Validation of the NICHD Bronchopulmonary Dysplasia Outcome Estimator 2022 in a Quaternary Canadian NICU—A Single-Center Observational Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Characteristics
3.2. Respiratory Support
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- CNN. Annual Report. 2022. Available online: https://www.canadianneonatalnetwork.org/portal/Portals/0/Annual%20Reports/2022%20CNN%20Annual%20Report.pdf (accessed on 1 December 2024).
- Parikh, S.; Reichman, B.; Kusuda, S.; Adams, M.; Lehtonen, L.; Vento, M.; Norman, M.; Laura; Isayama, T.; Hakansson, S.; et al. Trends, Characteristic, and Outcomes of Preterm Infants Who Received Postnatal Corticosteroid: A Cohort Study from 7 High-Income Countries. Neonatology 2023, 120, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Alagappan, A.; Malloy, M.H. Systemic hypertension in very low-birth weight infants with bronchopulmonary dysplasia: Incidence and risk factors. Am. J. Perinatol. 1998, 15, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Elsayed, K.; Nugent, M.; Varma, S. Sequelae associated with systemic hypertension in infants with severe bronchopulmonary dysplasia. J. Perinatol. 2022, 42, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Vyas-Read, S.; Varghese, N.P.; Suthar, D.; Backes, C.; Lakshminrusimha, S.; Petit, C.J.; Levy, P.T. Prematurity and Pulmonary Vein Stenosis: The Role of Parenchymal Lung Disease and Pulmonary Vascular Disease. Children 2022, 9, 713. [Google Scholar] [CrossRef]
- An, H.S.; Bae, E.J.; Kim, G.B.; Kwon, B.S.; Beak, J.S.; Kim, E.K.; Kim, H.S.; Choi, J.H.; Noh, C.I.; Yun, Y.S. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Korean Circ. J. 2010, 40, 131–136. [Google Scholar] [CrossRef]
- Bhat, R.; Salas, A.A.; Foster, C.; Carlo, W.A.; Ambalavanan, N. Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics 2012, 129, e682–e689. [Google Scholar] [CrossRef]
- Revanna, G.K.; Kunjunju, A.; Sehgal, A. Bronchopulmonary dysplasia associated pulmonary hypertension: Making the best use of bedside echocardiography. Prog. Pediatr. Cardiol. 2017, 46, 39–43. [Google Scholar] [CrossRef]
- Malloy, K.W.; Austin, E.D. Pulmonary hypertension in the child with bronchopulmonary dysplasia. Pediatr. Pulmonol. 2021, 56, 3546–3556. [Google Scholar] [CrossRef] [PubMed]
- Lagatta, J.; Murthy, K.; Zaniletti, I.; Bourque, S.; Engle, W.; Rose, R.; Ambalavanan, N.; Brousseau, D. Home Oxygen Use and 1-Year Readmission among Infants Born Preterm with Bronchopulmonary Dysplasia Discharged from Children’s Hospital Neonatal Intensive Care Units. J. Pediatr. 2020, 220, 40–48. [Google Scholar] [CrossRef]
- Manti, S.; Galdo, F.; Parisi, G.F.; Napolitano, M.; Decimo, F.; Leonardi, S.; Miraglia Del Giudice, M. Long-term effects of bronchopulmonary dysplasia on lung function: A pilot study in preschool children’s cohort. J. Asthma 2021, 58, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, E.G.; Clouse, B.J.; Hasenstab, K.A.; Sitaram, S.; Malleske, D.T.; Nelin, L.D.; Jadcherla, S.R. Infant Pulmonary Function Testing and Phenotypes in Severe Bronchopulmonary Dysplasia. Pediatrics 2018, 141, e20173350. [Google Scholar] [CrossRef] [PubMed]
- Majnemer, A.; Riley, P.; Shevell, M.; Birnbaum, R.; Greenstone, H.; Coates, A.L. Severe bronchopulmonary dysplasia increases risk for later neurological and motor sequelae in preterm survivors. Dev. Med. Child Neurol. 2000, 42, 53–60. [Google Scholar] [CrossRef]
- Walsh, M.C.; Morris, B.H.; Wrage, L.A.; Vohr, B.R.; Poole, W.K.; Tyson, J.E.; Wright, L.L.; Ehrenkranz, R.A.; Stoll, B.J.; Fanaroff, A.A.; et al. Extremely low birthweight neonates with protracted ventilation: Mortality and 18-month neurodevelopmental outcomes. J. Pediatr. 2005, 146, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Short, E.J.; Kirchner, H.L.; Asaad, G.R.; Fulton, S.E.; Lewis, B.A.; Klein, N.; Eisengart, S.; Baley, J.; Kercsmar, C.; Min, M.O.; et al. Developmental sequelae in preterm infants having a diagnosis of bronchopulmonary dysplasia: Analysis using a severity-based classification system. Arch. Pediatr. Adolesc. Med. 2007, 161, 1082–1087. [Google Scholar] [CrossRef] [PubMed]
- Short, E.J.; Klein, N.K.; Lewis, B.A.; Fulton, S.; Eisengart, S.; Kercsmar, C.; Baley, J.; Singer, L.T. Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes. Pediatrics 2003, 112, e359. [Google Scholar] [CrossRef]
- Honeycutt, A.; Dunlap, L.; Chen, H.; Homsi, G.; Grosse, S.; Schendel, D.; Centers for Disease Control and Prevention (CDC). Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment—United States, 2003. MMWR Morb. Mortal. Wkly. Rep. 2004, 53, 57–59. [Google Scholar]
- Htun, Z.T.; Schulz, E.V.; Desai, R.K.; Marasch, J.L.; McPherson, C.C.; Mastrandrea, L.D.; Jobe, A.H.; Ryan, R.M. Postnatal steroid management in preterm infants with evolving bronchopulmonary dysplasia. J. Perinatol. 2021, 41, 1783–1796. [Google Scholar] [CrossRef]
- Barrington, K.J. The adverse neuro-developmental effects of postnatal steroids in the preterm infant: A systematic review of RCTs. BMC Pediatr. 2001, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Lemyre, B.; Dunn, M.; Thebaud, B. Postnatal corticosteroids to prevent or treat bronchopulmonary dysplasia in preterm infants. Paediatr. Child Health 2020, 25, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.J.; Pramanik, A.K.; Committee on Fetus and Newborn. Postnatal Corticosteroids to Prevent or Treat Chronic Lung Disease Following Preterm Birth. Pediatrics 2022, 149, e2022057530. [Google Scholar] [CrossRef]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome—2019 Update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.A.; Wiener, L.E.; Rysavy, M.A.; Dysart, K.C.; Gantz, M.G.; Eichenwald, E.C.; Greenberg, R.G.; Harmon, H.M.; Laughon, M.M.; Watterberg, K.L.; et al. Assessment of Corticosteroid Therapy and Death or Disability According to Pretreatment Risk of Death or Bronchopulmonary Dysplasia in Extremely Preterm Infants. JAMA Netw. Open 2023, 6, e2312277. [Google Scholar] [CrossRef]
- Doyle, L.W.; Mainzer, R.; Cheong, J.L.Y. Systemic Postnatal Corticosteroids, Bronchopulmonary Dysplasia, and Survival Free of Cerebral Palsy. JAMA Pediatr. 2025, 179, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraj, U.; Tan, J.; Soraisham, A.; Lodha, A.; Shah, P.; Kulkarni, T.; Shivananda, S. Postnatal Steroids Use for Bronchopulmonary Dysplasia in a Quaternary Care NICU. Am. J. Perinatol. 2024, 41, 1858–1866. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, R.G.; McDonald, S.A.; Laughon, M.M.; Tanaka, D.; Jensen, E.; Van Meurs, K.; Eichenwald, E.; Brumbaugh, J.E.; Duncan, A.; Walsh, M.; et al. Online clinical tool to estimate risk of bronchopulmonary dysplasia in extremely preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 638–643. [Google Scholar] [CrossRef]
- Laughon, M.M.; Langer, J.C.; Bose, C.L.; Smith, P.B.; Ambalavanan, N.; Kennedy, K.A.; Stoll, B.J.; Buchter, S.; Laptook, A.R.; Ehrenkranz, R.A.; et al. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am. J. Respir. Crit. Care Med. 2011, 183, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.A.; Dysart, K.; Gantz, M.G.; McDonald, S.; Bamat, N.A.; Keszler, M.; Kirpalani, H.; Laughon, M.M.; Poindexter, B.B.; Duncan, A.F.; et al. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am. J. Respir. Crit. Care Med. 2019, 200, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Onland, W.; Cools, F.; Kroon, A.; Rademaker, K.; Merkus, M.P.; Dijk, P.H.; van Straaten, H.L.; Te Pas, A.B.; Mohns, T.; Bruneel, E.; et al. Effect of Hydrocortisone Therapy Initiated 7 to 14 Days After Birth on Mortality or Bronchopulmonary Dysplasia Among Very Preterm Infants Receiving Mechanical Ventilation: A Randomized Clinical Trial. JAMA 2019, 321, 354–363. [Google Scholar] [CrossRef]
- Doyle, L.W.; Davis, P.G.; Morley, C.J.; McPhee, A.; Carlin, J.B.; Investigators, D.S. Low-dose dexamethasone facilitates extubation among chronically ventilator-dependent infants: A multicenter, international, randomized, controlled trial. Pediatrics 2006, 117, 75–83. [Google Scholar] [CrossRef]
- Dugas, M.A.; Nguyen, D.; Frenette, L.; Lachance, C.; St-Onge, O.; Fougères, A.; Bélanger, S.; Caouette, G.; Proulx, E.; Racine, M.C.; et al. Fluticasone inhalation in moderate cases of bronchopulmonary dysplasia. Pediatrics 2005, 115, e566–e572. [Google Scholar] [CrossRef]
- Arnon, S.; Grigg, J.; Silverman, M. Effectiveness of budesonide aerosol in ventilator-dependent preterm babies: A preliminary report. Pediatr. Pulmonol. 1996, 21, 231–235. [Google Scholar] [CrossRef]
- CNN. Abstractor’s Manual; Canadian Neonatal Network: Toronto, ON, Canada, 2024; Available online: https://www.canadianneonatalnetwork.org/Doc/Manual/CNNManual.pdf (accessed on 1 December 2024).
- David, W.; Hosmer, S.L. Assessing the Fit of the Model. In Applied Logistic Regression, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2000; pp. 143–202. [Google Scholar]
- Romijn, M.; Dhiman, P.; Finken, M.J.J.; van Kaam, A.H.; Katz, T.A.; Rotteveel, J.; Schuit, E.; Collins, G.S.; Onland, W.; Torchin, H. Prediction Models for Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review and Meta-Analysis. J. Pediatr. 2023, 258, 113370. [Google Scholar] [CrossRef] [PubMed]
- Kwok, T.C.; Batey, N.; Luu, K.L.; Prayle, A.; Sharkey, D. Bronchopulmonary dysplasia prediction models: A systematic review and meta-analysis with validation. Pediatr. Res. 2023, 94, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.K.; Davis, P.G. Bronchopulmonary dysplasia outcome estimator in current neonatal practice. Acta Paediatr. 2021, 110, 166–167. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Mascarenhas, D.; Nanavati, R. Risk Calculator for Bronchopulmonary Dysplasia in Preterm Neonates: A Prospective Observational Study. Indian J. Pediatr. 2024, 91, 781–787. [Google Scholar] [CrossRef]
- Srivatsa, B.; Srivatsa, K.R.; Clark, R.H. Assessment of validity and utility of a bronchopulmonary dysplasia outcome estimator. Pediatr. Pulmonol. 2023, 58, 788–793. [Google Scholar] [CrossRef]
- Kinkor, M.; Schneider, J.; Sulthana, F.; Noel-Macdonnell, J.; Cuna, A. A Comparison of the 2022 Versus 2011 National Institute of Child Health and Human Development Web-Based Risk Estimator for Bronchopulmonary Dysplasia. J. Pediatr. Clin. Pract. 2024, 14, 200129. [Google Scholar] [CrossRef]
- Cuna, A.; Lagatta, J.M.; Savani, R.C.; Vyas-Read, S.; Engle, W.A.; Rose, R.S.; DiGeronimo, R.; Logan, J.W.; Mikhael, M.; Natarajan, G.; et al. Association of time of first corticosteroid treatment with bronchopulmonary dysplasia in preterm infants. Pediatr. Pulmonol. 2021, 56, 3283–3292. [Google Scholar] [CrossRef] [PubMed]
- Cuna, A.; Lewis, T.; Dai, H.; Nyp, M.; Truog, W.E. Timing of postnatal corticosteroid treatment for bronchopulmonary dysplasia and its effect on outcomes. Pediatr. Pulmonol. 2019, 54, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, V.V.; Bandyopadhyay, T.; Nanda, D.; Bandiya, P.; Ahmed, J.; Garg, A.; Roehr, C.C.; Nangia, S. Assessment of Postnatal Corticosteroids for the Prevention of Bronchopulmonary Dysplasia in Preterm Neonates: A Systematic Review and Network Meta-analysis. JAMA Pediatr. 2021, 175, e206826. [Google Scholar] [CrossRef]
- Harmon, H.M.; Jensen, E.A.; Tan, S.; Chaudhary, A.S.; Slaughter, J.L.; Bell, E.F.; Wyckoff, M.H.; Hensman, A.M.; Sokol, G.M.; DeMauro, S.B. Timing of postnatal steroids for bronchopulmonary dysplasia: Association with pulmonary and neurodevelopmental outcomes. J. Perinatol. Off. J. Calif. Perinat. Assoc. 2020, 40, 616–627. [Google Scholar] [CrossRef]
- Brady, P.W.; Muething, S.; Kotagal, U.; Ashby, M.; Gallagher, R.; Hall, D.; Goodfriend, M.; White, C.; Bracke, T.M.; Decastro, V.; et al. Improving Situation Awareness to Reduce Unrecognized Clinical Deterioration and Serious Safety Events. Pediatrics 2013, 131, e298–e308. [Google Scholar] [CrossRef]
Variable | Total Infants (99) |
---|---|
Gestational age at birth, weeks, median (IQR) | 26 (25–28) |
22–24 weeks, median (IQR) | 18 (18.2) |
25–26 weeks, median (IQR) | 38 (38.4) |
27–28 weeks, median (IQR) | 43 (43.4) |
Birth weight, grams, median (IQR) | 914 (755–1069) |
Male | 57 (57.6) |
Outborn | 22 (22.2) |
Antenatal betamethasone (partial or complete) | 86 (86.9) |
Suspected chorioamnionitis | 24 (24.2) |
C-Section delivery | 68 (68.7) |
APGAR 1 min, median (IQR) | 5 (2–6) |
APGAR 5 min, median (IQR) | 6 (6–8) |
Intubation and ventilation during resuscitation | 62 (62.6) |
SNAPPE II 1 | 27 (18–42) |
SNAPPE II 1 > 20 | 60 (60.6) |
Variable | n (%) |
---|---|
Mortality | 13 (13.1) |
BPD | 40 (40.4) |
| 32 (32.3) |
| 7 (7.1) |
ROP Stage ≥ 3 right or left | 33 (33.3) |
ROP treated, right or left | 8 (8.8) |
PDA treated (medical or surgical) | 42 (42.4) |
Pneumothorax | 5 (5.1) |
Surgical NEC | 14 (14.1) |
IVH Grade ≥ 3 | 29 (29.3) |
PVL Grade > 2 | 9 (9.1) |
Spontaneous intestinal perforation | 3 (3.0) |
Discharge—survival without major morbidity 1 | 25 (25.3) |
Discharge oxygen | 2 (2.3) |
Discharge monitor | 46 (53.5) |
Discharge ostomy 2 | 0 (0) |
Discharge gavage | 37 (43.0) |
Discharge tracheostomy | 1 (1.2) |
Discharge gastrostomy | 11 (12.8) |
Discharge non-invasive ventilation | 3 (3.5) |
Discharge continuous positive airway pressure | 3 (3.5) |
Discharge—technology dependency 3 | 55 (64.0) |
Variable | Day 1 | Day 3 | Day 7 | Day 14 | Day 28 | At 36 Weeks PMA | |
---|---|---|---|---|---|---|---|
Fio2 ≥ 22% | 37/87 (42.5) | 49/87 (56.3) | 54/89 (60.7) | 57/85 (67.1) | 48/82 (58.5) | 15/86 (17.4) | |
Fio2, median (IQR) | 21 (21, 25.75) | 23 (21, 26) | 23 (21, 30) | 26.5 (21, 34) | 24 (21, 30) | 21 (21, 25.5) | |
Respiratory support | HFV | 12/87 (13.8) | 17/87 (19.5) | 24/89 (27) | 20/85 (23.5) | 15/82 (18.3) | 5/86 (5.8) |
CMV | 43/87 (49.4) | 29/87 (33.3) | 17/89 (19.1) | 13/85 (15.2) | 6/82 (7.3) | 2/86 (2.3) | |
NIPPV | 7/87 (8) | 22/87 (25.3) | 25/89 (28.1) | 22/85 (25.9) | 30/82 (36.6) | 4/86 (4.6) | |
CPAP | 24/87 (27.6) | 18/87 (20.7) | 22/89 (24.7) | 28/85 (33) | 16/82 (19.5) | 13/86 (15.1) | |
HFNC | 0 | 0 | 0 | 1/85 (1.2) | 11/82 (13.4) | 15/86 (17.4) | |
LFNC | 0 | 0 | 0 | 0 | 0 | 1/86 (1.2) | |
No respiratory support | 1/87 (1.2) | 1/87 (1.2) | 1/89 (1.1) | 1/85 (1.2) | 4/82 (4.9) | 46/86 (53.5) |
Estimated Risk of Grade 2/3 BPD Using the Calculator | AUC | 95% CI for AUC | |||||||
---|---|---|---|---|---|---|---|---|---|
<10% | 10–19% | 20–29% | 30–39% | 40–49% | 50–60% | ≥60% | |||
Day 1 (n = 87) | 4/25 (16%) | 7/20 (35%) | 8/17 (47.1%) | 11/17 (64.7%) | 4/7 (57.1%) | 0/1 | 0/0 | 0.766 | 0.657–0.875 |
Day 3 (n = 87) | 2/24 (8.3%) | 8/17 (47.1%) | 10/20 (50%) | 5/11 (45.5%) | 2/6 (33.3%) | 7/9 (77.8%) | 0/0 | 0.746 | 0.633–0.860 |
Day 7 (n = 89) | 3/25 (12%) | 6/20 (30%) | 6/10 (60%) | 7/11 (63.6%) | 10/18 (55.6%) | 3/5 (60%) | 0/0 | 0.785 | 0.678–0.891 |
Day 14 (n = 85) | 3/23 (13%) | 9/26 (34.6%) | 2/3 (66.7%) | 7/10 (70%) | 4/10 (40%) | 8/9 (88.9%) | ¾ (75%) | 0.807 | 0.703–0.911 |
Day 28 (n = 82) | 2/20 (10%) | 9/29 (31%) | 9/12 (75%) | 2/2 (100%) | ½ (50%) | 6/7 (85.7%) | 9/10 (90%) | 0.818 | 0.720–0.916 |
Estimated Risk of Death or Grade 2/3 BPD Using the Calculator | AUC | 95% CI for AUC | |||||||
---|---|---|---|---|---|---|---|---|---|
<10% | 10–19% | 20–29% | 30–39% | 40–49% | 50–60% | ≥60% | |||
Day 1 (n = 87) | 2/21 (9.5%) | 5/15 (33.3%) | 9/14 (64.3%) | 9/12 (75%) | 7/11 (63.6%) | 5/5 (100%) | 8/9 (89%) | 0.803 | 0.703–0.903 |
Day 3 (n = 87) | 2/23 (8.7%) | 6/16 (37.5%) | 9/14 (64.3%) | 7/10 (70%) | 6/8 (75%) | 4/6 (66.7%) | 10/10 (100%) | 0.806 | 0.707–0.905 |
Day 7 (n = 89) | 2/19 (10.5%) | 6/19 (31.6%) | 6/13 (46.2%) | 8/10 (80%) | 6/7 (85.7%) | 6/8 (75%) | 13/13 (100%) | 0.837 | 0.745–0.930 |
Day 14 (n = 85) | 2/20 (10%) | 5/23 (21.7%) | 5/7 (71.4%) | 4/6 (66.7%) | 9/10 (90%) | 7/9 (77.8%) | 9/10 (90%) | 0.832 | 0.734–0.930 |
Day 28 (n = 82) | 2/20 (10%) | 9/27 (33.3%) | 8/12 (66.7%) | 2/3 (66.7%) | 2/2 (100%) | 2/2 (100%) | 15/16 (93.8%) | 0.843 | 0.751–0.935 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanagaraj, U.K.; Kulkarni, T.; Kwan, E.; Zhang, Q.; Bone, J.; Shivananda, S. Validation of the NICHD Bronchopulmonary Dysplasia Outcome Estimator 2022 in a Quaternary Canadian NICU—A Single-Center Observational Study. J. Clin. Med. 2025, 14, 696. https://doi.org/10.3390/jcm14030696
Kanagaraj UK, Kulkarni T, Kwan E, Zhang Q, Bone J, Shivananda S. Validation of the NICHD Bronchopulmonary Dysplasia Outcome Estimator 2022 in a Quaternary Canadian NICU—A Single-Center Observational Study. Journal of Clinical Medicine. 2025; 14(3):696. https://doi.org/10.3390/jcm14030696
Chicago/Turabian StyleKanagaraj, Uthaya Kumaran, Tapas Kulkarni, Eddie Kwan, Qian Zhang, Jeffery Bone, and Sandesh Shivananda. 2025. "Validation of the NICHD Bronchopulmonary Dysplasia Outcome Estimator 2022 in a Quaternary Canadian NICU—A Single-Center Observational Study" Journal of Clinical Medicine 14, no. 3: 696. https://doi.org/10.3390/jcm14030696
APA StyleKanagaraj, U. K., Kulkarni, T., Kwan, E., Zhang, Q., Bone, J., & Shivananda, S. (2025). Validation of the NICHD Bronchopulmonary Dysplasia Outcome Estimator 2022 in a Quaternary Canadian NICU—A Single-Center Observational Study. Journal of Clinical Medicine, 14(3), 696. https://doi.org/10.3390/jcm14030696