Pulmonary Rehabilitation in Patients with Operable Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. The Components and Mechanisms of Pulmonary Rehabilitation
2.1. Key Components of Pulmonary Rehabilitation
2.2. Mechanism of Benefit
3. Current Evidence of Pulmonary Rehabilitation and Lung Cancer Surgery
3.1. Preoperative Pulmonary Rehabilitation and Surgical Management of NSCLC
3.2. Postoperative Pulmonary Rehabilitation Following Surgical Management of NSCLC
3.3. Multimodal Pulmonary Rehabilitation in Surgical Management of NSCLC
4. Implementation Strategies for Pulmonary Rehabilitation in Lung Cancer
4.1. Design of PR Programs Specific to Lung Cancer Patients
4.2. Timing and Delivery of PR
4.3. Challenges and Barriers to Effective Implementation
5. Future Directions and Research Needs
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kratzer, T.B.; Bandi, P.; Freedman, N.D.; Smith, R.A.; Travis, W.D.; Jemal, A.; Siegel, R.L. Lung cancer statistics, 2023. Cancer 2024, 130, 1330–1348. [Google Scholar] [CrossRef]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef]
- Zhang, Y.; Vaccarella, S.; Morgan, E.; Li, M.; Etxeberria, J.; Chokunonga, E.; Manraj, S.S.; Kamate, B.; Omonisi, A.; Bray, F. Global variations in lung cancer incidence by histological subtype in 2020: A population-based study. Lancet Oncol. 2023, 24, 1206–1218. [Google Scholar] [CrossRef]
- Bruno, R.; Poma, A.M.; Panozzi, M.; Lenzini, A.; Elia, G.; Zirafa, C.C.; Aprile, V.; Ambrogi, M.C.; Baldini, E.; Lucchi, M.; et al. Early-Stage Non-Small Cell Lung Cancer: Prevalence of Actionable Alterations in a Monocentric Consecutive Cohort. Cancers 2024, 16, 1410. [Google Scholar] [CrossRef]
- Raman, V.; Yang, C.-F.J.; Deng, J.Z.; D’amico, T.A. Surgical treatment for early stage non-small cell lung cancer. J. Thorac. Dis. 2018, 10 (Suppl. 7), S898–S904. [Google Scholar] [CrossRef]
- Donington, J.; Ferguson, M.; Mazzone, P.; Handy, J., Jr.; Schuchert, M.; Fernando, H.; Loo, B.; Lanuti, M.; de Hoyos, A.; Detterbeck, F.; et al. American College of Chest Physicians and Society of Thoracic Surgeons Consensus Statement for Evaluation and Management for High-Risk Patients with Stage I Non-small Cell Lung Cancer. Chest 2012, 142, 1620–1635. [Google Scholar] [CrossRef]
- Detterbeck, F.C.; Lewis, S.Z.; Diekemper, R.; Addrizzo-Harris, D.; Alberts, W.M. Executive Summary: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013, 143 (Suppl. 5), 7S–37S. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, R.; Paulus, R.; Galvin, J.; Michalski, J.; Straube, W.; Bradley, J.; Fakiris, A.; Bezjak, A.; Videtic, G.; Johnstone, D.; et al. Stereotactic Body Radiation Therapy for Inoperable Early Stage Lung Cancer. JAMA 2010, 303, 1070–1076. [Google Scholar] [CrossRef]
- Verma, A.; Tran, Z.; Sakowitz, S.; Hadaya, J.; Lee, C.; Madrigal, J.; Revels, S.; Benharash, P. Hospital variation in the development of respiratory failure after pulmonary lobectomy: A national analysis. Surgery 2022, 172, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Geller, A.D.; Zheng, H.; Mathisen, D.J.; Wright, C.D.; Lanuti, M. Relative incremental costs of complications of lobectomy for stage I non–small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2018, 155, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.-C.; et al. An Official American Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Holland, A.E.; Cox, N.S.; Houchen-Wolloff, L.; Rochester, C.L.; Garvey, C.; ZuWallack, R.; Nici, L.; Limberg, T.; Lareau, S.C.; Yawn, B.P.; et al. Defining Modern Pulmonary Rehabilitation. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2021, 18, E12–E29. [Google Scholar] [CrossRef] [PubMed]
- Nici, L.; ZuWallack, R. Scope, background and definition of pulmonary rehabilitation. Eur. J. Phys. Rehabil. Med. 2011, 47, 465–474. [Google Scholar]
- Rochester, C.L.; Alison, J.A.; Carlin, B.; Jenkins, A.R.; Cox, N.S.; Bauldoff, G.; Bhatt, S.P.; Bourbeau, J.; Burtin, C.; Camp, P.G.; et al. Pulmonary Rehabilitation for Adults with Chronic Respiratory Disease: An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2023, 208, e7–e26. [Google Scholar] [CrossRef]
- Souto-Miranda, S.; Rodrigues, G.; Spruit, M.A.; Marques, A. Pulmonary rehabilitation outcomes in individuals with chronic obstructive pulmonary disease: A systematic review. Ann. Phys. Rehabil. Med. 2022, 65, 101564. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, D.; Xu, Y.; Wu, L.; Lou, L. Effect of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis of randomized controlled trials. Ann. Med. 2022, 54, 262–273. [Google Scholar] [CrossRef]
- Troosters, T.; Casaburi, R.; Gosselink, R.; Decramer, M. Pulmonary Rehabilitation in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2005, 172, 19–38. [Google Scholar] [CrossRef]
- Lindenauer, P.K.; Stefan, M.S.; Pekow, P.S.; Mazor, K.M.; Priya, A.; Spitzer, K.A.; Lagu, T.C.; Pack, Q.R.; Pinto-Plata, V.M.; ZuWallack, R. Association Between Initiation of Pulmonary Rehabilitation After Hospitalization for COPD and 1-Year Survival Among Medicare Beneficiaries. JAMA 2020, 323, 1813–1823. [Google Scholar] [CrossRef]
- Puhan, M.A.; Gimeno-Santos, E.; Cates, C.J.; Troosters, T. Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2016, 12, CD005305. [Google Scholar] [CrossRef]
- Carlin, B.W.M.; Bauldoff, G.S.P.; Collins, E.P.; Garvey, C.F.; Marciniuk, D.M.; Ries, A.M.; Limberg, T.B.; ZuWallack, R. Medical Director Responsibilities for Outpatient Pulmonary Rehabilitation Programs in the United States: 2019: A STATEMENT FOR HEALTH CARE PROFESSIONALS FROM THE AMERICAN ASSOCIATION OF CARDIOVASCULAR AND PULMONARY REHABILITATION (AACVPR). J. Cardiopulm. Rehabilitation Prev. 2020, 40, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzis, I.; Nanas, S.; Roussos, C. Interval training as an alternative modality to continuous exercise in patients with COPD. Eur. Respir. J. 2002, 20, 12–19. [Google Scholar] [CrossRef]
- Sabapathy, S.; Kingsley, R.A.; Schneider, D.A.; Adams, L.; Morris, N.R. Continuous and intermittent exercise responses in individuals with chronic obstructive pulmonary disease. Thorax 2004, 59, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzis, I.; Nanas, S.; Kastanakis, E.; Georgiadou, O.; Papazahou, O.; Roussos, C. Dynamic hyperinflation and tolerance to interval exercise in patients with advanced COPD. Eur. Respir. J. 2004, 24, 385–390. [Google Scholar] [CrossRef]
- Kortianou, E.A.; Nasis, I.G.; Spetsioti, S.T.; Daskalakis, A.M.; Vogiatzis, I. Effectiveness of Interval Exercise Training in Patients with COPD. Cardiopulm. Phys. Ther. J. 2010, 21, 12–19. [Google Scholar] [CrossRef]
- Gosselink, R.; De Vos, J.; Van Den Heuvel, S.P.; Segers, J.; Decramer, M.; Kwakkel, G. Impact of inspiratory muscle training in patients with COPD: What is the evidence? Eur. Respir. J. 2011, 37, 416–425. [Google Scholar] [CrossRef]
- Parshall, M.B.; Schwartzstein, R.M.; Adams, L.; Banzett, R.B.; Manning, H.L.; Bourbeau, J.; Calverley, P.M.; Gift, A.G.; Harver, A.; Lareau, S.C.; et al. An Official American Thoracic Society Statement: Update on the Mechanisms, Assessment, and Management of Dyspnea. Am. J. Respir. Crit. Care Med. 2012, 185, 435–452. [Google Scholar] [CrossRef]
- Dechman, G.; Wilson, C.R. Evidence Underlying Breathing Retraining in People with Stable Chronic Obstructive Pulmonary Disease. Phys. Ther. 2004, 84, 1189–1197. [Google Scholar] [CrossRef]
- Blackstock, F.C.; Lareau, S.C.; Nici, L.; ZuWallack, R.; Bourbeau, J.; Buckley, M.; Durning, S.J.; Effing, T.W.; Egbert, E.; Goldstein, R.S.; et al. Chronic Obstructive Pulmonary Disease Education in Pulmonary Rehabilitation. An Official American Thoracic Society/Thoracic Society of Australia and New Zealand/Canadian Thoracic Society/British Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2018, 15, 769–784. [Google Scholar] [CrossRef] [PubMed]
- Hanson, C.; Bowser, E.K.; Frankenfield, D.C.; Piemonte, T.A. Chronic Obstructive Pulmonary Disease: A 2019 Evidence Analysis Center Evidence-Based Practice Guideline. J. Acad. Nutr. Diet. 2021, 121, 139–165.e15. [Google Scholar] [CrossRef]
- Tselebis, A.; Kosmas, E.; Bratis, D.; Pachi, A.; Ilias, I.; Harikiopoulou, M.; Theodorakopoulou, E.; Velentzas, K.; Dumitru, S.; Moussas, G.; et al. Contribution of Psychological Factors in Dropping out from Chronic Obstructive Pulmonary Disease Rehabilitation Programs. BioMed Res. Int. 2014, 2014, 401326. [Google Scholar] [CrossRef]
- Marques, A.; Jácome, C.; Cruz, J.; Gabriel, R.; Brooks, D.; Figueiredo, D. Family-Based Psychosocial Support and Education as Part of Pulmonary Rehabilitation in COPD: A randomized controlled trial. Chest 2015, 147, 662–672. [Google Scholar] [CrossRef]
- Vogiatzis, I.; Zakynthinos, S. The physiological basis of rehabilitation in chronic heart and lung disease. J. Appl. Physiol. Bethesda Md 1985 2013, 115, 16–21. [Google Scholar] [CrossRef]
- Choi, J.; Yang, Z.; Lee, J.; Lee, J.H.; Kim, H.K.; Yong, H.S.; Lee, S.Y. Usefulness of Pulmonary Rehabilitation in Non-Small Cell Lung Cancer Patients Based on Pulmonary Function Tests and Muscle Analysis Using Computed Tomography Images. Cancer Res. Treat. Off J Korean Cancer Assoc. 2022, 54, 793–802. [Google Scholar] [CrossRef]
- Mujovic, N.; Mujovic, N.; Subotic, D.; Ercegovac, M.; Milovanovic, A.; Nikcevic, L.; Zugic, V.; Nikolic, D. Influence of Pulmonary Rehabilitation on Lung Function Changes After the Lung Resection for Primary Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease. Aging Dis. 2015, 6, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.S.; Waller, J.W.; Cook, R.M.; Cavalera, S.L.; Lim, W.T.; Osadnik, C.R. Effect of Pulmonary Rehabilitation on Symptoms of Anxiety and Depression in COPD: A Systematic Review and Meta-Analysis. Chest 2019, 156, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsen, C.S.; Lang-Ree, H.M.; Halvorsen, K.; Stenbakken, C.M. Patients with COPD: Exploring patients’ coping ability during an interdisciplinary pulmonary rehabilitation programme: A qualitative focus group study. J. Clin. Nurs. 2021, 30, 1479–1488. [Google Scholar] [CrossRef] [PubMed]
- Güell, R.; Resqueti, V.; Sangenis, M.; Morante, F.; Martorell, B.; Casan, P.; Guyatt, G.H. Impact of Pulmonary Rehabilitation on Psychosocial Morbidity in Patients with Severe COPD. Chest 2006, 129, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Coventry, P.A.; Bower, P.; Keyworth, C.; Kenning, C.; Knopp, J.; Garrett, C.; Hind, D.; Malpass, A.; Dickens, C. The Effect of Complex Interventions on Depression and Anxiety in Chronic Obstructive Pulmonary Disease: Systematic Review and Meta-Analysis. PLoS ONE 2013, 8, e60532. [Google Scholar] [CrossRef] [PubMed]
- Luk, E.; Gorelik, A.; Irving, L.; Khan, F. Effectiveness of cognitive behavioural therapy in a community-based pulmonary rehabilitation programme: A controlled clinical trial. J. Rehabil. Med. 2017, 49, 264–269. [Google Scholar] [CrossRef]
- Yohannes, A.M. Psychosocial Support in Pulmonary Rehabilitation. Respir. Care 2024, 69, 664–677. [Google Scholar] [CrossRef]
- Solomon, B.K.; Wilson, K.G.; Henderson, P.R.; Poulin, P.A.; Kowal, J.; McKim, D.A. Loss of Dignity in Severe Chronic Obstructive Pulmonary Disease. J. Pain Symptom Manag. 2016, 51, 529–537. [Google Scholar] [CrossRef]
- Bobbio, A.; Chetta, A.; Ampollini, L.; Primomo, G.L.; Internullo, E.; Carbognani, P.; Rusca, M.; Olivieri, D. Preoperative pulmonary rehabilitation in patients undergoing lung resection for non-small cell lung cancer. Eur. J. Cardiothorac. Surg. 2008, 33, 95–98. [Google Scholar] [CrossRef]
- Goldsmith, I.; Chesterfield-Thomas, G.; Toghill, H. Pre-treatment optimization with pulmonary rehabilitation in lung cancer: Making the inoperable patients operable. eClinicalMedicine 2020, 31, 100663. [Google Scholar] [CrossRef]
- Cesario, A.; Ferri, L.; Galetta, D.; Cardaci, V.; Biscione, G.; Pasqua, F.; Piraino, A.; Bonassi, S.; Russo, P.; Sterzi, S.; et al. Pre-operative pulmonary rehabilitation and surgery for lung cancer. Lung Cancer 2007, 57, 118–119. [Google Scholar] [CrossRef]
- Pehlivan, E. Can functional inoperability in lung cancer patients be changed by pulmonary rehabilitation? Turk. J. Thorac. Cardiovasc. Surg. 2019, 27, 212–218. [Google Scholar] [CrossRef]
- Lai, Y.; Huang, J.; Yang, M.; Su, J.; Liu, J.; Che, G. Seven-day intensive preoperative rehabilitation for elderly patients with lung cancer: A randomized controlled trial. J. Surg. Res. 2016, 209, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Ono, R.; Tanaka, Y.; Tatebayashi, D.; Okumura, M.; Makiura, D.; Inoue, J.; Fujikawa, T.; Kondo, S.; Inoue, T.; et al. The effect of home-based preoperative pulmonary rehabilitation before lung resection: A retrospective cohort study. Lung Cancer 2021, 162, 135–139. [Google Scholar] [CrossRef]
- Mujovic, N.; Mujovic, N.; Subotic, D.; Marinkovic, M.; Milovanovic, A.; Stojsic, J.; Zugic, V.; Grajic, M.; Nikolic, D. Preoperative pulmonary rehabilitation in patients with non-small cell lung cancer and chronic obstructive pulmonary disease. Arch. Med. Sci. 2014, 10, 68–75. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, T.; Pei, L.; Zhang, Y.; Xu, L.; Cui, Y.; Liang, N.; Li, S.; Chen, W.; Huang, Y. Two-Week Multimodal Prehabilitation Program Improves Perioperative Functional Capability in Patients Undergoing Thoracoscopic Lobectomy for Lung Cancer: A Randomized Controlled Trial. Anesthesia Analg. 2020, 131, 840–849. [Google Scholar] [CrossRef]
- Tao, W.; Huang, J.; Jin, Y.; Peng, K.; Zhou, J. Effect of Pulmonary Rehabilitation Exercise on Lung Volume and Respiratory Muscle Recovery in Lung Cancer Patients Undergoing Lobectomy. Altern. Ther. Health Med. 2024, 30, 90–96. [Google Scholar]
- Niu, C.; Lin, H.; Zhang, Z.; Wang, Q.; Wei, Y. Impact of pulmonary rehabilitation on exercise capacity, health-related quality of life, and cardiopulmonary function in lung surgery patients: A retrospective propensity score-matched analysis. Front. Med. 2024, 11, 1450711. [Google Scholar] [CrossRef]
- Riesenberg, H.; Lübbe, A.S. In-patient rehabilitation of lung cancer patients—A prospective study. Support. Care Cancer 2010, 18, 877–882. [Google Scholar] [CrossRef]
- Klimczak, M.; Piekielny, D.; Antczak, A.; Śmigielski, J.; Tworek, D. Effectiveness of Pulmonary Rehabilitation in Patients with Chronic Obstructive Pulmonary Disease after Lobectomy Due to Non-Small Cell Lung Cancer—A Single-Center Retrospective Study. Adv. Respir. Med. 2021, 89, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, S.; Song, B.; Han, Y. Anxiety, depression, and quality of life in postoperative non-small cell lung cancer patients under the intervention of cognitive-behavioral stress management. Front. Psychol. 2023, 14, 1138070. [Google Scholar] [CrossRef]
- Sterzi, S.; Cesario, A.; Cusumano, G.; Dall’Armi, V.; Lapenna, L.; Cardaci, V.; Novellis, P.; Lococo, F.; Corbo, G.; Cafarotti, S.; et al. Post-operative rehabilitation for surgically resected non-small cell lung cancer patients: Serial pulmonary functional analysis. J. Rehabil. Med. 2013, 45, 911–915. [Google Scholar] [CrossRef]
- Ichikawa, T.; Yokoba, M.; Horimizu, Y.; Yamaguchi, S.; Kawakami, A.; Oikawa, S.; Takeichi, H.; Katagiri, M.; Toyokura, M. Recovery of respiratory muscle strength, physical function, and dyspnoea after lobectomy in lung cancer patients undergoing pulmonary rehabilitation: A retrospective study. Eur. J. Cancer Care 2022, 31, e13663. [Google Scholar] [CrossRef]
- Zheng, Y.; Mao, M.; Li, F.; Wang, L.; Zhang, X.; Zhang, X.; Wang, H.; Zhou, H.; Ji, M.; Wang, Y.; et al. Effects of enhanced recovery after surgery plus pulmonary rehabilitation on complications after video-assisted lung cancer surgery: A multicentre randomised controlled trial. Thorax 2023, 78, 574–586. [Google Scholar] [CrossRef]
- Li, J.; Zheng, J. Effect of lung rehabilitation training combined with nutritional intervention on patients after thoracoscopic resection of lung cancer. Oncol. Lett. 2024, 27, 118. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.-F.; Yang, Q.; Zhang, J.; Han, X.Y.; Zhang, J.-P.; Ye, M. A self-efficacy enhancing intervention for pulmonary rehabilitation based on motivational interviewing for postoperative lung cancers patients: Modeling and randomized exploratory trial. Psychol. Heal. Med. 2018, 23, 804–822. [Google Scholar] [CrossRef]
- Morano, M.T.A.P.; Mesquita, R.; Da Silva, G.P.F.; Araújo, A.S.; Pinto, J.M.D.S.; Neto, A.G.; Viana, C.M.S.; Filho, M.O.D.M.; Pereira, E.D.B. Comparison of the effects of pulmonary rehabilitation with chest physical therapy on the levels of fibrinogen and albumin in patients with lung cancer awaiting lung resection: A randomized clinical trial. BMC Pulm. Med. 2014, 14, 121. [Google Scholar] [CrossRef]
- Quarterman, R.L.; McMillan, A.; Ratcliffe, M.B.; Block, M.I. Effect of preoperative delay on prognosis for patients with early stage non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 2003, 125, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Wu, Y.; Jin, R.; Li, H.M. Assessment of surgery delay-associated risk in resectable stages I–IIIA non-small-cell lung cancer. Int. J. Surg. 2024, 110, 5847–5849. [Google Scholar] [CrossRef]
- Hardcastle, S.J.; Cohen, P.A. Effective Physical Activity Promotion to Survivors of Cancer Is Likely to Be Home Based and to Require Oncologist Participation. J. Clin. Oncol. 2017, 35, 3635–3637. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Rice, S.J.; Belani, C.P. Pulmonary Rehabilitation in Lung Cancer. PM&R 2016, 8, 990–996. [Google Scholar] [CrossRef]
- Sugimura, H.; Yang, P. Long-term Survivorship in Lung Cancer: A Review. Chest 2006, 129, 1088–1097. [Google Scholar] [CrossRef]
- Missel, M.; Pedersen, J.H.; Hendriksen, C.; Tewes, M.; Adamsen, L. Exercise intervention for patients diagnosed with operable non-small cell lung cancer: A qualitative longitudinal feasibility study. Support. Care Cancer 2015, 23, 2311–2318. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Weiss, J.; Skrzypski, M.; Lam, J.M.; Karasaki, T.; Zambrana, F.; Kidd, A.C.; Frankell, A.M.; Watkins, T.B.K.; Martínez-Ruiz, C.; et al. Body composition and lung cancer-associated cachexia in TRACERx. Nat. Med. 2023, 29, 846–858. [Google Scholar] [CrossRef]
- Adamsen, L.; Stage, M.; Laursen, J.; Rørth, M.; Quist, M. Exercise and relaxation intervention for patients with advanced lung cancer: A qualitative feasibility study. Scand. J. Med. Sci. Sports 2012, 22, 804–815. [Google Scholar] [CrossRef]
- Saito, G.; Ebata, T.; Ishiwata, T.; Iwasawa, S.; Yoshino, I.; Takiguchi, Y.; Tatsumi, K. Risk factors for skeletal-related events in non-small cell lung cancer patients treated with bone-modifying agents. Support. Care Cancer 2021, 29, 4081–4088. [Google Scholar] [CrossRef] [PubMed]
- Zabora, J.; BrintzenhofeSzoc, K.; Curbow, B.; Hooker, C.; Piantadosi, S. The prevalence of psychological distress by cancer site. Psychooncology 2001, 10, 19–28. [Google Scholar] [CrossRef]
- Fonseca, A.; Antunes, M.; Firmino-Machado, J.; Barroso, A.; Dias, M. Characteristics and patient-reported outcomes of long-term lung cancer survivors. J. Thorac. Dis. 2024, 16, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Sommer, M.; Staerkind, M.; Christensen, J.; Vibe-Petersen, J.; Larsen, K.; Pedersen, J.; Langberg, H. Effect of postsurgical rehabilitation programmes in patients operated for lung cancer: A systematic review and meta-analysis. J. Rehabil. Med. 2018, 50, 236–245. [Google Scholar] [CrossRef]
- Krebs, P.; Coups, E.J.; Feinstein, M.B.; Burkhalter, J.E.; Steingart, R.M.; Logue, A.; Park, B.J.; Ostroff, J.S. Health behaviors of early-stage non-small cell lung cancer survivors. J. Cancer Surviv. Res Pract. 2012, 6, 37–44. [Google Scholar] [CrossRef]
- Olivier, C.; Grosbois, J.-M.; Cortot, A.B.; Peres, S.; Heron, C.; Delourme, J.; Gierczynski, M.; Hoorelbeke, A.; Scherpereel, A.; Le Rouzic, O. Real-life feasibility of home-based pulmonary rehabilitation in chemotherapy-treated patients with thoracic cancers: A pilot study. BMC Cancer 2018, 18, 178. [Google Scholar] [CrossRef]
- Hansen, H.; Bieler, T.; Beyer, N.; Kallemose, T.; Wilcke, J.T.; Østergaard, L.M.; Andeassen, H.F.; Martinez, G.; Lavesen, M.; Frølich, A.; et al. Supervised pulmonary tele-rehabilitation versus pulmonary rehabilitation in severe COPD: A randomised multicentre trial. Thorax 2020, 75, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Zanaboni, P.; Dinesen, B.; Hoaas, H.; Wootton, R.; Burge, A.T.; Philp, R.; Oliveira, C.C.; Bondarenko, J.; Jensen, T.T.; Miller, B.R.; et al. Long-term Telerehabilitation or Unsupervised Training at Home for Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2023, 207, 865–875. [Google Scholar] [CrossRef]
- Zhang, L.; Maitinuer, A.; Lian, Z.; Li, Y.; Ding, W.; Wang, W.; Wu, C.; Yang, X. Home based pulmonary tele-rehabilitation under telemedicine system for COPD: A cohort study. BMC Pulm. Med. 2022, 22, 284. [Google Scholar] [CrossRef]
- Tsai, L.L.Y.; McNamara, R.J.; Moddel, C.; Alison, J.A.; McKenzie, D.K.; McKeough, Z.J. Home-based telerehabilitation via real-time videoconferencing improves endurance exercise capacity in patients with COPD: The randomized controlled TeleR Study. Respirology 2017, 22, 699–707. [Google Scholar] [CrossRef]
- Ha, D.M.; Comer, A.; Dollar, B.; Bedoy, R.; Ford, M.; Gozansky, W.S.; Zeng, C.; Arch, J.J.; Leach, H.J.; Malhotra, A.; et al. Telemedicine-based inspiratory muscle training and walking promotion with lung cancer survivors following curative intent therapy: A parallel-group pilot randomized trial. Support. Care Cancer 2023, 31, 546. [Google Scholar] [CrossRef]
- Ji, W.; Kwon, H.; Lee, S.; Kim, S.; Hong, J.S.; Park, Y.R.; Kim, H.R.; Lee, J.C.; Jung, E.J.; Kim, D.; et al. Mobile Health Management Platform–Based Pulmonary Rehabilitation for Patients with Non–Small Cell Lung Cancer: Prospective Clinical Trial. JMIR mHealth uHealth 2019, 7, e12645. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.Y.; Lee, J.C.; Kim, H.R.; Song, S.; Kwon, H.; Ji, W.; Choi, C.M. Mobile Phone App–Based Pulmonary Rehabilitation for Chemotherapy-Treated Patients with Advanced Lung Cancer: Pilot Study. JMIR mHealth uHealth 2019, 7, e11094. [Google Scholar] [CrossRef]
- Pittara, M.; Matsangidou, M.; Pattichis, C.S. Virtual Reality for Pulmonary Rehabilitation: Comprehensive Review. JMIR Rehabil. Assist. Technol. 2023, 10, e47114. [Google Scholar] [CrossRef]
- Hoffman, A.J.; Brintnall, R.A.; Brown, J.K.; von Eye, A.; Jones, L.W.; Alderink, G.; Ritz-Holland, D.; Enter, M.; Patzelt, L.H.; VanOtteren, G.M. Virtual Reality Bringing a New Reality to Postthoracotomy Lung Cancer Patients Via a Home-Based Exercise Intervention Targeting Fatigue While Undergoing Adjuvant Treatment. Cancer Nurs. 2014, 37, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Patsaki, I.; Avgeri, V.; Rigoulia, T.; Zekis, T.; Koumantakis, G.A.; Grammatopoulou, E. Benefits from Incorporating Virtual Reality in Pulmonary Rehabilitation of COPD Patients: A Systematic Review and Meta-Analysis. Adv. Respir. Med. 2023, 91, 324–336. [Google Scholar] [CrossRef] [PubMed]
Reference | Study Type | Duration of Intervention/Assessment | Intervention Description | Primary Outcomes | Secondary Outcomes | Benefits of Intervention |
---|---|---|---|---|---|---|
Preoperative setting | ||||||
Goldsmith 2020 et al. [43] | Prospective cohort | 2–4 weeks | Exercise training, breathing retraining, inspiratory muscle training, education, bronchodilator treatment if required | MRC dyspnea score, performance status, level of activity, 6MWT, frailty index | Postoperative length of hospital stay, complications, and mortality, DLCO, FEV1 | Improvement in dyspnea score (p = 0.00002), 6MWT (p = 0.04), performance status (p = 0.003), level of activity (p < 0.00001), and frailty index (p = 0.0006) |
Cesario 2007 et al. [44] | Pilot clinical trial | 4 weeks | Exercise training, breathing retraining, inspiratory muscle training education | 6MWT, FVC, FEV1, PaO2 | - | Improvement in FVC (p < 0.01), FEV1 (p < 0.05), 6MWT (p < 0.05), PaO2 (p < 0.01) |
Pehlivan 2019 et al. [45] | Prospective observational | 2 weeks | Exercise training, breathing retraining, inspiratory muscle training | FEV1, FVC, mMRC dyspnea score, 6MWT, maximal inspiratory and expiratory pressures for respiratory muscle strength, VO2 max | - | Improvement in 6MWT (p < 0.001), dyspnea (p < 0.001), maximal inspiratory pressure (p < 0.001), FVC (p < 0.001), FEV1 (p = 0.001), and VO2 max (p < 0.001) |
Lai 2007 et al. [46] | Randomized controlled trial | 1 week | Exercise training, inspiratory muscle training | 6MWT, PEF, quality of life | Postoperative pulmonary complications, postoperative length of stay, total hospital stay | Improved 6MWT (p = 0.029) and PEF (p < 0.001), decreased postoperative length of stay (p = 0.010), total hospital stay (p = 0.012), and postoperative pulmonary complication (p = 0.037) |
Saito 2021 et al. [47] | Retrospective cohort | 2–4 weeks | Exercise training, inspiratory muscle training | Postoperative complications | Length of hospital stay, duration of intercostal catheterization | Reduced postoperative complication (p = 0.04) |
Bobbio 2008 et al. [42] | Prospective observational | 4 weeks | Exercise training, breathing retraining | FEV1, TLC, DLCO, VO2 max | Workload, oxygen pulse, minute ventilation, breathing reserve, VE/VCO2 | Improvement in VO2 max (p < 0.01) |
Mujovic 2014 et al. [48] | Prospective observational | 2–4 weeks | Exercise training, inspiratory muscle training, education, bronchodilator treatment | 6MWT, FEV1, VLC, FEF50 | Borg dyspnea scale, hospital length of stay, perioperative complications | Improvements in FEV1 (p < 0.001), VLC (p < 0.001), FEF50 (p = 0.003), 6MWT (p = 0.001) |
Liu 2020 et al. [49] | Randomized controlled trial | 2 weeks | Exercise training, inspiratory muscle training, nutritional counseling, education | 6MWT | PF, length of stay, disability and psychological assessment, short-term recovery quality, PPC, mortality | Improvements in 6MWT (p < 0.001), FVC (p = 0.21) |
Postoperative setting | ||||||
Tao 2024 et al. [50] | Randomized controlled trial | 3 months | Exercise training, breathing retraining, inspiratory muscle training | FVC, FEV1, MVV, PEF | 6MWT, dyspnea index, MOT, length of hospital stay, postoperative pulmonary infections | Improvements in FVC (p < 0.05), FEV1 (p < 0.05), MVV (p < 0.05), PEF (p < 0.05), 6MWT (p < 0.05), dyspnea index (p < 0.05) |
Niu 2024 et al. [51] | Retrospective cohort | 2–3 weeks | Exercise training, breathing retraining, inspiratory muscle training, education | FEV1, FVC, FEV1/FV, MIP, MEP, cardiopulmonary exercise testing | Cardiac performance assessment, health-related quality of life assessment, muscle measurements | Improvements in FEV1 (p < 0.001), FVC (p < 0.001), FEV1/FVC (p < 0.001), CI (p < 0.001), WR (p = 0.017), CAT scores (p < 0.001) |
Riesenberg 2010 et al. [52] | Prospective observational | 28 days | Exercise training | FEV1, FVC, 6MWT, work performance via bicycle ergometry | EORTC QLQ-C30, SF-36, MFI-20, HRV | Improvements in work performance (p < 0.001), 6MWT (p < 0.001), QoL (p < 0.001), and fatigue (p < 0.001) |
Klimczak 2021 et al. [53] | Retrospective cohort | 3 weeks | Exercise training, breathing retraining, education, psychological support, nutritional consulting | FEV1, FVC, 6MWT, SGRQ | - | Improvements in 6MWT (p < 0.001), SGRQ (p < 0.01) |
Wang 2023 et al. [54] | Randomized controlled trial | 6 months | Cognitive behavioral stress management in addition to usual care | HADS, EORTC QLQ-C30 | - | Improvements in HADS depression score (p = 0.035), HADS anxiety score (p = 0.018), and EORTC QLQ-C30 (p < 0.05) |
Sterzi 2013 et al. [55] | Prospective observational | 3 weeks | Postoperative PR | FEV1, FVC, FEF25–75%, pH, O2, CO2, 6MWT | - | Improvement in 6MWT |
Preoperative and postoperative settings | ||||||
Ichikawa 2022 et al. [56] | Retrospective observational | 1 and 3 months | Exercise training | FEV1, FVC, MIP, MEP, 6MWT | QF, mMRC dyspnea scale | Improvements in 6MWT (p < 0.05), MIP (p < 0.05), MEP (p < 0.05), mMRC dyspnea scale (p < 0.05) |
Zheng 2023 et al. [57] | Randomized controlled trial | 2 weeks | Exercise training, breathing retraining, education | Incidence of PPC | Occurrence of specific complications, time to removal of chest drain, length of hospital stay | Improvements in incidence of PPC (p = 0.002) |
Li 2024 et al. [58] | Randomized controlled trial | 12 weeks | Exercise training, breathing retraining, nutritional support program | FACT-L | PF, 6MWT, BMI, serum total protein, albumin, hemoglobin, incidence of PPC, length of hospital stay, hospitalization costs | Improvements in FACT-L (p < 0.001), PF (p < 0.001), 6MWT (p < 0.001), BMI (p < 0.001), serum total protein (p < 0.001), albumin (p < 0.001), hemoglobin (p < 0.001), incidence of PPC (p < 0.05), length of hospital stay (p < 0.001), hospitalization costs (p < 0.001) |
Huang 2018 et al. [59] | Randomized controlled trial | 3 months | Inspiratory muscle training, education, self-efficacy enhancing intervention based on motivational interviewing | Feasibility (assessed via rates of recruitment, adherence, and retention), and acceptability (assessed with a five-point Likert scale and semi-structure interview) | SESPRM-LC, HADS, social support, subjective well-being, coping styles, posttraumatic growth inventory, BODE index, PF | Improvements in SESPRM-LC, confrontational coping, and social support |
Morano 2014 et al. [60] | Randomized controlled trial | 4 weeks | Exercise training, inspiratory muscle training, education, nutrition counseling | Serum fibrinogen, serum albumin, PF | 6MWT, SF-36, HADS | Improvements in serum fibrinogen (p < 0.0001), HADS depression score (p = 0.02), HADS anxiety score (p = 0.002), physical component of SF-36 (p = 0.07) |
Choi 2021 et al. [33] | Retrospective cohort | 3 weeks | Exercise training, breathing retraining, inspiratory muscle training, education | PF, muscle loss via CT imaging | Major postoperative complications | Improvements in FEV1 (p = 0.001), better preserved Hounsfield units of erector spinae muscle (p = 0.001), muscle loss (p = 0.003), decrease in the incidence of embolic events (p = 0.044) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, J.; Trinh, I.; Raju, S.; Hsu, M. Pulmonary Rehabilitation in Patients with Operable Non-Small Cell Lung Cancer. J. Clin. Med. 2025, 14, 770. https://doi.org/10.3390/jcm14030770
Zhong J, Trinh I, Raju S, Hsu M. Pulmonary Rehabilitation in Patients with Operable Non-Small Cell Lung Cancer. Journal of Clinical Medicine. 2025; 14(3):770. https://doi.org/10.3390/jcm14030770
Chicago/Turabian StyleZhong, Jeffrey, Ilene Trinh, Shine Raju, and Melinda Hsu. 2025. "Pulmonary Rehabilitation in Patients with Operable Non-Small Cell Lung Cancer" Journal of Clinical Medicine 14, no. 3: 770. https://doi.org/10.3390/jcm14030770
APA StyleZhong, J., Trinh, I., Raju, S., & Hsu, M. (2025). Pulmonary Rehabilitation in Patients with Operable Non-Small Cell Lung Cancer. Journal of Clinical Medicine, 14(3), 770. https://doi.org/10.3390/jcm14030770