Reversal of Direct Oral Anticoagulants (DOACs) for Critical Bleeding or Urgent Procedures
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Reversal of Critical Bleeding
3.1.1. Andexanet Alfa
Randomized Controlled Trials
ANNEXA-4
Cohort Studies
Case–Control Studies
Additional Retrospective Studies
Meta-Analyses
3.1.2. Idarucizumab
REVERSE AD
Retrospective Data
3.1.3. Prothrombin Complex Concentrate
Randomized Controlled Trial Data Analysis
Cohort Studies
3.1.4. Tranexamic Acid
3.2. Surgical Reversal
3.2.1. Andexanet Alfa
3.2.2. Idarucizumab
3.2.3. Prothrombin Complex Concentrate and Factor Eight Inhibitor Bypass Activity
4. Critical Synthesis, Discussion, Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raskob, G.E.; Angchaisuksiri, P.; Blanco, A.N.; Buller, H.; Gallus, A.; Hunt, B.J.; Hylek, E.M.; Kakkar, A.; Konstantinides, S.V.; McCumber, M.; et al. Thrombosis: A Major Contributor to Global Disease Burden. Arter. Thromb. Vasc. Biol. 2014, 34, 2363–2371. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.M.; Woller, S.C.; Kreuziger, L.B.; Bounameaux, H.; Doerschug, K.; Geersing, G.-J.; Huisman, M.V.; Kearon, C.; King, C.S.; Knighton, A.J.; et al. Executive Summary: Antithrombotic Therapy for VTE Disease: Second Update of the CHEST Guideline and Expert Panel Report. Chest 2021, 160, 2247–2259. [Google Scholar] [CrossRef]
- Ortel, T.L.; Neumann, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 Guidelines for Management of Venous Thromboembolism: Treatment of Deep Vein Thrombosis and Pulmonary Embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef]
- Ruff, C.T.; Giugliano, R.P.; Braunwald, E.; Hoffman, E.B.; Deenadayalu, N.; Ezekowitz, M.D.; Camm, A.J.; Weitz, J.I.; Lewis, B.S.; Parkhomenko, A.; et al. Comparison of the Efficacy and Safety of New Oral Anticoagulants with Warfarin in Patients with Atrial Fibrillation: A Meta-Analysis of Randomised Trials. Lancet 2014, 383, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Prins, M.H.; Lensing, A.W.; Bauersachs, R.; van Bellen, B.; Bounameaux, H.; Brighton, T.A.; Cohen, A.T.; Davidson, B.L.; Decousus, H.; Raskob, G.E.; et al. Oral Rivaroxaban versus Standard Therapy for the Treatment of Symptomatic Venous Thromboembolism: A Pooled Analysis of the EINSTEIN-DVT and PE Randomized Studies. Thromb. J. 2013, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Pundi, K.N.; Perino, A.C.; Fan, J.; Schmitt, S.; Kothari, M.; Szummer, K.; Askari, M.; Heidenreich, P.A.; Turakhia, M.P. Direct Oral Anticoagulant Adherence of Patients with Atrial Fibrillation Transitioned from Warfarin. J. Am. Heart Assoc. 2021, 10, e020904. [Google Scholar] [CrossRef] [PubMed]
- Carnicelli, A.P.; Hong, H.; Connolly, S.J.; Eikelboom, J.; Giugliano, R.P.; Morrow, D.A.; Patel, M.R.; Wallentin, L.; Alexander, J.H.; Cecilia Bahit, M.; et al. Direct Oral Anticoagulants Versus Warfarin in Patients with Atrial Fibrillation: Patient-Level Network Meta-Analyses of Randomized Clinical Trials with Interaction Testing by Age and Sex. Circulation 2022, 145, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Tritschler, T.; Kimpton, M.; Wells, P.S.; Kearon, C.; Weitz, J.I.; Büller, H.R.; Raskob, G.E.; Ageno, W.; Couturaud, F.; et al. Long-Term Risk for Major Bleeding During Extended Oral Anticoagulant Therapy for First Unprovoked Venous Thromboembolism: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2021, 174, 1420–1429. [Google Scholar] [CrossRef]
- Douketis, J.D.; Healey, J.S.; Brueckmann, M.; Fraessdorf, M.; Spyropoulos, A.C.; Wallentin, L.; Oldgren, J.; Reilly, P.; Ezekowitz, M.D.; Connolly, S.J.; et al. Urgent Surgery or Procedures in Patients Taking Dabigatran or Warfarin: Analysis of Perioperative Outcomes from the RE-LY Trial. Thromb. Res. 2016, 139, 77–81. [Google Scholar] [CrossRef]
- Connolly, S.J.; Sharma, M.; Cohen, A.T.; Demchuk, A.M.; Członkowska, A.; Lindgren, A.G.; Molina, C.A.; Bereczki, D.; Toni, D.; Seiffge, D.J.; et al. Andexanet for Factor Xa Inhibitor–Associated Acute Intracerebral Hemorrhage. N. Engl. J. Med. 2024, 390, 1745–1755. [Google Scholar] [CrossRef]
- Milling, T.J.; Middeldorp, S.; Xu, L.; Koch, B.; Demchuk, A.; Eikelboom, J.W.; Verhamme, P.; Cohen, A.T.; Beyer-Westendorf, J.; Gibson, C.M.; et al. Final Study Report of Andexanet Alfa for Major Bleeding with Factor Xa Inhibitors. Circulation 2023, 147, 1026–1038. [Google Scholar] [CrossRef]
- Siepen, B.M.; Polymeris, A.; Shoamanesh, A.; Connolly, S.; Steiner, T.; Poli, S.; Lemmens, R.; Goeldlin, M.B.; Müller, M.; Branca, M.; et al. Andexanet Alfa versus Non-Specific Treatments for Intracerebral Hemorrhage in Patients Taking Factor Xa Inhibitors—Individual Patient Data Analysis of ANNEXA-4 and TICH-NOAC. Int. J. Stroke 2024, 19, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Costa, O.S.; Connolly, S.J.; Sharma, M.; Beyer-Westendorf, J.; Christoph, M.J.; Lovelace, B.; Coleman, C.I. Andexanet Alfa versus Four-Factor Prothrombin Complex Concentrate for the Reversal of Apixaban- or Rivaroxaban-Associated Intracranial Hemorrhage: A Propensity Score-Overlap Weighted Analysis. Crit. Care 2022, 26, 180. [Google Scholar] [CrossRef]
- Huttner, H.B.; Gerner, S.T.; Kuramatsu, J.B.; Connolly, S.J.; Beyer-Westendorf, J.; Demchuk, A.M.; Middeldorp, S.; Zotova, E.; Altevers, J.; Andersohn, F.; et al. Hematoma Expansion and Clinical Outcomes in Patients with Factor-Xa Inhibitor–Related Atraumatic Intracerebral Hemorrhage Treated Within the ANNEXA-4 Trial Versus Real-World Usual Care. Stroke 2022, 53, 532–543. [Google Scholar] [CrossRef]
- Cohen, A.T.; Lewis, M.; Connor, A.; Connolly, S.J.; Yue, P.; Curnutte, J.; Alikhan, R.; MacCallum, P.; Tan, J.; Green, L. Thirty-Day Mortality with Andexanet Alfa Compared with Prothrombin Complex Concentrate Therapy for Life-Threatening Direct Oral Anticoagulant-Related Bleeding. J. Am. Coll. Emerg. Physicians Open 2022, 3, e12655. [Google Scholar] [CrossRef]
- Dobesh, P.; Fermann, G.; Christoph, M.; Koch, B.R.; Lesén, E.; Chen, H.; Lovelace, B.; Dettling, T.; Danese, M.; Ulloa, J.; et al. Lower Mortality with Andexanet Alfa vs. 4-Factor Prothrombin Complex Concentrate for Factor Xa Inhibitor-Related Major Bleeding in a U.S. Hospital-Based Observational Study. Res. Pract. Thromb. Haemost. 2023, 7, 102192. [Google Scholar] [CrossRef]
- Sadek, E.; Curtiss, W.; Andrews, J.; Hecht, J. Four-Factor Prothrombin Complex Concentrate versus Andexanet Alfa for the Reversal of Traumatic Brain Injuries. Emerg. Med. J. 2024, 41, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Goldin, M.; Smith, K.; Koulas, I.; Leung, T.; Ravi, M.; Parhar, S.; Shah, S.; Floyd, K.; Ohanesian, L.; Bain, R.; et al. Clinical Pathways and Outcomes of Andexanet Alfa Administration for the Reversal of Critical Bleeding in Patients on Oral Direct Factor Xa Inhibitors. TH Open 2024, 8, e209–e215. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.; Medford, W.G.; Horst, S.; Levesque, M.; Ragoonanan, D.; Price, C.; Colbassani, H.; Piper, K.; Chastain, K. Andexanet Alfa versus Four-Factor Prothrombin Complex Concentrate for the Reversal of Apixaban- or Rivaroxaban-Associated Intracranial Hemorrhages. Am. J. Emerg. Med. 2022, 55, 38–44. [Google Scholar] [CrossRef]
- Sutton, S.S.; Magagnoli, J.; Cummings, T.H.; Dettling, T.; Lovelace, B.; Christoph, M.J.; Hardin, J.W. Real-World Clinical Outcomes among US Veterans with Oral Factor Xa Inhibitor–Related Major Bleeding Treated with Andexanet Alfa or 4-Factor Prothrombin Complex Concentrate. J. Thromb. Thrombolysis 2023, 56, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Parsels, K.A.; Seabury, R.W.; Zyck, S.; Miller, C.D.; Krishnamurthy, S.; Darko, W.; Probst, L.A.; Latorre, J.G.; Cwikla, G.M.; Feldman, E.A. Andexanet Alfa Effectiveness and Safety versus Four-Factor Prothrombin Complex Concentrate (4F-PCC) in Intracranial Hemorrhage While on Apixaban or Rivaroxaban: A Single-Center, Retrospective, Matched Cohort Analysis. Am. J. Emerg. Med. 2022, 55, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Keinath, J.J.; Lekura, J.; Hauser, C.D.; Bajwa, M.K.; Bloome, M.E.; Kalus, J.S.; Jones, M.C. Deterioration Free Discharge Comparison of Andexanet-Alfa and Prothrombin Complex Concentrates (PCC) for Reversal of Factor Xa Inhibitor Associated Bleeds. J. Thromb. Thrombolysis 2023, 56, 315–322. [Google Scholar] [CrossRef]
- Lipski, M.; Pasciolla, S.; Wojcik, K.; Jankowitz, B.; Igneri, L.A. Comparison of 4-Factor Prothrombin Complex Concentrate and Andexanet Alfa for Reversal of Apixaban and Rivaroxaban in the Setting of Intracranial Hemorrhage. J. Thromb. Thrombolysis 2022, 55, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Irizarry-Gatell, V.M.; Bacchus, M.W.; De Leo, E.K.; Zhang, Y.; Lagasse, C.A.; Khanna, A.Y.; Harris, N.S.; Zumberg, M.S. The Use of Andexanet Alfa vs. 4-Factor Prothrombin Complex Concentrates in the Setting of Life-Threatening Intracranial Hemorrhage. Blood Coagul. Fibrinolysis 2024, 35, 94–100. [Google Scholar] [CrossRef]
- Koo, S.J.; Hussain, Y.; Booth, D.Y.; Desai, P.; Oh, E.S.; Rios, J.; Audley, K. Four-Factor Prothrombin Complex Concentrate versus Andexanet Alfa for Direct Oral Anticoagulant Reversal. J. Am. Pharm. Assoc. 2024, 64, 395–401. [Google Scholar] [CrossRef]
- Vestal, M.L.; Hodulik, K.; Mando-Vandrick, J.; James, M.L.; Ortel, T.L.; Fuller, M.; Notini, M.; Friedland, M.; Welsby, I.J. Andexanet Alfa and Four-Factor Prothrombin Complex Concentrate for Reversal of Apixaban and Rivaroxaban in Patients Diagnosed with Intracranial Hemorrhage. J. Thromb. Thrombolysis 2022, 53, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.E.; Hinton, M.S.; Martin, N.D. Real-World Reversal of Factor Xa Inhibition in the Setting of Major Life-Threatening Bleeding or Urgent Surgery. J. Pharm. Pract. 2024, 37, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Singer, A.J.; Concha, M.; Williams, J.; Brown, C.S.; Fernandes, R.; Thode, H.C.; Kirchman, M.; Rabinstein, A.A. Treatment of Factor-Xa Inhibitor-Associated Bleeding with Andexanet Alfa or 4 Factor PCC: A Multicenter Feasibility Retrospective Study. WestJEM 2023, 24, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Orso, D.; Fonda, F.; Brussa, A.; Comisso, I.; Auci, E.; Sartori, M.; Bove, T. Andexanet Alpha versus Four-Factor Prothrombin Complex Concentrate in DOACs Anticoagulation Reversal: An Updated Systematic Review and Meta-Analysis. Crit. Care 2024, 28, 221. [Google Scholar] [CrossRef]
- Chaudhary, R.; Singh, A.; Chaudhary, R.; Bashline, M.; Houghton, D.E.; Rabinstein, A.; Adamski, J.; Arndt, R.; Ou, N.N.; Rudis, M.I.; et al. Evaluation of Direct Oral Anticoagulant Reversal Agents in Intracranial Hemorrhage. JAMA Netw. Open 2022, 5, e2240145. [Google Scholar] [CrossRef]
- Pollack, C.V.; Reilly, P.A.; van Ryn, J.; Eikelboom, J.W.; Glund, S.; Bernstein, R.A.; Dubiel, R.; Huisman, M.V.; Hylek, E.M.; Kam, C.-W.; et al. Idarucizumab for Dabigatran Reversal—Full Cohort Analysis. N. Engl. J. Med. 2017, 377, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Nautiyal, A.; Belk, K.W. Real World Outcomes Associated with Idarucizumab: Population-Based Retrospective Cohort Study. Am. J. Cardiovasc. Drugs 2020, 20, 161–168. [Google Scholar] [CrossRef]
- Sarode, R.; Milling, T.J.; Refaai, M.A.; Mangione, A.; Schneider, A.; Durn, B.L.; Goldstein, J.N. Efficacy and Safety of a 4-Factor Prothrombin Complex Concentrate in Patients on Vitamin K Antagonists Presenting with Major Bleeding: A Randomized, Plasma-Controlled, Phase IIIb Study. Circulation 2013, 128, 1234–1243. [Google Scholar] [CrossRef]
- Gerner, S.; Kuramatsu, J.; Sembill, J.; Sprügel, M.; Endres, M.; Haeusler, K.; Vajkoczy, P.; Ringleb, P.; Purrucker, J.; Rizos, T.; et al. Association of Prothrombin Complex Concentrate Administration and Hematoma Enlargement in Non–Vitamin K Antagonist Oral Anticoagulant–Related Intracerebral Hemorrhage. Ann. Neurol. 2018, 83, 186–196. [Google Scholar] [CrossRef]
- Majeed, A.; Ågren, A.; Holmström, M.; Bruzelius, M.; Chaireti, R.; Odeberg, J.; Hempel, E.-L.; Magnusson, M.; Frisk, T.; Schulman, S. Management of Rivaroxaban- or Apixaban-Associated Major Bleeding with Prothrombin Complex Concentrates: A Cohort Study. Blood 2017, 130, 1706–1712. [Google Scholar] [CrossRef]
- Schulman, S.; Gross, P.L.; Ritchie, B.; Nahirniak, S.; Lin, Y.; Lieberman, L.; Carrier, M.; Crowther, M.A.; Ghosh, I.; Lazo-Langner, A.; et al. Prothrombin Complex Concentrate for Major Bleeding on Factor Xa Inhibitors: A Prospective Cohort Study. Thromb. Haemost. 2018, 118, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Panos, N.; Cook, A.M.; John, S.; Jones, G.M. Factor Xa Inhibitor-Related Intracranial Hemorrhage: Results from a Multicenter, Observational Cohort Receiving Prothrombin Complex Concentrates. Circulation 2020, 141, 1681–1689. [Google Scholar] [CrossRef]
- Hays, W.B.; Billups, K.; Nicholson, J.; Bailey, A.M.; Gregory, H.; Weeda, E.R.; Weant, K.A. 3-Factor Prothrombin Complex Concentrate versus 4-Factor Prothrombin Complex Concentrate for the Reversal of Oral Factor Xa Inhibitors. J. Thromb. Thrombolysis 2024. [Google Scholar] [CrossRef] [PubMed]
- Polymeris, A.A.; Karwacki, G.M.; Siepen, B.M.; Schaedelin, S.; Tsakiris, D.A.; Stippich, C.; Guzman, R.; Nickel, C.H.; Sprigg, N.; Kägi, G.; et al. Tranexamic Acid for Intracerebral Hemorrhage in Patients on Non-Vitamin K Antagonist Oral Anticoagulants (TICH-NOAC): A Multicenter, Randomized, Placebo-Controlled, Phase 2 Trial. Stroke 2023, 54, 2223–2234. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.-A. Andexanet Alfa: First Global Approval. Drugs 2018, 78, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Pine, P.; Leeds, J.M.; DeGuzman, F.; Pratikhya, P.; Lin, J.; Malinowski, J.; Hollenbach, S.J.; Curnutte, J.T.; Conley, P.B. Andexanet Alfa Effectively Reverses Edoxaban Anticoagulation Effects and Associated Bleeding in a Rabbit Acute Hemorrhage Model. PLoS ONE 2018, 13, e0195122. [Google Scholar] [CrossRef] [PubMed]
- Crowther, M.; Levy, G.G.; Lu, G.; Leeds, J.; Lin, J.; Pratikhya, P.; Conley, P.B.; Connolly, S.; Curnutte, J.T. A Phase 2 Randomized, Double-Blind, Placebo-Controlled Trial Demonstrating Reversal of Edoxaban-Induced Anticoagulation in Healthy Subjects By Andexanet Alfa (PRT064445), a Universal Antidote for Factor Xa (fXa) Inhibitors. Blood 2014, 124, 4269. [Google Scholar] [CrossRef]
- Crowther, M.; Lu, G.; Conley, P.; Leeds, J.; Castillo, J.; Levy, G.; Connolly, S.; Curnutte, J. 455: Reversal of Factor XA Inhibitors-Induced Anticoagulation in Healthy Subjects by Andexanet Alfa. Crit. Care Med. 2014, 42, A1469. [Google Scholar] [CrossRef]
- Schiele, F.; van Ryn, J.; Canada, K.; Newsome, C.; Sepulveda, E.; Park, J.; Nar, H.; Litzenburger, T. A Specific Antidote for Dabigatran: Functional and Structural Characterization. Blood 2013, 121, 3554–3562. [Google Scholar] [CrossRef] [PubMed]
- Turecek, P.L.; Váradi, K.; Schwarz, H.P. Update on the Mechanism of Action and Future of Activated Prothrombin Complex Concentrates. Curr. Hematol. Rep. 2004, 3, 331–337. [Google Scholar] [PubMed]
- Ul-Haq, Z.; Madura, J.D. (Eds.) From Conventional Prodrugs to Prodrugs Designed by Molecular Orbital Methods. In Frontiers in Computational Chemistry; Bentham Science Publishers: Sharjah, United Arab Emirates, 2015; pp. 187–249. ISBN 978-1-60805-978-2. [Google Scholar]
- Stretton, B.; Kovoor, J.; Bacchi, S.; Booth, A.; Gluck, S.; Vanlint, A.; Afzal, M.; Ovenden, C.; Gupta, A.; Mahajan, R.; et al. Impact of Perioperative Direct Oral Anticoagulant Assays: A Multicenter Cohort Study. Hosp. Pract. 2023, 51, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Yoo, M.S.; Zhu, S.; Jiang, S.; Hammer, H.L.; McBride, W.J.; McCarthy, C.M.; Green, C.E.; Ananias, M.P. Association of Reversal of Anticoagulation Preoperatively on 30-Day Mortality and Outcomes for Hip Fracture Surgery. Am. J. Med. 2020, 133, 969–975.e2. [Google Scholar] [CrossRef]
- Godon, A.; Gabin, M.; Levy, J.H.; Huet, O.; Chapalain, X.; David, J.-S.; Tacquard, C.; Sattler, L.; Minville, V.; Mémier, V.; et al. Management of Urgent Invasive Procedures in Patients Treated with Direct Oral Anticoagulants: An Observational Registry Analysis. Thromb. Res. 2022, 216, 106–112. [Google Scholar] [CrossRef]
- Bradshaw, P.G.; Keegan, S.P.; Droege, M.E.; Dykes, N.J.H.; Ernst, N.E.; Foertsch, M.J.; Makley, A.T.; Mueller, E.W.; Philpott, C.D.; Srinivasan, V.; et al. Reversal of Apixaban and Rivaroxaban with Andexanet Alfa Prior to Invasive or Surgical Procedures. Pharmacotherapy 2022, 42, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.H.; van Ryn, J.; Sellke, F.W.; Reilly, P.A.; Elsaesser, A.; Glund, S.; Kreuzer, J.; Weitz, J.I.; Pollack, C.V.J. Dabigatran Reversal with Idarucizumab in Patients Requiring Urgent Surgery: A Subanalysis of the RE-VERSE AD Study. Ann. Surg. 2021, 274, e204. [Google Scholar] [CrossRef]
- Shaw, J.R.; Carrier, M.; Dowlatshahi, D.; Chakraborty, S.; Tokessy, M.; Buyukdere, H.; Castellucci, L.A. Activated Prothrombin Complex Concentrates for Direct Oral Anticoagulant-Associated Bleeding or Urgent Surgery: Hemostatic and Thrombotic Outcomes. Thromb. Res. 2020, 195, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Barzilai, M.; Kirgner, I.; Steimatzky, A.; Salzer Gotler, D.; Belnick, Y.; Shacham-Abulafia, A.; Avivi, I.; Raanani, P.; Yahalom, V.; Nakav, S.; et al. Prothrombin Complex Concentrate before Urgent Surgery in Patients Treated with Rivaroxaban and Apixaban. Acta Haematol. 2020, 143, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Engelbart, J.M.; Zepeski, A.; Galet, C.; Policeni, B.; Skeete, D.A.; Faine, B.A. Safety and Effectiveness of Factor Eight Inhibitor Bypassing Activity for Direct Oral Anticoagulant-Related Hemorrhage Reversal. Am. J. Emerg. Med. 2019, 37, 214–219. [Google Scholar] [CrossRef]
- Emigh, B.; Kobayashi, L.; Kopp, M.; Daley, M.; Teal, L.; Haan, J.; Burlew, C.C.; Nirula, R.; Moore, F.; Burruss, S.; et al. The AAST Prospective Observational Multicenter Study of the Initial Experience with Reversal of Direct Oral Anticoagulants in Trauma Patients. Am. J. Surg. 2021, 222, 264–269. [Google Scholar] [CrossRef]
- Shoamanesh, A.; Demchuk, A.; Seiffge, D. Secondary Analyses to Optimize Response to Andexanet from ANNEXa-I. In Proceedings of the 2024 International Stroke Conference, Phoenix, AZ, USA, 7–9 February 2024. [Google Scholar]
- Coleman, C.I.; Dobesh, P.P.; Danese, S.; Ulloa, J.; Lovelace, B. Real-World Management of Oral Factor Xa Inhibitor-Related Bleeds with Reversal or Replacement Agents Including Andexanet Alfa and Four-Factor Prothrombin Complex Concentrate: A Multicenter Study. Future Cardiol 2021, 17, 127–135. [Google Scholar] [CrossRef] [PubMed]
- AstraZeneca AB. ANDEXXA [Package Insert]; AstraZeneca: Cambridge, UK, 2024. [Google Scholar]
- Connolly, S.J.; Crowther, M.; Eikelboom, J.W.; Gibson, C.M.; Curnutte, J.T.; Lawrence, J.H.; Yue, P.; Bronson, M.D.; Lu, G.; Conley, P.B.; et al. Full Study Report of Andexanet Alfa for Bleeding Associated with Factor Xa Inhibitors. N. Engl. J. Med. 2019, 380, 1326–1335. [Google Scholar] [CrossRef]
- Sheth, K.N.; Solomon, N.; Alhanti, B.; Messe, S.R.; Xian, Y.; Bhatt, D.L.; Hemphill, J.C.; Frontera, J.A.; Chang, R.C.; Danelich, I.M.; et al. Time to Anticoagulation Reversal and Outcomes After Intracerebral Hemorrhage. JAMA Neurol. 2024, 81, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yakhkind, A.; Alexandrov, A.W.; Alexandrov, A.V.; Anderson, C.S.; Dowlatshahi, D.; Frontera, J.A.; Hemphill, J.C.; Ganti, L.; Kellner, C.; et al. Code ICH: A Call to Action. Stroke 2024, 55, 494–505. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Intervention vs. Comparator | Indication | Primary Outcome (Int vs. Comp) | Mortality (Int vs. Comp) | Thrombo-embolism (Int vs. Comp) | Hemostasis (Int vs. Comp) | Additional Details |
---|---|---|---|---|---|---|---|---|
Andexanet Alfa | ||||||||
Trials | ||||||||
Connolly, 2024 (N = 452 for efficacy, 530 for safety) [10] | RCT | Andexanet vs. Usual Care | ICH | HE ≤ 35% at 12 h, increase in NIHSS of ≤7 points and no receipt of rescue therapy between 3 and 12 h | 27.8% vs. 25.5%, Increase per 100 pts 2.5 (95% CI: −5.0 to 10.0), p = 0.51 | 10.3% vs. 2.8%, Increase per 100 pts 4.6 (95% CI: 0.1 to 9.2), p = 0.048 | 67.0% vs. 53.1%, Adjusted Difference 13.4% (95% CI: 4.6 to 22.2), p = 0.003 | |
Milling, 2023 (N = 342 for hemostatic efficacy) [11] | Multicenter, prospective single-group cohort | Andexanet vs. N/A | Mixed (ICH 69.1%, GI 22.8%, Other 8.1%) | Anti-FXa activity reduction: Apixaban: 93% reduction from 146.9 to 10.0 ng/mL (95% CI, 94–93); Rivaroxaban: 94% reduction from 214.6 to 10.8 ng/mL (95% CI, 95–93); Edoxaban: 71% reduction from 121.1 to 24.4 ng/mL (95% CI, 82–65); Enoxaparin: 75% reduction from 0.48 to 0.11 IU/mL (95% CI, 79–67); Hemostatic efficacy: 274 of 342 evaluable patients achieved excellent or good hemostasis (80% [95% CI, 75–84]) | 15.7% at 30 days (75/479); ICH mortality 16.9% (56/331), GI bleeding 11.9% (13/109), other major bleeding 15.4% (6/39) | 50 patients (10.4%) had ≥1 thrombotic event within 30 days: 15 DVT, 7 PE, 22 ischemic strokes, 3 TIA, 10 MI. 19 events occurred within 6 days, 31 events at 6–30 days | 80% excellent/good at 12 h (274/342 evaluable patients). By FXa inhibitor: Rivaroxaban 81% (95% CI, 73–87), Apixaban 79% (95% CI, 72–85), Enoxaparin 88% (95% CI, 62–98), Edoxaban 79% (95% CI, 59–92) | One severe infusion reaction reported. No neutralizing antibodies to factor X, FXa, or andexanet alfa developed. Of 323 (67.4%) patients who received anticoagulation during follow-up, none of the 130 who restarted oral anticoagulation had thrombotic events after restart. Study conducted at 85 centers across North America (26), Europe (49), and Japan (10). Median endogenous thrombin potential was within normal range by end of andexanet alfa bolus through 24 h for all FXa inhibitors. |
Annexa-4-related trials | ||||||||
Siepen, 2024 (N = 243) [12] | Prospective individual data analysis | Andexanet vs. TXA or placebo +/− PCC | ICH | HE at 12–24 h: 24 (14%) vs. 26 (41%), p < 0.001, Crude OR: 0.24 (95% CI: 0.12–0.46), p < 0.001. After adjustment: OR: 0.33 (95% CI: 0.13–0.80), p = 0.015 | 30-day mortality 36/180 (2050 vs. 25/63 (40%) p = 0.002, crude OR: 0.28 (95% CI: 0.12–0.66), p = 0.004, adjusted OR 0.46 (985% CI: 0.18–1.23), p = 0.123 | Overall thromboembolism at 30 days 20/180 (11%) vs. 6/64 (10%), Crude OR: 1.19 (95% CI: 0.45–3.10, p = 0.726) | HE: 24/280 (41%) vs. 26/63 (14%), p < 0.001 OR 0.24 (95% CI: 0.12–0.46), adjusted OR: 0.33 (95% CI: 0.13–0.80, p = 0.015 | Absolute hematoma volume change: −7.12 mL (95% CI: −11.41 to −2.83), p = 0.0013 |
Costa, 2022 (N = 202) [13] | Prospective individual data analysis | Andexanet vs. 4F-PCC | ICH | Hemostatic effectiveness 85.8% vs. 68.1% 4F-PCC (OR 2.73, 95% CI 1.16–6.42) | 7.9% vs. 19.6% (30d), OR 0.36 (95% CI: 0.13–0.98) | 1% vs. 0% no odds ratio or p value reported | 68.1% vs. 85.8%, OR 2.73 (95% CI: 1.16–6.42) no p value reported | Most patients received low-dose andexanet (96.6%) and 79.3% of patients received 4F-PCC (25 units/kg) Most patients had an indication of Afib for DOACs. And 61% of ICHs were trauma-related |
Huttner, 2022 (N = 182) [14] | Case–control | Andexanet vs. Usual Care | ICH | HE ≥ 35% at 12 h for AA or 36 h for usual care | 16.5% vs. 20.6%, p = 0.48 | 12.9% vs. 10.1%, p = 0.632 | HE ≥ 35%: 14% vs. 36%, RR 0.40 (95% CI: 0.20–0.78), p = 0.005 | Adjusted Hematoma volume reduction: −7.12 mL (95% CI: −11.41 to −2.83), p = 0.0013. |
Cohen, 2022 (N = 410) [15] | Case–control with propensity score matching | Andexanet vs. PCC | Mixed 282 ICH, 137 GI, 48 other) | 30-day mortality: 14.6% vs. 34.1%, adjusted RR 0.43, 95% CI: 0.29–0.63 | 14.6% vs. 34.1%, Adjusted RR 0.43 (95% CI: 0.29–0.63); ICH subgroup mortality: 15.3% vs. 48.9%, RR 0.31 (95% CI: 0.20–0.48); GI bleed subgroup mortality: 12.2% vs. 25.0%, RR 0.49 (95% CI: 0.21–1.16) | N/A | N/A | Adjusted 30-day mortality: 14.60% (95% CI: 10.72–18.47) vs. 34.09% (95% CI: 23.99–44.19); Study limitations included inability to match for certain prognostic variables like GCS score and hematoma volume |
Cohort Studies | ||||||||
Dobesh, 2023 (N = 4395) [16] | Cohort | Andexanet vs. 4F-PCC | Mixed | Mortality | 6.0% vs. 10.6%, adjusted OR 0.50 (95% CI: 0.39–0.65), p < 0.01 | N/A | N/A | ICH mortality: 12.6% vs. 23.3%, adjusted OR 0.55 (95% CI: 0.39–0.76), p < 0.01; GI bleed mortality: 2.5% vs. 4.3%, adjusted OR 0.49 (95% CI: 0.29–0.81), p = 0.01; LOS: Mean 7.1 vs. 6.9 days; Median 6.0 days (IQR 4.0, 8.0) for both groups; |
Sadek, 2024 (N = 324) [17] | Cohort | Andexanet vs. 4F-PCC | ICH (traumatic) | Mortality/hospice at discharge: 15 (25.4%) vs. 49 (18.5%), adjusted OR 1.34, 95% CI: 0.67–2.71 | 25.4% vs. 18.5%, OR 1.34 (95% CI: 0.67–2.71) | N/A | N/A | ICU LOS: median 2 vs. 2 days, OR 0.98, 95% CI: 0.84–1.14; ISS > 25 47.5% vs. 26.1%, p = 0.002; Minutes to operation: 227 vs. 385 adjusted OR 0.59, 95% CI: 0.16–2.16; LOS: median 4 vs. 4 days, adjusted OR 0.93, 95% CI: 0.83–1.05 |
Goldin, 2024 (N = 141) [18] | Retrospective | Andexanet, no comparator | Mixed (ICH 83.0%, Other CNS 2.8%, GI 2.1%, Other critical 9.9%, Pre-surgery 5.0%) | Presentation to andexanet time: 192.5 min (IQR 108.0–337.0) | 22.9% overall (ICH 22.4%, Other CNS 25.0%, GI 33.3%, Other critical 25.0%, Pre-surgery 0%) | VTE or ATE: 10.6% overall | Major bleeding: 12.0% overall | Composite of post-andexanet VTE, ATE, or major bleeding: 22.7% overall. 17% were transfers. 73.8% were on apixaban. Overall: 192.5 min (IQR 108.0–337.0); Tertiary centers: 223.0 min (IQR 142.0–358.0); Non-tertiary centers: 130.0 min (IQR 87.0–253.0); ED to diagnosis: 72.5 min (IQR 39.0–137.5); Diagnosis to order: 35.5 min (IQR 0–96.5); Order to administration: 53.0 min (IQR 38.5–78.5) Tertiary hospitals had longer process times across the board. |
Pham, 2022 (N = 109) [19] | Cohort | Andexanet vs. 4F-PCC | ICH | Excellent hemostasis: (71.1% vs. 70.7%, p = 1.0) | 16 [34.0%] vs. 13 [21.0%], p = 0.134, Adjusted p = 0.283 | 4 [8.5%] vs. 6 [9.7%], p = 1 | 71.1% vs. 70.7%, p = 1.0 | Adjusted p-value for mortality: 0.283; ICU LOS (3.0 vs. 3.0 days), diff 0.0 d (95% CI: −2.2 to 1.2); LOS: (6.7 vs. 5.1 days), diff 1.6 d (95% CI: −3.1 to 3.0) |
Sutton, 2023 (N = 255) [20] | Cohort | Andexanet vs. 4F-PCC | Non-ICH | 30-day Mortality: 20.0% vs. 32.4%, p = 0.039, unadjusted OR 0.52 (95% CI: 0.28–0.96)/HR from cox proportional hazards model 0.54 (95% CI: 0.30–0.98)/Propensity score-weighted HR: 0.54 (95% CI: 0.30–0.98); (in-hospital) 10.6% vs. 25.3%, p = 0.01, unadjusted OR 0.52 (0.28–0.96)/HR from cox proportional hazards model 0.34 (95% CI: 0.16–0.74)/Propensity score-weighted HR: 0.31 (95% CI: 0.14–0.71); | Mortality: 20.0% vs. 32.4% (30 d), p = 0.039, OR 0.52 (95% CI: 0.28–0.96)/HR from cox proportional hazards model 0.54 (95% CI: 0.30–0.98); (in-hospital) 10.6% vs. 25.3%, p = 0.01, OR 0.52 (0.28–0.96)/HR from cox proportional hazards model 0.34 (95% CI: 0.16–0.74) | N/A | N/A | mean ICU LOS: 4.2 vs. 3.9 days; median ICU LOS: 1 (IQR: 0–4) vs. 2 (IQR: 0–5) days; Discharge disposition: Home 57% s 48.2%, VA/Community nursing home: 20% vs. 15.9%, transfer to other hospital: 9.4% vs. 8.2%; LOS: 11.3 vs. 12 days, ratio 0.85 (95% CI: 0.60–1.21); |
Case–control studies | ||||||||
Parsels, 2022 (N = 52) [21] | Case–control | Andexanet vs. 4F-PCC | ICH | Good/excellent hemostasis within 24 hof administration: 92.3% vs. 88.5%, p = 1.000 | No data | New event within 14 days: 26.9% vs. 11.5%, p = 0.159 | 92.3% vs. 88.5%, p = 1.000 | LOS: 6.5 vs. 4.5 days, p = 0.299 |
Keinath, 2023 (N = 340) [22] | Case–control | Andexanet vs. PCC or aPCC | Mixed (ICH 47%, GI 37%, Other 16%) | Deterioration-free discharge: (69.4% vs. 66.5%, p = 0.646) | 16.5% vs. 13.5%, p = 0.448 | 5.3% vs. 4.7%, p = 0.792 | 81.8% vs. 80.6%, p = 0.640 | Primary outcome (deterioration-free discharge) was composite of: mortality, hemostasis within 24 h, level of care elevation, need for additional PRBCs, hemoglobin drop after normalization, and unplanned interventions. ICU LOS: 2.7 vs. 2.1 days, p = 0.135; Cost per deterioration-free discharge: USD 20,773.62 vs. USD 5230.32, p < 0.001; Discharge to home: 30.6% vs. 31.8%, p = 0.411; Discharge to home 49.2% vs. 46.3%, p = 0.746; LOS: 5.9 (IQR not reported) vs. 6.0 days, p = 0.383 |
Additional retrospective studies | ||||||||
Lipski, 2022 (N = 70) [23] | Cohort | Andexanet vs. 4F-PCC | ICH (traumatic 68%, spontaneous 32%) | Excellent or good hemostatic efficacy at 12 h post-reversal: 75% vs. 66.7%, p = 0.62 | 28-day: 39.1% vs. 40.4%, p = 0.92 | 28-day: 21.7% vs. 17.0%, p = 0.63 | Excellent/good at 12 h: 75% vs. 66.7%, p = 0.62 | ICU LOS: Median 3.5 vs. 3 days, p = 0.75; Only evaluable patients were included in hemostasis analysis (AA = 12, 4F-PCC = 21); Higher baseline ICH scores in AA group (median 3 vs. 2, p = 0.03); Similar rates of surgical intervention after reversal (30.4% vs. 17.0%, p = 0.20); There was a significant difference in DOAC distribution between the groups; Time to restart anticoagulation was 149.9 ± 160.8 h for 4F-PCC group and 51.2 ± 28.3 h for the AA group, p = 0.345; 4F-PCC: All patients received fixed 50 units/kg dose; AA dosing: Low dose (400 mg bolus + 4 mg/min): 73.9%, High dose (800 mg bolus + 8 mg/min): 26.1%; Mortality rates higher (40%) than previously published literature (26–38%), attributed to tertiary center. High rate of traumatic ICH (~68% in both groups). Nearly half had multicompartmental hemorrhage (46.8% vs. 52.2%). Baseline ICH volumes: 18.3 mL (AA) vs. 15.7 mL (4F-PCC) (p = 0.25); LOS Median 7 vs. 7 days, p = 0.61 |
Irizarry-Gatell, 2024 (N = 89) [24] | Retrospective | Andexanet vs. 4F-PCC | ICH | 30-day all-cause mortality: 52% vs. 35%, p = 0.14 | 30-day: 52% vs. 35%, p = 0.14; in-hospital: 22% vs. 26% | 13% vs. 26%, p = 0.17 | Radiographic stability: 57% vs. 58%, p = 0.93; Objective improvement in ICH volume: 10% vs. 8%, p = 0.18; Progression of ICH: 24% vs. 23%, p = 0.74 | ICU LOS: Median 4d [IQR 2–7] vs. 3d [IQR 0–7], p = 0.5; Cost: USD15,000 [IQR USD 15,000-USD 27,000] vs. USD 11,650.90 [IQR USD 8567-USD 14,149]; Progression of ICH: 24% vs. 23% (p = 0.74); LOS: Median: 7d [IQR 6–12] vs. 6d [IQR 3–12], p = 0.66 |
Koo, 2024 (N = 183) [25] | Cohort | Andexanet vs. 4F-PCC | Mixed | Hemostatic efficacy Excellent or Good: 75% vs. 69.7%, Difference: 5.3% (95% CI: −7.9% to 18.5%), p = 0.43 | 11.9% vs. 20.2%, Difference: 8.3% (95% CI: −2.2% to 18.8%), p = 0.122 | 7.1% vs. 7.1%, OR 1.0 (95% CI: 0.34–2.96), p = 0.985 | 75% vs. 69.7%, Difference: 5.3% (95% CI: −7.9% to 18.5%), p = 0.43; Corrected % decrease in Hb: Overall 11.9% vs. 15.7%, p = 0.004; ICH only: 10% vs. 12.4%, p = 0.076; GIB only: 21.9% vs. 31.37%, p = 0.562; | Time to administration: 43.5 vs. 46 min, p = 0.621; ICU LOS: 2 vs. 2 days, p = 0.015; Required surgical intervention: 16.7% vs. 16.2%, p = 0.927; LOS: 7 vs. 6 days, p = 0.439 |
Vestal, 2022 (N = 56) [26] | Retrospective case series | Andexanet vs. 4F-PCC | ICH | N/A | 14.3% vs. 37.1% (deceased) 14.3% vs. 2.9% (hospice)—no further metrics provided | 14.3% vs. 31.4% | 64.7% vs. 54.8% | ICU LOS: 3.78 [2.54–6.69] vs. 2.29 [1.37–5.83] days; Hospital LOS: 7.75 [4.64–15.87] vs. 5.02 [2.72–8.56] days; Time to administration: 2.67 [1.75–4.13] vs. 1.73 [1.21–3.55] hours; Prophylactic anticoagulation resumption: median 59.4 [47.6–69.9] hours after administration (both groups combined); Systemic anticoagulation restart time: Andexanet: 26.1 [13.8–35.0] days, 4F-PCC: 14.7 [9.3–24.0] days; Hospital: 7.75 [4.64–15.87] vs. 5.02 [2.72–8.56] days ICU: 3.78 [2.54–6.69] vs. 2.29 [1.37–5.83] days |
Schmidt, 2022 (N = 85) [27] | Retrospective | Andexanet vs. 4F-PCC | Non-ICH | N/A | 18.1% vs. 17.3%, p = 0.918 | 18% vs. 3.8%, p = 0.027 | 84.8% vs. 76.9%, p = 0.373 | ICU LOS: 2.5 vs. 2.5 days, p = 0.516; 6.2 vs. 5.4 days, p = 0.577 |
Singer, 2023 (N = 100) [28] | Cohort (Retrospective Pilot) | Andexanet vs. 4F-PCC | ICH (50), GIB (50) | Hemostatic efficacy: 88% vs. 76%, OR 2.01 (95% CI: 0.67–6.06), p = 0.8; Rebleeding rates: 2% vs. 4%, OR 3.30 (95% CI: 0.59–18.52) | 8% vs. 9%, p = 0.25 | 14% vs. 16%, p = 0.8 | 88% vs. 76%, OR 2.01 (95% CI: 0.67–6.06), p = 0.8; Rebleeding rates: 2% vs. 4%, OR 3.30 (95% CI: 0.59–18.52) | Door-to-needle time for ICH: median 1.8 h (andexanet) vs. 1.7 h (4F-PCC); Door-to-needle time for GIB: median 3.6 h vs. 3.3 h; For GIB bleeding only: hemostatic efficacy (excellent): 64% vs. 44%; Survival to discharge: 76% vs. 88% (p = 0.46). |
Meta-analyses | ||||||||
Orso, 2024 [29] | Meta-analysis | Andexanet vs. 4F-PCC | Mixed | All-cause mortality RR 0.84 (95% CI: 0.69–1.01); | RCTs and PSMs: RR 0.71 (95% CI 0.37–1.34), I2 = 81% | RCTs and PSMs: RR 1.74 (95% CI 1.09–2.77), I2 = 0% | N/A | Significant publication bias in retrospective studies (Egger’s test p = 0.03) |
Chaudhary, 2022 (N = 1832) [30] | Review | Andexanet vs. 4F-PCC and Idarucizumab | Mixed | All-cause mortality and Thromboembolic outcomes | AA: 24% (95% CI, 16–34%) vs. 4F-PCC: 26% (95% CI, 20–32%); Retrospective study RR 1.40 (95% CI: 0.68–2.86); | AA: 14% (95% CI, 10–19%) vs. 4F-PCC: 8% (95% CI, 5–12%); Retrospective RR 0.89 (95% CI: 0.36–2.21); | AA: 75% (95% CI, 67–81%) vs. 4F-PCC: 77% (95% CI, 72–82%); Retrospective study RR: 0.95 (95% CI: 0.85–1.06) | Subanalysis (4F-PCC vs. AA): Anticoagulation reversal RR 0.95 (95% CI, 0.85–1.06) |
Idarucizumab | ||||||||
Pollack, 2017 (N = 503) [31] | RCT (multicenter, prospective, single-cohort) | Idarucizumab, no comparator | Mixed (Group A: uncontrolled bleeding [45.5% GI, 32.6% ICH]; Group B: urgent surgery) | Maximum percentage reversal of dabigatran anticoagulant effect: 100% (95% CI: 100–100) | 30-day: 13.5% Group A, 12.6% Group B; 90-day: 18.8% Group A, 18.9% Group B | 30-day: 4.8% (24/503); 90-day: 6.8% (34/503) | Group A: median time to bleeding cessation 2.5 h (95% CI: 2.2–3.9) in evaluable patients; Group B: 93.4% normal, 5.1% mildly abnormal, 1.5% moderately abnormal periprocedural hemostasis | Median time to procedure 1.6 h in Group B; Time from last dabigatran dose median 15.6 h; Reversal was rapid and maintained for 24 h in most patients; Single 5 g dose sufficient in 98% of patients; Anti-idarucizumab antibodies in 5.6% of patients |
Singh, 2019 (N = 1611) [32] | Cohort | Idarucizumab, usual care | Mixed | N/A | GI: 5.9% vs. 3.3% (aOR 1.33, 95% CI 0.51–3.45), ICH: 11.6% vs. 2.8%, p = 0.0011 | GI: 1.3% vs. 4.2%, p = 0.0825; ICH: 0.9% vs. 10.1%, p = 0.0018 | N/A | Transfusion aOR 2.0 (95% CI 0.64–6.30), 30-day readmission aOR 0.8 (95% CI 0.38–1.68), Cost: USD 26,240 vs. USD 21,201, p = 0.1864; LOS: GI: 7.8 vs. 8.8 days (IRR 0.92, p = 0.125) ICH: 8.1 vs. 11.4 days (IRR 0.82, p = 0.03) |
Retrospective data | ||||||||
Sarode, 2013 (N = 202) [33] | Phase IIIb multicenter open-label, non-inferiority RCT | 4F-PCC vs. Plasma | Mixed—major bleeding while on VKA therapy | Co-primary endpoints: Hemostatic efficacy at 24 h: 72.4% 4F-PCC vs. 65.4% plasma (difference 7.1%, 95% CI: −5.8 to 19.9), demonstrating noninferiority; INR correction (≤1.3) at 0.5 h after infusion: 62.2% 4F-PCC vs. 9.6% plasma (difference 52.6%, 95% CI: 39.4 to 65.9); | 7.8% (8/103) 4F-PCC vs. 6.4% (7/109) plasma Treatment-related: 3.9% (4/103) vs. 2.8% (3/109) | Hemostasis—Excellent: 44.9% vs. 43.3%; Good: 27.6% vs. 22.1%; Poor/none: 27.6% vs. 34.6%; Overall excellent/good: 72.4% vs. 65.4%; | Median infusion time: 17 min 4F-PCC vs. 148 min plasma; Median infusion volume: 99.4 mL 4F-PCC vs. 813.5 mL plasma; Fluid overload events: 4.9% 4F-PCC vs. 12.8% plasma; Treatment-related adverse events: 9.7% 4F-PCC vs. 21.1% plasma; Baseline median INR: 3.90 (1.8–20.0) 4F-PCC vs. 3.60 (1.9–38.9) plasma; Most patients received vitamin K in addition to study treatment | |
PCC | ||||||||
RCT Data analysis | ||||||||
Gerner, 2018 (N = 131) [34] | Cohort | PCC vs. no PCC | ICH | Hematoma enlargement > 33%: 35.1% vs. 35.1%, RR = 1.057 (95% CI: 0.565–1.977), p = 0.863 | 19.9% at discharge, 29.5% at 3 m (overall cohort)—no significant difference and no specifics in terms of comparison mentioned | N/A | Hematoma enlargement > 33%: 35.1% vs. 35.1%, RR = 1.057 (95% CI: 0.565–1.977), p = 0.863 | Systolic BP < 160 mmHg at 4 h: RR 0.598 (95% CI: 0.365–0.978) for hematoma enlargement, mRS 0–3 at 3 m: 31.1% vs. 39.5%, p = 0.32 |
Cohort studies | ||||||||
Majeed, 2017 (N = 84) [35] | Cohort | PCC, no comparator | Mixed (70. 2% ICH; 15.5% GI Bleeding) | Effective hemostasis per ISTH criteria: overall, 69.1% (58/84) patients; ICH only, 72.9% (43/59); | 32% (27/84) at 30 days; 18% (15/84) died within first week; | 2 confirmed ischemic strokes, 1 suspected PE | Effective in 72.9% (43/59) | Median PCC dose: 2000 IU (IQR 1500–2000) or 26.7 IU/kg (IQR 21.4–29.9); LOS: Median 7.0 days (IQR 3.0–15.0) for those with effective hemostasis; Median 4.5 days (IQR 2.0–7.0) for ineffective |
Schulman, 2018 (N = 66) [36] | Cohort | PCC, no comparator | Mixed | Effective hemostasis | 14% (9 deaths) | 8% (5 events within 30 days) | 65% good (95% CI: 53–77), 20% moderate (95% CI: 10–30), 15% poor/none (95% CI: 6–24) | ICU LOS: Median 0 days (IQR 0–6); Post hoc ISTH hemostatic criteria ICH (n = 36): Good: 67% Moderate: 17% Poor/None: 17%; GI (n = 16): Good: 69 Moderate: 12% Poor/None: 19%; Timing: onset-to-PCC 8.6 h (IQR 4.8–18.1), door-to-PCC 5.4 h (IQR 3.3–7.8); AC resumed in 62% at median 5 d (IQR 2–11.5); Mean age 76.9 y; AF main indication (82%); ICH types: 18 intracerebral, 7 subdural, 4 SAH, 7 combinations; Major TE: 3 strokes, 1 Peripheral arterial embolism, 1 VTE; 8/9 deaths in ICH patients (22% ICH mortality); LOS: 16 days median (IQR 5.3–30) |
Panos, 2020 (N = 663) [37] | Cohort | PCC, no comparator | ICH (51% Traumatic; Intracerebral (45.1%), Subdural (34.5%), Subarachnoid (14.5%)) | Hemostatic efficacy (433/663 patients were evaluable for this); 81.8% (95% CI, 77.9–85.2) excellent/good | 19.0% in-hospital | 3.8% in-hospital | 81.8% (95% CI, 77.9–85.2) excellent/good | ICU LOS: Median 2.8 days (IQR 1.1–6.8); Median time to PCC administration: 2.6 h (IQR 1.5–4.3); Anticoagulation reinitiation in 5.9% of patients, Median time to reinitiation: 8.2 days [IQR 5.2–13.9] from admission; Median initial dose of 4F-PCC (43.8 u/kg [IQR 25.6–49.8]); Median initial dose of aPCC 26.7 u/kg [IQR 23.8–48.3]; 34 patients (5.1%) received a second PCC dose; LOS: Median 7.0 days (IQR 3.7–12.0) |
Hays, 2024 (N = 125) [38] | Cohort | 4F-PCC vs. 3F-PCC | Mixed | Effective hemostasis: 82.8% (53) vs. 85% (51), adjusted OR 1.38 (0.41–4.60) p = 0.81 | In-hospital mortality 14.1% (9) vs. 14.8% (9), p > 0.999 | 4.7% (3) vs. 6.6% (4), p = 0.711 | ICU LOS: 3 (IQR 4.8) vs.. 3 (IQR 6); LOS median 7.5 d, IQR 10 vs. 8 d, IQR 7 | |
Tranexamic Acid | ||||||||
Polymeris, 2023 (N = 63) [39] | RCT | TXA vs. Placebo | ICH | HE ≥ 33% or ≥6 mL: 38% vs. 45%, OR 0.63 (95% CI: 0.22–1.82), p = 0.40 | 47% vs. 42%, OR 1.07 (95% CI: 0.37–3.04), p = 0.91 | 13% vs. 6%, OR 1.86 (95% CI: 0.37–9.50), p = 0.45 | HE: 38% vs. 45%, OR 0.63 (95% CI: 0.22–1.82), p = 0.40, Symptomatic HE: 28% vs. 29%, OR 0.86 (95% CI: 0.28–2.66), p = 0.79 | mRS 0–4 at 90 d: 44% vs. 52%, RR 0.81 (95% CI: 0.29–2.27), p = 0.69 Terminated early (planned N = 109) Subgroup analysis suggested benefit with treatment ≤ 6 h. 69% of the TXA group and 61% of the placebo group received 4F-PCC |
Study | Design | Indication and Procedure | Intervention | Comparator | Mortality (Int vs. Comp) | Thromboembolism (Int vs. Comp) | Hemostasis (Int vs. Comp) | Bleeding as Complication | Additional Details |
---|---|---|---|---|---|---|---|---|
Yoo, 2020 (N = 1984) [48] | Retrospective | Hip fracture surgery, ≥60 years old, on any anticoagulant (97.9% Warfarin, 2.1% DOACs) | Vitamin K, PCC, FFP, idarucizumab|No reversal | 30-day mortality 7.8% vs. 6.0%, unadjusted HR 1.30 (95% CI 0.82–2.07), Adjusted HR 1.00 (95% CI 0.62–1.60) | Thromboembolism: unadjusted RR 2.70, 95% CI 1.18–6.04; Adjusted RR 3.14, 95% CI 1.34–7.40) | Hemoglobin drop of at least 3 g/dL: 20.7% vs. 24.0%; RR 0.86 (95% CI 0.69–1.07), not statistically significant. | The study did not detect a significant difference in major bleeding (defined as hemoglobin drop ≥3 g/dL) between the reversal group and non-reversal group (RR 0.86, 95% CI, 0.69–1.07). | Higher delirium rates in reversal group (8.6% vs. 4.9%, RR 1.77, 95% CI: 1.08–2.89); Surgery within 24 h associated with lower mortality risk before adjustment; Only 3.6% on concurrent antiplatelet therapy; Reversal group had higher admission INR on average (2.6 vs. 2.0, p < 0.001); Time to surgery longer in reversal group (47.1 vs. 37.0 h, p < 0.05). LOS: 6.4 vs. 5.8 days (adjusted mean difference 0.08, 95% CI −0.55–0.71) |
Stretton, 2023 (N = 1065) [47] | Multicenter Retrospective | Surgery in patients on DOACs requiring pre- and post-op hemoglobin measurement. Spinal (11.9%), Orthopedics (15.4%), Neurosurgery (19.4%) | Preoperative DOAC assay | No preoperative assay | Assay vs. No Assay: OR 2.98 (95% CI: 1.16–7.63), p = 0.023 | NA | Major bleeding, Assay vs. No Assay: OR 1.44 (95% CI: 1–2.08), p = 0.050; Hb decrease 0.5066 g/L per 10 ng/mL DOAC titer (95% CI: 0.0299–0.9833, p = 0.037) | Major bleeding: Patients with a preoperative DOAC assay had a 1.44× higher odds of major bleeding (p = 0.05). | Reversal agent use, Assay vs. No assay: OR 16.3 (95% CI: 3.88–10.36), p = 0.0001; Embolization, Assay vs. No assay: OR 4.91 (95% CI: 1.09–22.11), p = 0.038; Median DOAC titer: 28 ng/mL [IQR 10–64, range <20–349 ng/mL); Median time from assay to surgery: 8.3 h (IQR 3.9–26.5); Time of last DOAC dose known in 42.2% of cases; 90.2% of DOAC assays ordered for surgeries with triage codes less than 24 h ago; Patients with DOAC assay older, with more emergent indications and undergoing higher risk operations |
Godon, 2022 (N = 478) [49] | Registry data analysis | Urgent non-hemostatic invasive procedures in patients on Dabigatran (N = 160), Rivaroxaban (N = 274) or Apixaban (N = 44). 80% surgical procedures: 216/384 or 56% orthopedic, 75/384 or 20% GI surgery | None | NA | All-cause mortality: 28/478 (5.9%); 30-day mortality: 9/62 (15%) for patients with excessive bleeding and 19/416 (4.6%) for patients with no excessive bleeding (p = 0.005). | Major cerebral and cardiovascular events 7.9% (38/478) by day 30 | Hemostatic agents administered in 16% (76/478) procedures. Excessive bleeding in 13% of procedures. | Excessive bleeding was observed in 13% of cases (62/478 procedures) | Hemostatic agents used in 16% of procedures, specific details not provided |
Bradshaw, 2022 (N = 44) [50] | Single-center Retrospective | Emergent procedures in patients on Xa inhibitors. EVD 20.5%, laparotomy 13.6%, craniotomy 13.6%, Arterial embolization 20.5%, and others. | Andexanet alfa | NA | 34.1% at 30 days | 27.3% at 30 days (median 3.9 days to event) | Excellent/good hemostatic efficacy (38 patients): overall: 30/38 (78.9%); Intracranial: 12/15 (80%); Extracranial 18/23 (78.3%) | 31.8% of patients required blood transfusions before andexanet alfa, and 27.2% required transfusions after reversal. Intra-procedure bleeding was more common in extracranial events but reduced after reversal. | PT decreased from 17.7 s to 16.8 s (p < 0.001); Anti-Xa activity decreased from 1.8 to 1.4 units/mL; Order to administration time: 30.0 min [IQR 19.8–43.0]; Door-to-reversal 2.6 h [IQR 1.2–5.5]; Reversal to procedure 2.8 h [ IQR 0.7–6.6]; LOS: ICU: 7 days [IQR 5.0–15.5]; Hospital: 11.5 days [IQR 6.0–19.0] |
Levy, 2021 (N = 202) [51] | Multicenter prospective substudy | Urgent surgery/procedures in dabigatran-treated patients: Abdominal (49), orthopedic (45), vascular (34), neuro (8), Gynecological/urological (4) | Idarucizumab | NA | 12.6% at 30 days, 18.9% at 90 days; Surgical group: 7.9%, Procedural group 7% | 5% at 30 days, 7.4% at 90 days | 93.4% normal, 5.1% mildly abnormal, 1.5% moderately abnormal | NA | Median time to procedure 1.6 h (3.3 h for neurosurgery); Symptom to treatment 292 min (IQR 195–419); Door-to-needle 136 min (IQR 92–181) |
Shaw, 2020 (N = 82) [52] | Retrospective | DOAC-associated bleeding (65.9%) or preop optimization (34.1%). General, orthopedic, or interventional radiology. | aPCC | NA | 30-day mortality: 31.7% or 26/82 patients; Fatal bleeding 17 or 20.7% | 6.1% at 30 days | Normal hemostasis achieved (Preop cases only): 84% (21/25); | NA | INR: Pre-aPCC 1.6 [IQR 0.5] → Post-aPCC 1.2 [IQR 0.2], p < 0.00001; aPTT: Pre-aPCC 36 sec [IQR 12.8] → Post-aPCC 29 sec [IQR 9.8], p = 0.0001 |
Barzilai, 2020 (N = 62) [53] | Retrospective | Urgent surgery in apixaban/rivaroxaban patients; 61% abdominal surgery, 13% orthopedic, 10% cholecystostomy, 16% other procedures | PCC ± Tranexamic Acid | NA | 21% at 30 days | 3% (n = 2) (1 asymptomatic portal vein thrombosis post-ERCP, 1 superficial vein thrombosis from IV line 5 days post-PCC) | Hemostatic efficacy: 95% with no significant bleeding | Only 5% of patients (n = 3) experienced bleeding during surgery, and 26% (n = 16) received packed red blood cells (median: 1 unit, range: 1–5). No patients required additional PCC. | Drug levels measured in 11/62 patients (18%), mean drug level 116.5 ± 56 ng/mL; Median drug level 105 ng/mL; Tranexamic acid used in 14 patients in addition to PCC |
Engelbart, 2018 (N = 42) [54] | Single-center case series | Life-threatening hemorrhage or urgent surgery: 71% ICH, 29% extracranial hemorrhage | FEIBA (all patients), ± TXA (52%)/vitamin K (5%)/FFP (5%)/Platelet transfusion (12%) | NA | 29% overall (33% ICH, 17% extracranial) | 10% (3 DVTs, 1 MI) | 86% effective hemorrhage prevention | Hemorrhage progression occurred in 10% of patients (n = 4). Two patients were on apixaban, two on rivaroxaban, and some also on antiplatelet therapy (aspirin or clopidogrel). | FEIBA doses 25–50 units/kg, lower doses often effective |
Emigh, 2021 (N = 606) [55] | Multicenter Prospective Observational | Trauma patients on DOACs with life-threatening hemorrhage or severe injury: 99% blunt trauma patients on DOACs requiring urgent procedure | Mixed reversal strategy (12% idarucizumab, 1% and exanet alfa, 80% 4-PCC, 7% FEIBA) | No reversal | 11% vs. 3% (p = 0.001); 30% for specific vs. 8% for non-specific agents (p = 0.04); After multivariate analysis, reversal was not independently associated with mortality (p = 0.42) | No VTE complications reported | NA | NA | Injuries more severe in the reversal group: ISS [Injury Severity Score]: 16 vs. 5, p < 0.0001; Head AIS [Abbreviated Injury Scale]: 2.9 vs. 1.3, p < 0.0001; Abdominal AIS: 0.5 vs. 0.2, p = 0.05; LOS: Hospital: 8.9 vs. 4.6 days (p < 0.0001); ICU: 5.4 vs. 1.5 days (p < 0.0001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldin, M.; Tsaftaridis, N.; Jnani, J.; Spyropoulos, A.C. Reversal of Direct Oral Anticoagulants (DOACs) for Critical Bleeding or Urgent Procedures. J. Clin. Med. 2025, 14, 1013. https://doi.org/10.3390/jcm14031013
Goldin M, Tsaftaridis N, Jnani J, Spyropoulos AC. Reversal of Direct Oral Anticoagulants (DOACs) for Critical Bleeding or Urgent Procedures. Journal of Clinical Medicine. 2025; 14(3):1013. https://doi.org/10.3390/jcm14031013
Chicago/Turabian StyleGoldin, Mark, Nikolaos Tsaftaridis, Jack Jnani, and Alex C. Spyropoulos. 2025. "Reversal of Direct Oral Anticoagulants (DOACs) for Critical Bleeding or Urgent Procedures" Journal of Clinical Medicine 14, no. 3: 1013. https://doi.org/10.3390/jcm14031013
APA StyleGoldin, M., Tsaftaridis, N., Jnani, J., & Spyropoulos, A. C. (2025). Reversal of Direct Oral Anticoagulants (DOACs) for Critical Bleeding or Urgent Procedures. Journal of Clinical Medicine, 14(3), 1013. https://doi.org/10.3390/jcm14031013