Exploring Hypercoagulability in Post-COVID Syndrome (PCS): An Attempt at Unraveling the Endothelial Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
- Symptom onset within three months following a suspected or confirmed SARS-CoV-2 infection.
- Symptoms lasting for at least two months.
- No other condition that could account for the symptoms.
2.1. Laboratory Tests
2.2. Brain Imaging
2.3. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Thrombin Generations Tests (TGTs)
3.3. Endothelial Markers: VWF(Ag) and ADAMTS-13 Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernandez-de-Las-Peñas, C.; Notarte, K.I.; Macasaet, R.; Velasco, J.V.; Catahay, J.A.; Ver, A.T.; Chung, W.; Valera-Calero, J.A.; Navarro-Santana, M. Persistence of post-COVID symptoms in the general population two years after SARS-CoV-2 infection: A systematic review and meta-analysis. J. Infect. 2024, 88, 77–88. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 Long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef] [PubMed]
- Buffart, B.; Demulder, A.; Fangazio, M.; Rozen, L. Global Hemostasis Potential in COVID-19 Positive Patients Performed on St-Genesia Show Hypercoagulable State. J. Clin. Med. 2022, 11, 7255. [Google Scholar] [CrossRef] [PubMed]
- Abou-Ismail, M.Y.; Diamond, A.; Kapoor, S.; Arafah, Y.; Nayak, L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb. Res. 2020, 194, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Mancini, I.; Baronciani, L.; Artoni, A.; Colpani, P.; Biganzoli, M.; Cozzi, G.; Novembrino, C.; Anzoletti, M.B.; De Zan, V.; Pagliari, M.T.; et al. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J. Thromb. Haemost. 2021, 19, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.; Khan, M.A.; Putrino, D.; Woodcock, A.; Kell, D.B.; Pretorius, E. Long COVID: Pathophysiological factors and abnormalities of coagulation. Trends Endocrinol. Metab. 2023, 34, 321–344. [Google Scholar] [CrossRef] [PubMed]
- Wichmann, D.; Sperhake, J.P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S.; et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann. Intern. Med. 2020, 173, 268–277. [Google Scholar] [CrossRef]
- Scheim, D.E.; Vottero, P.; Santin, A.D.; Hirsh, A.G. Sialylated Glycan Bindings from SARS-CoV-2 Spike Protein to Blood and Endothelial Cells Govern the Severe Morbidities of COVID-19. Int. J. Mol. Sci. 2023, 24, 17039. [Google Scholar] [CrossRef]
- Grobler, C.; Maphumulo, S.C.; Grobbelaar, L.M.; Bredenkamp, J.C.; Laubscher, G.J.; Lourens, P.J.; Steenkamp, J.; Kell, D.B.; Pretorius, E. Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int. J. Mol. Sci. 2020, 21, 5168. [Google Scholar] [CrossRef] [PubMed]
- Conway, E.M.; Mackman, N.; Warren, R.Q.; Wolberg, A.S.; Mosnier, L.O.; Campbell, R.A.; Gralinski, L.E.; Rondina, M.T.; van de Veerdonk, F.L.; Hoffmeister, K.M.; et al. Understanding COVID-19-associated coagulopathy. Nat. Rev. Immunol. 2022, 22, 639–649. [Google Scholar] [CrossRef]
- Modi Omasombo, N.; Demulder, A.; Rozen, L. Evaluation of the analyzer ST Genesia. Ann. Biol. Clin. 2022, 80, 148–155. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Pasalic, L. An Overview of Laboratory Testing for ADAMTS13. Methods Mol. Biol. 2023, 2663, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Heightman, M.; Prashar, J.; Hillman, T.E.; Marks, M.; Livingston, R.; Ridsdale, H.A.; Roy, K.; Bell, R.; Zandi, M.; McNamara, P.; et al. Post-COVID-19 assessment in a specialist clinical service: A 12-month, single-centre, prospective study in 1325 individuals. BMJ Open Respir. Res. 2021, 8, e001041. [Google Scholar] [CrossRef]
- Townsend, L.; Dyer, A.H.; Jones, K.; Dunne, J.; Mooney, A.; Gaffney, F.; O’Connor, L.; Leavy, D.; O’Brien, K.; Dowds, J.; et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 2020, 15, e0240784. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Fogarty, H.; Dyer, A.; Martin-Loeches, I.; Bannan, C.; Nadarajan, P.; Bergin, C.; O’farrelly, C.; Conlon, N.; Bourke, N.M.; et al. Prolonged elevation of D-dimer levels in convalescent COVID-19 patients is independent of the acute phase response. J. Thromb. Haemost. 2021, 19, 1064–1070. [Google Scholar] [CrossRef]
- Stark, K.; Massberg, S. Interplay between inflammation and thrombosis in cardiovascular pathology. Nat. Rev. Cardiol. 2021, 18, 666–682. [Google Scholar] [CrossRef] [PubMed]
- Fogarty, H.; Townsend, L.; Morrin, H.; Ahmad, A.; Comerford, C.; Karampini, E.; Englert, H.; Byrne, M.; Bergin, C.; O’sullivan, J.M.; et al. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J. Thromb. Haemost. 2021, 19, 2546–2553. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J.; Henry, B.M.; Lippi, G. Increased VWF and Decreased ADAMTS-13 in COVID-19: Creating a Milieu for (Micro)Thrombosis. Semin. Thromb. Hemost. 2021, 47, 400–418. [Google Scholar] [CrossRef] [PubMed]
- Madeeva, D.V.; Christian, J.; Goshua, G.; Chun, H.J.; Lee, A.I.; Pine, A.B. VWF/ADAMTS13 Ratios Are Potential Markers of Immunothrombotic Complications in Patients with COVID-19: A Cross-Sectional Study. Blood 2020, 136 (Suppl. 1), 34–35. [Google Scholar] [CrossRef]
- Ajčević, M.; Iscra, K.; Furlanis, G.; Michelutti, M.; Miladinović, A.; Stella, A.B.; Ukmar, M.; Cova, M.A.; Accardo, A.; Manganotti, P. Cerebral hypoperfusion in post-COVID-19 cognitively impaired subjects revealed by arterial spin labeling MRI. Sci. Rep. 2023, 13, 5808. [Google Scholar] [CrossRef]
- Prasannan, N.; Heightman, M.; Hillman, T.; Wall, E.; Bell, R.; Kessler, A.; Neave, L.; Doyle, A.; Devaraj, A.; Singh, D.; et al. Impaired exercise capacity in post-COVID-19 syndrome: The role of VWF-ADAMTS13 axis. Blood Adv. 2022, 6, 4041–4048. [Google Scholar] [CrossRef]
Acute COVID | PCS | ||
---|---|---|---|
Severe | Non-Severe | ||
Patients analyzed | 8 | 15 | 97 |
Age | 48–74 | 46–71 | 22–80 |
Median age | 50 | 53 | 48 |
Male—n (%) | 3 (37.5) | 7 (46.7) | 21 (21.6) |
Healthy Subjects (n = 81) | Severe (n = 8) | Non-Severe (n = 15) | PCS (n = 97) | Kruskal–Wallis Test p Value | Dunn’s Post Hoc Test | |||
---|---|---|---|---|---|---|---|---|
PCS vs. Healthy Subjects | PCS vs. Acute COVID | |||||||
Severe | Non- Severe | |||||||
Without TM | ||||||||
Lag time (min) | 1.3 | 1.3 | 1.3 | 1.1 | <0.001 | *** | NS | NS |
(1.1–1.5) | (1.1–1.5) | (0.99–1.6) | (1.0–1.3) | |||||
Peak height (nM) | 88 | 133 | 124 | 95 | <0.001 | NS | * | NS |
(66–113) | (129–170) | (100–137) | (79–127) | |||||
Time to peak (min) | 1.3 | 1.1 | 1.1 | 1.2 | 0.067 | NS | NS | NS |
(1.1–1.5) | (1.0–1.2) | (0.87–1.5) | (1.1–1.4) | |||||
ETP (nM.min) | 102 | 109 | 105 | 105 | 0.191 | NS | NS | NS |
(82–114) | (102–128) | (83–122) | (91–121) | |||||
Velocity index (nM/min) | 78 | 173 | 122 | 82 | <0.001 | NS | ** | NS |
(51–111) | (124–229) | (88–169) | (61–121) | |||||
With TM | ||||||||
Lag time (min) | 3 | 2.7 | 2.8 | 2.7 | 0.005 | ** | NS | NS |
(2.7–3.5) | (2.3–3.2) | (2.3–3.5) | (2.4–3.0) | |||||
Peak height (nM) | 143 | 307 | 173 | 166 | 0.002 | NS | * | NS |
(99–210) | (230–341) | (139–225) | (120–232) | |||||
Time to peak (min) | 5.3 | 4.7 | 4.8 | 5.1 | 0.090 | NS | NS | NS |
(4.7–6.0) | (4.1–5.2) | (3.9–6.1) | (4.6–5.5) | |||||
ETP (nM.min) | 695 | 1274 | 831 | 866 | <0.001 | * | NS | NS |
(490–1006) | (1064–1583) | (578–932) | (604–1131) | |||||
ETP inhibition (%) | 49 | 16 | 43 | 39 | <0.001 | ** | NS | NS |
(34–60) | (7.6–39) | (33–68) | (25–50) | |||||
Velocity index (nM/min) | 85 | 222 | 126 | 92 | <0.001 | NS | ** | NS |
(54–136) | (143–246) | (84–185) | (60–138) |
Normal Range | Median (IQR) | |
---|---|---|
VWF(Ag) | 50–150 IU/dL | 98 (77–127) |
ADAMTS-13 activity | 50–150 IU/dL | 105 (97–112) |
VWF(Ag)/ADAMTS13 ratio | ~1 | 0.91 (0.73–1.3) |
VWF(Ag)/ADAMTS13 Ratio | Mann–Whitney Test | ||
---|---|---|---|
<1.5 n = 86 | ≥1.5 n = 11 | ||
Age (years) | 47 | 54 | p < 0.005 |
BMI (kg/m2) | 26 | 29.7 | NS |
Without thrombomodulin | |||
Peak height (nM) | 200.9 | 239.5 | NS |
ETP (nM/min) | 1388 | 1471 | NS |
With thrombomodulin | |||
Peak height (nM) | 163.1 | 172 | NS |
ETP (nM/min) | 862.8 | 1051 | NS |
ETP inhibition (%) | 39.39 | 36.91 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muys, M.; Demulder, A.; Besse-Hammer, T.; Ghorra, N.; Rozen, L. Exploring Hypercoagulability in Post-COVID Syndrome (PCS): An Attempt at Unraveling the Endothelial Dysfunction. J. Clin. Med. 2025, 14, 789. https://doi.org/10.3390/jcm14030789
Muys M, Demulder A, Besse-Hammer T, Ghorra N, Rozen L. Exploring Hypercoagulability in Post-COVID Syndrome (PCS): An Attempt at Unraveling the Endothelial Dysfunction. Journal of Clinical Medicine. 2025; 14(3):789. https://doi.org/10.3390/jcm14030789
Chicago/Turabian StyleMuys, Maxim, Anne Demulder, Tatiana Besse-Hammer, Nathalie Ghorra, and Laurence Rozen. 2025. "Exploring Hypercoagulability in Post-COVID Syndrome (PCS): An Attempt at Unraveling the Endothelial Dysfunction" Journal of Clinical Medicine 14, no. 3: 789. https://doi.org/10.3390/jcm14030789
APA StyleMuys, M., Demulder, A., Besse-Hammer, T., Ghorra, N., & Rozen, L. (2025). Exploring Hypercoagulability in Post-COVID Syndrome (PCS): An Attempt at Unraveling the Endothelial Dysfunction. Journal of Clinical Medicine, 14(3), 789. https://doi.org/10.3390/jcm14030789