [Google Scholar] [CrossRef]
- Goek, O.N.; Köttgen, A.; Hoogeveen, R.C.; Ballantyne, C.M.; Coresh, J.; Astor, B.C. Association of apolipoprotein A1 and B with kidney function and chronic kidney disease in two multiethnic population samples. Nephrol. Dial. Transplant. 2012, 27, 2839–2847. [Google Scholar] [CrossRef]
- Wang, X.Q.; Li, S.; Nagothu, K.; Ranganathan, G.; Ali, S.M.; Shank, B.; Gokden, N.; Ayyadevara, S.; Megyesi, J.; Olivecrona, G.; et al. Secondary hyperparathyroidism downregulates lipoprotein lipase expression in chronic renal failure. Am. J. Physiol. Physiol. 1997, 273, F925–F930. [Google Scholar] [CrossRef]
- Tsimihodimos, V.; Mitrogianni, Z.; Elisaf, M. Dyslipidemia associated with chronic kidney disease. Open Cardiovasc. Med. J. 2011, 5, 41–48. [Google Scholar] [CrossRef]
- Skiba, R.; Matyjek, A.; Syryło, T.; Niemczyk, S.; Rymarz, A. Advanced Chronic Kidney Disease is a Strong Predictor of Hypogonadism and is Associated with Decreased Lean Tissue Mass. Int. J. Nephrol. Renov. Dis. 2020, 13, 319–327. [Google Scholar] [CrossRef]
- Romejko, K.; Rymarz, A.; Sadownik, H.; Niemczyk, S. Testosterone Deficiency as One of the Major Endocrine Disorders in Chronic Kidney Disease. Nutrients 2022, 14, 3438. [Google Scholar] [CrossRef]
- Kelly, D.M.; Jones, T.H. Testosterone: A metabolic hormone in health and disease. J. Endocrinol. 2013, 217, R25–R45. [Google Scholar] [CrossRef]
- Chen, N.; Wu, X.; Ding, X.; Mei, C.; Fu, P.; Jiang, G.; Li, X.; Chen, J.; Liu, B.; La, Y.; et al. Sevelamer carbonate lowers serum phosphorus effectively in haemodialysis patients: A randomized, double-blind, placebo-controlled, dose-titration study. Nephrol. Dial. Transplant. 2013, 29, 152–160. [Google Scholar] [CrossRef]
- Basutkar, R.S.; Varghese, R.; Mathew, N.K.; Indira, P.S.; Viswanathan, B.; Sivasankaran, P. Systematic review and meta-analysis of potential pleiotropic effects of sevelamer in chronic kidney disease: Beyond phosphate control. Nephrology 2022, 27, 337–354. [Google Scholar] [CrossRef]
- Heiwe, S.; Tollbäck, A.; Clyne, N. Twelve weeks of exercise trainingincreases muscle function and walking capacity in elderly predialysis patients and healthy subjects. Nephron 2001, 88, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Clyne, N.; Ekholm, J.; Jogestrand, T.; Lins, L.-E.; Pehrsson, S.K. Effects of exercise training in predialytic uremic patients. Nephron 1991, 59, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Painter, P.L.; Nelson-Worel, J.N.; Hill, M.M.; Thornbery, D.R.; Shelp, W.R.; Harrington, A.R.; Weinstein, A.B. Effects of exercise training during hemodialysis. Nephron 1986, 43, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Avesani, C.M.; Trolonge, S.; Deleaval, P.; Baria, F.; Mafra, D.; Faxen-Irving, G.; Chauveau, P.; Teta, D.; Kamimura, M.A.; Cuppari, L.; et al. Physical activity and energy expenditure in haemodialysis patients: An international survey. Nephrol. Dial. Transplant. 2012, 27, 2430–2434. [Google Scholar] [CrossRef]
- Heiwe, S.; Clyne, N.; Tollbäck, A.; Borg, K. Effects of regular resistance training on muscle histopathology and morphometry in elderly patients with chronic kidney disease. Am. J. Phys. Med. Rehabil. 2005, 84, 865–874. [Google Scholar] [CrossRef]
- Kurella Tamura, M.; Covinsky, K.E.; Chertow, G.M.; Yaffe, K.; Landefeld, C.S.; McCulloch, C.E. Functional status of elderly adults before and after initiation of dialysis. N. Engl. J. Med. 2009, 361, 1539–1547. [Google Scholar] [CrossRef]
- Tian, C.; Zhang, B.; Liang, W.; Yang, Q.; Xiong, Q.; Jin, Q.; Xiang, S.; Zhao, J.; Ying, C.; Zuo, X. Fatigue in Peritoneal Dialysis Patients and an Exploration of Contributing Factors: A Cross-Sectional Study. J. Pain Symptom Manag. 2020, 59, 1074–1081.e2. [Google Scholar] [CrossRef]
- Almutary, H.; Bonner, A.; Douglas, C. WHICH PATIENTS WITH CHRONIC KIDNEY DISEASE HAVE THE GREATEST SYMPTOM BURDEN? A COMPARATIVE STUDY OF ADVANCED CKD STAGE AND DIALYSIS MODALITY. J. Ren. Care 2016, 42, 73–82. [Google Scholar] [CrossRef]
- Farag, Y.M.; Blasco-Colmenares, E.; Zhao, D.; Sanon, M.; Guallar, E.; Finkelstein, F.O. Effect of Anemia on Physical Function and Physical Activity in CKD: The National Health and Nutrition Examination Survey, 1999–2016. Kidney360 2023, 4, e1212–e1222. [Google Scholar] [CrossRef]
- Brahee, D.D.; Guebert, G.M.; Virgin, B. Dialysis-related spondyloarthropathy. J. Manip. Physiol. Ther. 2001, 24, 127–130. [Google Scholar] [CrossRef]
- Charra, B.; Calemard, E.; Uzan, M.; Terrat, J.C.; Vanel, T.; Laurent, G. Carpal tunnel syndrome, shoulder pain and amyloid deposits in long-term haemodialysis patients. Proc. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 1985, 21, 291–295. [Google Scholar]
- Hoshino, J. Renal Rehabilitation: Exercise Intervention and Nutritional Support in Dialysis Patients. Nutrients 2021, 13, 1444. [Google Scholar] [CrossRef]
- Anding-Rost, K.; von Gersdorff, G.; von Korn, P.; Ihorst, G.; Josef, A.; Kaufmann, M.; Huber, M.; Bär, T.; Zeißler, S.; Höfling, S.; et al. Exercise during Hemodialysis in Patients with Chronic Kidney Failure. NEJM Évid. 2023, 2, EVIDoa2300057. [Google Scholar] [CrossRef] [PubMed]
- K/DOQI Workgroup. K/DOQI Clinical Practice Guidelines for Cardiovascular Disease in Dialysis Patients. Am. J. Kidney Dis. 2005, 45, 16–153. [Google Scholar] [CrossRef]
- Matsuzawa, R.; Matsunaga, A.; Wang, G.; Kutsuna, T.; Ishii, A.; Abe, Y.; Takagi, Y.; Yoshida, A.; Takahira, N. Habitual physical activity measured by accelerometer and survival in maintenance hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2012, 7, 2010–2016. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.; McGrowder, D.A.; Pena, Y.T.; Cabrera, E.; Lawrence-Wright, M. Effect of Exercise Therapy on Lipid Parameters in Patients with End-Stage Renal Disease on Hemodialysis. J. Lab. Physicians 2012, 4, 17–23. [Google Scholar] [CrossRef]
- Lambert, K.; Lightfoot, C.J.; Jegatheesan, D.K.; Gabrys, I.; Bennett, P.N. Physical activity and exercise recommendations for people receiving dialysis: A scoping review. PLoS ONE 2022, 17, e0267290. [Google Scholar] [CrossRef]
- Roshanravan, B.; Gamboa, J.; Wilund, K. Exercise and CKD: Skeletal Muscle Dysfunction and Practical Application of Exercise to Prevent and Treat Physical Impairments in CKD. Am. J. Kidney Dis. 2017, 69, 837–852. [Google Scholar] [CrossRef]
- Milam, R.H. Exercise Guidelines for Chronic Kidney Disease Patients. J. Ren. Nutr. 2016, 26, e23–e25. [Google Scholar] [CrossRef]
- Tonelli, M.; Isles, C.; Curhan, G.C.; Tonkin, A.; Pfeffer, M.A.; Shepherd, J.; Sacks, F.M.; Furberg, C.; Cobbe, S.M.; Simes, J.; et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation 2004, 110, 1557–1563. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Nordestgaard, B.G.; Koenig, W.; Kastelein, J.J.; Genest, J.; Glynn, R.J. Rosuvastatin for primary prevention among individuals with elevated high-sensitivity c-reactive protein and 5% to 10% and 10% to 20% 10-Year Risk: Implications of the Justification for Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin (JUPITER) trial for “intermediate risk”. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.; Kastelein, J.J.; Bittner, V.; Deedwania, P.; Breazna, A.; Dobson, S.; Wilson, D.J.; Zuckerman, A.; Wenger, N.K. intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: The TNT (Treating to New Targets) study. J. Am. Coll. Cardiol. 2008, 51, 1448–1454. [Google Scholar] [CrossRef]
- Holdaas, H.; Fellström, B.; Jardine, A.G.; Holme, I.; Nyberg, G.; Fauchald, P.; Grönhagen-Riska, C.; Madsen, S.; Neumayer, H.-H.; Cole, E.; et al. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: A multicentre, randomised, placebo-controlled trial. The Lancet 2003, 361, 2024–2031. [Google Scholar] [CrossRef]
- Holdaas, H.; Fellström, B.; Cole, E.; Nyberg, G.; Olsson, A.; Pedersen, T.; Madsen, S.; Grönhagen-Riska, C.; Neumayer, H.; Maes, B.; et al. Long-term Cardiac Outcomes in Renal Transplant Recipients Receiving Fluvastatin: The ALERT Extension Study. Am. J. Transplant. 2005, 5, 2929–2936. [Google Scholar] [CrossRef]
- Verdoodt, A.; Honore, P.M.; Jacobs, R.; De Waele, E.; Van Gorp, V.; De Regt, J.; Spapen, H.D. Do statins Induce Or Protect From Acute Kidney Injury And Chronic Kidney Disease: An Update Review in 2018. J. Transl. Intern. Med. 2018, 6, 21–25. [Google Scholar] [CrossRef]
- Feng, Q.; Wilke, R.A.; Baye, T.M. Individualized risk for statin-induced myopathy: Current knowledge, emerging challenges and potential solutions. Pharmacogenomics 2012, 13, 579–594. [Google Scholar] [CrossRef]
- Palmer, S.C.; Craig, J.C.; Navaneethan, S.D.; Tonelli, M.; Pellegrini, F.; Strippoli, G.F. Benefits and harms of statin therapy for persons with chronic kidney disease: A systematic review and meta-analysis. Ann. Intern. Med. 2012, 157, 263–275. [Google Scholar] [CrossRef]
- Park, S.Y.; Jun, J.E.; Jeong, I.-K.; Ahn, K.J.; Chung, H.Y.; Hwang, Y.-C. Comparison of the Efficacy of Ezetimibe Combination Therapy and High-Intensity Statin Monotherapy in Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2024, 109, 1883–1890. [Google Scholar] [CrossRef]
- Goto, H.; Iseri, K.; Hida, N. Fibrates and the risk of cardiovascular outcomes in chronic kidney disease patients. Nephrol. Dial. Transplant. 2024, 39, 1016–1022. [Google Scholar] [CrossRef]
- Yen, C.-L.; Fan, P.-C.; Lee, C.-C.; Chen, J.-J.; Chen, C.-Y.; Tu, Y.-R.; Chu, P.-H.; Hsiao, C.-C.; Chen, Y.-C.; Chang, C.-H. Fibrate and the risk of cardiovascular disease among moderate chronic kidney disease patients with primary hypertriglyceridemia. Front. Endocrinol. 2024, 15, 1333553. [Google Scholar] [CrossRef]
- Pontremoli, R.; Bellizzi, V.; Bianchi, S.; Bigazzi, R.; Cernaro, V.; Del Vecchio, L.; De Nicola, L.; Leoncini, G.; Mallamaci, F.; Zoccali, C.; et al. Management of dyslipidaemia in patients with chronic kidney disease: A position paper endorsed by the Italian Society of Nephrology. J. Nephrol. 2020, 33, 417–430. [Google Scholar] [CrossRef]
- Grundy, S.M.; Ahrens, E.H.; Salen, G. Interruption of the enterohepatic circulation of bile acids in man: Comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. Transl. Res. 1971, 78, 94–121. [Google Scholar]
- Couture, P.; Lamarche, B. Ezetimibe and bile acid sequestrants: Impact on lipoprotein metabolism and beyond. Curr. Opin. Infect. Dis. 2013, 24, 227–232. [Google Scholar] [CrossRef]
- Harper, C.R.; Jacobson, T.A. Managing Dyslipidemia in Chronic Kidney Disease. J. Am. Coll. Cardiol. 2008, 51, 2375–2384. [Google Scholar] [CrossRef]
- Weiner, D.E.; Sarnak, M.J. Managing dyslipidemia in chronic kidney disease. J. Gen. Intern. Med. 2004, 19, 1045–1052. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Brinton, E.A.; Jacobson, T.A.; Miller, M.; Tardif, J.; Ketchum, S.B.; Doyle, R.T.; Murphy, S.A.; Soni, P.N.; et al. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial. Clin. Cardiol. 2017, 40, 138–148. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Lincoff, A.M.; Garcia, M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.P.; Koenig, W.; McGuire, D.K.; et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGTH Randomized Clinical Trial. JAMA 2020, 324, 2268–2280. [Google Scholar] [CrossRef]
- Chi, H.; Lin, X.; Huang, H.; Zheng, X.; Li, T.; Zou, Y. Omega-3 Fatty Acid Supplementation on Lipid Profiles in Dialysis Patients: Meta-analysis. Arch. Med. Res. 2014, 45, 469–477. [Google Scholar] [CrossRef]
- Zhu, W.; Dong, C.; Du, H.; Zhang, H.; Chen, J.; Hu, X.; Hu, F. Effects of fish oil on serum lipid profile in dialysis patients: A systematic review and meta-analysis of randomized controlled trials. Lipids Heal. Dis. 2014, 13, 127. [Google Scholar] [CrossRef]
- Saglimbene, V.M.; Wong, G.; van Zwieten, A.; Palmer, S.C.; Ruospo, M.; Natale, P.; Campbell, K.; Teixeira-Pinto, A.; Craig, J.C.; Strippoli, G.F. Effects of omega-3 polyunsaturated fatty acid intake in patients with chronic kidney disease: Systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2020, 39, 358–368. [Google Scholar] [CrossRef]
- Gaudet, D.; Drouin-Chartier, J.-P.; Couture, P. Lipid Metabolism and Emerging Targets for Lipid-Lowering Therapy. Can. J. Cardiol. 2017, 33, 872–882. [Google Scholar] [CrossRef]
- Colhoun, H.M.; Robinson, J.G.; Farnier, M.; Cariou, B.; Blom, D.; Kereiakes, D.J.; Lorenzato, C.; Pordy, R.; Chaudhari, U. Efficacy and safety of alirocumab, a fully human PCSK9 monoclonal antibody, in high cardiovascular risk patients with poorly controlled hypercholesterolemia on maximally tolerated doses of statins: Rationale and design of the ODYSSEY COMBO I and II trials. BMC Cardiovasc. Disord. 2014, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kastelein, J.J.P.; Robinson, J.G.; Farnier, M.; Krempf, M.; Langslet, G.; Lorenzato, C.; Gipe, D.A.; Baccara-Dinet, M.T. Efficacy and safety of alirocumab in patients with heterozygous familial hypercholesterolemia not adequately controlled with current lipid-lowering therapy: Design and rationale of the ODYSSEY FH studies. Cardiovasc. Drugs Ther. 2014, 28, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, P.M.; Jacobson, T.A.; Bruckert, E.; Thompson, P.D.; Guyton, J.R.; Baccara-Dinet, M.T.; Gipe, D. Efficacy and safety of alirocumab, a monoclonal antibody to PCSK9, in statin-intolerant patients: Design and rationale of ODYSSEY ALTERNATIVE, a randomized phase 3 trial. J. Clin. Lipidol. 2014, 8, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Sinnaeve, P.R.; Schwartz, G.G.; Wojdyla, D.M.; Alings, M.; Bhatt, D.L.; Bittner, V.A.; Chiang, C.-E.; Flores, R.M.C.; Diaz, R.; Dorobantu, M.; et al. Effect of alirocumab on cardiovascular outcomes after acute coronary syndromes according to age: An ODYSSEY OUTCOMES trial analysis. Eur. Hear. J. 2019, 41, 2248–2258. [Google Scholar] [CrossRef]
- Robinson, J.G.; Nedergaard, B.S.; Rogers, W.J.; Fialkow, J.; Neutel, J.M.; Ramstad, D.; Somaratne, R.; Legg, J.C.; Nelson, P.; Scott, R.; et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on ldl-c lowering in patients with hypercholesterolemia. JAMA 2014, 311, 1870–1882. [Google Scholar] [CrossRef]
- Koren, M.J.; Lundqvist, P.; Bolognese, M.; Neutel, J.M.; Monsalvo, M.L.; Yang, J.; Kim, J.B.; Scott, R.; Wasserman, S.M.; Bays, H. Anti-PCSK9 monotherapy for hypercholesterolemia: The MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J. Am. Coll. Cardiol. 2014, 63, 2531–2540. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.; Honarpour, N.; Wang, H.; Liu, T.; Wasserman, S.M.; Scott, R.; Sever, P.S.; Pedersen, T.R. Rationale and design of the Further cardiovascular OUtcomes Research with PCSK9 Inhibition in subjects with Elevated Risk trial. Am. Heart J. 2016, 173, 94–101. [Google Scholar] [CrossRef]
- Ballantyne, C.M.; Neutel, J.; Cropp, A.; Duggan, W.; Wang, E.Q.; Plowchalk, D.; Sweeney, K.; Kaila, N.; Vincent, J.; Bays, H. Results of bococizumab, a monoclonal antibody against proprotein convertase subtilisin/kexin type 9, from a randomized, placebo-controlled, dose-ranging study in statin-treated subjects with hypercholesterolemia. Am. J. Cardiol. 2015, 115, 1212–1221. [Google Scholar] [CrossRef]
- Charytan, D.M.; Sabatine, M.S.; Pedersen, T.R.; Im, K.; Park, J.-G.; Pineda, A.L.; Wasserman, S.M.; Deedwania, P.; Olsson, A.G.; Sever, P.S.; et al. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J. Am. Coll. Cardiol. 2019, 73, 2961–2970. [Google Scholar] [CrossRef]
- East, C.; Bass, K.; Mehta, A.; Rahimighazikalayed, G.; Zurawski, S.; Bottiglieri, T. Alirocumab and Lipid Levels, Inflammatory Biomarkers, Metabolomics, and Safety in Patients Receiving Maintenance Dialysis: The ALIrocumab in DIALysis Study (A Phase 3 Trial to Evaluate the Efficacy and Safety of Biweekly Alirocumab in Patients on a Stable Dialysis Regimen). Kidney Med. 2022, 4, 100483. [Google Scholar] [CrossRef]
- Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.P.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.-C.; Waters, D.D.; et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 2007, 357, 2109–2122. [Google Scholar] [CrossRef] [PubMed]
- Brousseau, M.E.; Schaefer, E.J.; Wolfe, M.L.; Bloedon, L.T.; Digenio, A.G.; Clark, R.W.; Mancuso, J.P.; Rader, D.J. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. 2004, 350, 1505–1515. [Google Scholar] [CrossRef]
- Forrest, M.J.; Bloomfield, D.; Briscoe, R.J.; Brown, P.N.; Cumiskey, A.; Ehrhart, J.; Hershey, J.C.; Keller, W.J.; Ma, X.; McPherson, H.E.; et al. Torcetrapib-induced blood pressure elevation is independent of CETP inhibition and is accompanied by increased circulating levels of aldosterone. Br. J. Pharmacol. 2008, 154, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Olsson, A.G.; Abt, M.; Ballantyne, C.M.; Barter, P.J.; Brumm, J.; Chaitman, B.R.; Holme, I.M.; Kallend, D.; Leiter, L.A.; et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 2012, 367, 2089–2099. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Nicholls, S.J.; Riesmeyer, J.S.; Barter, P.J.; Brewer, H.B.; Fox, K.A.A.; Gibson, C.M.; Granger, C.; Menon, V.; Montalescot, G.; et al. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. N. Engl. J. Med. 2017, 376, 1933–1942. [Google Scholar] [CrossRef]
- Tall, A.R.; Rader, D.J. Trials and Tribulations of CETP Inhibitors. Circ. Res. 2018, 122, 106–112. [Google Scholar] [CrossRef]
- Landray, M.; REVEAL Collaborative Group. Randomized Evaluation of the Effects of Anacetrapib through Lipid-modification (REVEAL)—A large-scale, randomized, placebo-controlled trial of the clinical effects of anacetrapib among people with established vascular disease: Trial design, recruitment, and baseline characteristics. Am. Heart J. 2017, 187, 182–190. [Google Scholar] [CrossRef]
- The HPS3/TIMI55–REVEAL Collaborative Group. Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease. N. Engl. J. Med. 2017, 377, 1217–1227. [Google Scholar] [CrossRef]
- Pechlaner, R.; Tsimikas, S.; Yin, X.; Willeit, P.; Baig, F.; Santer, P.; Oberhollenzer, F.; Egger, G.; Witztum, J.L.; Alexander, V.J.; et al. Very-Low-Density Lipoprotein–Associated Apolipoproteins Predict Cardiovascular Events and Are Lowered by Inhibition of APOC-III. J. Am. Coll. Cardiol. 2017, 69, 789–800. [Google Scholar] [CrossRef]
- Yang, X.; Lee, S.-R.; Choi, Y.-S.; Alexander, V.J.; Digenio, A.; Yang, Q.; Miller, Y.I.; Witztum, J.L.; Tsimikas, S. Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: Phase 2 randomized trial results. J. Lipid Res. 2016, 57, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Dewey, F.E.; Gusarova, V.; Dunbar, R.L.; O’dushlaine, C.; Schurmann, C.; Gottesman, O.; McCarthy, S.; Van Hout, C.V.; Bruse, S.; Dansky, H.M.; et al. Genetic and Pharmacologic Inactivation of ANGPTL3 and Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.J.; Lee, R.G.; Brandt, T.A.; Tai, L.-J.; Fu, W.; Peralta, R.; Yu, R.; Hurh, E.; Paz, E.; McEvoy, B.W.; et al. Cardiovascular and Metabolic Effects of ANGPTL3 Antisense Oligonucleotides. N. Engl. J. Med. 2017, 377, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Tonelli, M. KDIGO Clinical Practice Guideline for Lipid Management in CKD: Summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014, 85, 1303–1309. [Google Scholar] [CrossRef]
- Wang, M. CKD-specific ASCVD risk prediction tools. Nat. Rev. Nephrol. 2022, 18, 199. [Google Scholar] [CrossRef]
- Vallejo-Vaz, A.J.; Bray, S.; Villa, G.; Brandts, J.; Kiru, G.; Murphy, J.; Banach, M.; De Servi, S.; Gaita, D.; Gouni-Berthold, I.; et al. Implications of ACC/AHA Versus ESC/EAS LDL-C Recommendations for Residual Risk Reduction in ASCVD: A Simulation Study From DA VINCI. Cardiovasc. Drugs Ther. 2023, 37, 941–953. [Google Scholar] [CrossRef]
- Zac-Varghese, S.; Mark, P.; Bain, S.; Banerjee, D.; Chowdhury, T.A.; Dasgupta, I.; De, P.; Fogarty, D.; Frankel, A.; Goldet, G.; et al. Clinical practice guideline for the management of lipids in adults with diabetic kidney disease: Abbreviated summary of the Joint Association of British Clinical Diabetologists and UK Kidney Association (ABCD-UKKA) Guideline 2024. BMC Nephrol. 2024, 25, 216. [Google Scholar] [CrossRef]
- Ferro, C.J.; Mark, P.B.; Kanbay, M.; Sarafidis, P.; Heine, G.H.; Rossignol, P.; Massy, Z.A.; Mallamaci, F.; Valdivielso, J.M.; Malyszko, J.; et al. Lipid management in patients with chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 727–749. [Google Scholar] [CrossRef]
- Cohen-Hagai, K.; Benchetrit, S.; Wand, O.; Grupper, A.; Shashar, M.; Solo, O.; Pereg, D.; Zitman-Gal, T.; Haskiah, F.; Erez, D. The Clinical Significance of LDL-Cholesterol on the Outcomes of Hemodialysis Patients with Acute Coronary Syndrome. Medicina 2023, 59, 1312. [Google Scholar] [CrossRef]
- Herrington, W.G.; Emberson, J.; Mihaylova, B.; Blackwell, L.; Reith, C.; Solbu, M.D.; Mark, P.B.; Fellstrom, B.; Jardine, A.G.; Wanner, C.; et al. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: A meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol. 2016, 4, 829–839. [Google Scholar] [CrossRef]
- Montague, T.; Murphy, B. Lipid management in chronic kidney disease, hemodialysis, and transplantation. Endocrinol. Metab. Clin. N. Am. 2009, 38, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Devine, P.A.; Courtney, A.E.; Maxwell, A.P. Cardiovascular risk in renal transplant recipients. J. Nephrol. 2019, 32, 389–399. [Google Scholar] [CrossRef]
- Yim, S.H.; Kim, H.J.; Ro, H.; Ryu, J.-H.; Kim, M.-G.; Park, J.B.; Kim, C.-D.; Han, S.; Lee, S.; Yang, J.; et al. Benefits of statin therapy within a year after kidney transplantation. Sci. Rep. 2024, 14, 2002. [Google Scholar] [CrossRef]
- Lee, M.; Choi, W.J.; Lee, Y.; Lee, K.; Park, M.-W.; Myong, J.-P.; Kim, D.-W. Association between statin therapy and mortality in patients on dialysis after atherosclerotic cardiovascular diseases. Sci. Rep. 2023, 13, 10940. [Google Scholar] [CrossRef]
- Streja, E.; Gosmanova, E.O.; Molnar, M.Z.; Soohoo, M.; Moradi, H.; Potukuchi, P.K.; Kalantar-Zadeh, K.; Kovesdy, C.P. Association of Continuation of Statin Therapy Initiated Before Transition to Chronic Dialysis Therapy With Mortality After Dialysis Initiation. JAMA Netw. Open 2018, 1, e182311. [Google Scholar] [CrossRef]
- Cobos-Palacios, L.; Sanz-Cánovas, J.; Muñoz-Ubeda, M.; Lopez-Carmona, M.D.; Perez-Belmonte, L.M.; Lopez-Sampalo, A.; Gomez-Huelgas, R.; Bernal-Lopez, M.R. Statin Therapy in Very Old Patients: Lights and Shadows. Front. Cardiovasc. Med. 2021, 8, 779044. [Google Scholar] [CrossRef]
- Holdaas, H.; Holme, I.; Schmieder, R.E.; Jardine, A.G.; Zannad, F.; Norby, G.E.; Fellström, B.C. Rosuvastatin in diabetic hemodialysis patients. J. Am. Soc. Nephrol. 2011, 22, 1335–1341. [Google Scholar] [CrossRef]
- Wright, R.S.; Collins, M.G.; Stoekenbroek, R.M.; Robson, R.; Wijngaard, P.L.; Landmesser, U.; Leiter, L.A.; Kastelein, J.J.; Ray, K.K.; Kallend, D. Effects of Renal Impairment on the Pharmacokinetics, Efficacy, and Safety of Inclisiran: An Analysis of the ORION-7 and ORION-1 Studies. Mayo Clin. Proc. 2020, 95, 77–89. [Google Scholar] [CrossRef]
- Navar, A.M.; Taylor, B.; Mulder, H.; Fievitz, E.; Monda, K.L.; Fievitz, A.; Maya, J.F.; López, J.A.G.; Peterson, E.D. Association of Prior Authorization and Out-of-pocket Costs With Patient Access to PCSK9 Inhibitor Therapy. JAMA Cardiol. 2017, 2, 1217–1225. [Google Scholar] [CrossRef]
- Smith, A.; Johnson, D.; Banks, J.; Keith, S.W.; Karalis, D.G. Trends in PCSK9 Inhibitor Prescriptions before and after the Price Reduction in Patients with Atherosclerotic Cardiovascular Disease. J. Clin. Med. 2021, 10, 3828. [Google Scholar] [CrossRef]
- Zhou, W.; Liang, Z.; Lou, X.; Wang, N.; Liu, X.; Li, R.; Pai, P. The combination use of inclisiran and statins versus statins alone in the treatment of dyslipidemia in mainland China: A cost-effectiveness analysis. Front. Pharmacol. 2024, 15, 1283922. [Google Scholar] [CrossRef] [PubMed]
- Seijas-Amigo, J.; Mauriz-Montero, M.J.; Suarez-Artime, P.; Gayoso-Rey, M.; Reyes-Santías, F.; Estany-Gestal, A.; Casas-Martínez, A.; González-Freire, L.; Rodriguez-Vazquez, A.; Pérez-Rodriguez, N.; et al. Cost–Utility Analysis of PCSK9 Inhibitors and Quality of Life: A Two-Year Multicenter Non-Randomized Study. Diseases 2024, 12, 244. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.P.; Catapano, A.L.; Helms, B.; Lei, L.; Louie, M.J.; Bakris, G.L. SAFETY AND EFFICACY OF BEMPEDOIC ACID IN PATIENTS WITH RENAL IMPAIRMENT. J. Am. Coll. Cardiol. 2022, 79, 1459. [Google Scholar] [CrossRef]
- Biolo, G.; Vinci, P.; Mangogna, A.; Landolfo, M.; Schincariol, P.; Fiotti, N.; Mearelli, F.; Di Girolamo, F.G. Mechanism of action and therapeutic use of bempedoic acid in atherosclerosis and metabolic syndrome. Front. Cardiovasc. Med. 2022, 9, 1028355. [Google Scholar] [CrossRef]
- Zuzda, K.; Grycuk, W.; Małyszko, J.; Małyszko, J. Kidney and lipids: Novel potential therapeutic targets for dyslipidemia in kidney disease? Expert. Opin. Ther. Targets 2022, 26, 995–1009. [Google Scholar] [CrossRef]
- Larkin, H. What to Know About PREVENT, the AHA’s New Cardiovascular Disease Risk Calculator. JAMA 2024, 331, 277–279. [Google Scholar] [CrossRef]
Study Name and Year of Publication | Study Population | Intervention | Main Results | Interpretation |
---|---|---|---|---|
4D-2005 | A total of 1255 diabetic patients on hemodialysis for less than 2 years; 29% with pre-existing cardiovascular disease. | Atorvastatin 20 mg vs. placebo | Significant reduction in LDL cholesterol (mean reduction of 38%); no significant reduction in major cardiovascular events (HR: 0.94, p = 0.51); 14% reduction in combined cardiac events (p = 0.03) | Atorvastatin reduced LDL in ESRD patients on dialysis but showed limited benefit in reducing major cardiovascular events; may reduce overall cardiac events. |
AURORA-2009 | A total of 2776 hemodialysis patients aged between 50 and 80 years old; 40% with cardiovascular disease, and 74% with diabetes. | Rosuvastatin 10 mg vs. placebo | A 43% reduction in LDL cholesterol; 29% reduction in C-reactive protein; no significant reduction in major cardiovascular outcomes | Rosuvastatin effectively lowered LDL and CRP but did not reduce major cardiovascular outcomes in ESRD patients on dialysis. |
SHARP-2010 | A total of 9270 patients: 6247 with CKD stages 4–5, 3023 on dialysis | Simvastatin 20 mg + Ezetimibe 10 mg vs. simvastatin 20 mg vs. placebo | Significant LDL reduction (by 17% in simvastatin + ezetimibe group, 9% in simvastatin alone); 17% reduction in major atherosclerotic events (p = 0.0004) over 4.9 years. A 19% reduction in major atherosclerotic events in CKD patients (p = 0.0004) compared to a 13% reduction in major atherosclerotic events in ESKD patients (p = 0.02) | Combination therapy with simvastatin and ezetimibe was effective in reducing LDL and atherosclerotic events in advance with more pronounced benefits in CKD patients compared to dialysis patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abidor, E.; Achkar, M.; Al Saidi, I.; Lather, T.; Jdaidani, J.; Agarwal, A.; El-Sayegh, S. Comprehensive Review of Lipid Management in Chronic Kidney Disease and Hemodialysis Patients: Conventional Approaches, and Challenges for Cardiovascular Risk Reduction. J. Clin. Med. 2025, 14, 643. https://doi.org/10.3390/jcm14020643
Abidor E, Achkar M, Al Saidi I, Lather T, Jdaidani J, Agarwal A, El-Sayegh S. Comprehensive Review of Lipid Management in Chronic Kidney Disease and Hemodialysis Patients: Conventional Approaches, and Challenges for Cardiovascular Risk Reduction. Journal of Clinical Medicine. 2025; 14(2):643. https://doi.org/10.3390/jcm14020643
Chicago/Turabian StyleAbidor, Erica, Michel Achkar, Ibrahim Al Saidi, Tanvi Lather, Jennifer Jdaidani, Alaukika Agarwal, and Suzanne El-Sayegh. 2025. "Comprehensive Review of Lipid Management in Chronic Kidney Disease and Hemodialysis Patients: Conventional Approaches, and Challenges for Cardiovascular Risk Reduction" Journal of Clinical Medicine 14, no. 2: 643. https://doi.org/10.3390/jcm14020643
APA StyleAbidor, E., Achkar, M., Al Saidi, I., Lather, T., Jdaidani, J., Agarwal, A., & El-Sayegh, S. (2025). Comprehensive Review of Lipid Management in Chronic Kidney Disease and Hemodialysis Patients: Conventional Approaches, and Challenges for Cardiovascular Risk Reduction. Journal of Clinical Medicine, 14(2), 643. https://doi.org/10.3390/jcm14020643