Machine Learning in Pediatric Healthcare: Current Trends, Challenges, and Future Directions
Abstract
:1. Introduction
2. Review Methodology
3. Current Applications of Machine Learning in Pediatrics
4. Trends and Common Techniques
5. Challenges and Limitations
6. Opportunities and Future Directions
7. Glossary
- Artificial intelligence (AI): A branch of computer science focused on creating systems capable of tasks that typically require human intelligence, such as decision-making and problem-solving.
- Machine learning (ML): A subset of AI that uses algorithms to identify patterns in data and improve performance on specific tasks without explicit programming.
- Convolutional neural network (CNN): A type of deep learning model particularly suited to analyzing visual data, such as medical images.
- Decision tree: A simple, interpretable model that splits data into branches based on feature values for classification or regression tasks.
- Random forest: An ensemble learning technique that uses multiple decision trees to make predictions, improving accuracy and reducing overfitting.
- Gradient boosting: A machine learning method in which models are built sequentially, with each one correcting the errors of the previous, often used for predictive tasks.
- Support vector machine (SVM): A supervised learning algorithm that classifies data by finding the best boundary (or hyperplane) between classes.
- Explainable AI (XAI): A set of tools and techniques to make the predictions and workings of machine learning models interpretable to clinicians and stakeholders.
- Electronic health records (EHRs): Digital records of patients’ medical histories, treatment plans, test results, and other healthcare information.
- Neural networks: A type of machine learning model inspired by the human brain, consisting of layers of interconnected nodes (neurons) that process data.
- Black-box models: Machine learning models, such as deep learning, whose internal processes are not transparent or easily interpretable.
- Bias (in machine learning): Systematic errors in models caused by non-representative or imbalanced datasets, potentially leading to unfair outcomes.
- Federated learning: A technique allowing multiple institutions to train machine learning models collaboratively without sharing sensitive raw data.
Supplementary Materials
Funding
Conflicts of Interest
References
- Baloglu, O.; Latifi, S.Q.; Nazha, A. What is machine learning? Arch. Dis. Child. Educ. Pract. Ed. 2022, 107, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Okwor, I.A.; Hitch, G.; Hakkim, S.; Akbar, S.; Sookhoo, D.; Kainesie, J. Digital Technologies Impact on Healthcare Delivery: A Systematic Review of Artificial Intelligence (AI) and Machine-Learning (ML) Adoption, Challenges, and Opportunities. AI 2024, 5, 1918–1941. [Google Scholar] [CrossRef]
- Bekbolatova, M.; Mayer, J.; Ong, C.W.; Toma, M. Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives. Healthcare 2024, 12, 125. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klassen, T.P.; Hartling, L.; Craig, J.C.; Offringa, M. Children are not just small adults: The urgent need for high-quality trial evidence in children. PLoS Med. 2008, 5, e172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Narita, R.E. Consumption of Healthcare Services in the United States: The Impact of Health Insurance. J. Risk Financ. Manag. 2023, 16, 277. [Google Scholar] [CrossRef]
- Martin, B.; Kaminski-Ozturk, N.; O’Hara, C.; Smiley, R. Examining the Impact of the COVID-19 Pandemic on Burnout and Stress Among U.S. Nurses. J. Nurs. Regul. 2023, 14, 4–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, F.; Ahimaz, P.; Nguyen, Q.M.; Lewis, R.; Chung, W.K.; Ta, C.N.; Szigety, K.M.; Sheppard, S.E.; Campbell, I.M.; Wang, K.; et al. Phenotype driven molecular genetic test recommendation for diagnosing pediatric rare disorders. NPJ Digit. Med. 2024, 7, 333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zarinabad, N.; Abernethy, L.J.; Avula, S.; Davies, N.P.; Gutierrez, D.R.; Jaspan, T.; MacPherson, L.; Mitra, D.; Rose, H.E.; Wilson, M.; et al. Application of pattern recognition techniques for classification of pediatric brain tumors by in vivo, 3.T. Magn. Reson. Med. 2018, 79, 2359–2366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jang, S.; Yu, J.; Park, S.; Lim, H.; Koh, H.; Park, Y.R. Development of Time-Aggregated Machine Learning Model for Relapse Prediction in Pediatric Crohn’s Disease. Clin. Transl. Gastroenterol. 2024, 16, e00794. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Strobl, R.; Berner, R.; Armann, J.; Scheithauer, S.; Grill, E. Six clinical phenotypes with prognostic implications were identified by unsupervised machine learning in children and adolescents with SARS-CoV-2 infection: Results from a German nationwide registry. Respir. Res. 2024, 25, 392. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, G.; Stone, B.L.; Fassl, B.; Maloney, C.G.; Gesteland, P.H.; Yerram, S.R.; Nkoy, F.L. Predicting asthma control deterioration in children. BMC Med. Inform. Decis. Mak. 2015, 15, 84. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chadaga, K.; Khanna, V.; Prabhu, S.; Sampathila, N.; Chadaga, R.; Umakanth, S.; Bhat, D.; Swathi, K.S.; Kamath, R. An interpretable and transparent machine learning framework for appendicitis detection in pediatric patients. Sci. Rep. 2024, 14, 24454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marassi, C.; Socia, D.; Larie, D.; An, G.; Cockrell, R.C. Children are small adults (when properly normalized): Transferrable/generalizable sepsis prediction. Surg. Open Sci. 2023, 16, 77–81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, R.; Greenstein, J.L.; Fackler, J.C.; Bergmann, J.; Bembea, M.M.; Winslow, R.L. Prediction of Impending Septic Shock in Children with Sepsis. Crit. Care Explor. 2021, 3, e0442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, Y.; Jin, L.; Li, X. Differential diagnosis of pediatric cervical lymph node lesions based on simple clinical features. Eur. J. Pediatr. 2024, 183, 4929–4938. [Google Scholar] [CrossRef] [PubMed]
- Zamzmi, G.; Venkatesh, K.; Nelson, B.; Prathapan, S.; Yi, P.; Sahiner, B.; Delfino, J.G. Out-of-Distribution Detection and Radiological Data Monitoring Using Statistical Process Control. J. Imaging Inform. Med. 2024; Epub ahead of printing. [Google Scholar] [CrossRef] [PubMed]
- Mumenin, K.M.; Biswas, P.; Khan, M.A.; Alammary, A.S.; Nahid, A.A. A Modified Aquila-Based Optimized XGBoost Framework for Detecting Probable Seizure Status in Neonates. Sensors 2023, 23, 7037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hunfeld, M.; Verboom, M.; Josemans, S.; van Ravensberg, A.; Straver, D.; Lückerath, F.; Jongbloed, G.; Buysse, C.; Berg, R.v.D. Prediction of Survival After Pediatric Cardiac Arrest Using Quantitative EEG and Machine Learning Techniques. Neurology 2024, 103, e210043. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, Y. Identification of Pediatric Bacterial Gastroenteritis From Blood Counts and Interviews Based on Machine Learning. Cureus 2023, 15, e43644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tong, L.; Kauer, J.; Chen, X.; Chu, K.; Dou, H.; Smith, Z.J. Screening of nutritional and genetic anemias using elastic light scattering. Lab Chip 2018, 18, 3263–3271. [Google Scholar] [CrossRef] [PubMed]
- Hegde, N.; Zhang, T.; Uswatte, G.; Taub, E.; Barman, J.; McKay, S.; Taylor, A.; Morris, D.M.; Griffin, A.; Sazonov, E.S. The Pediatric SmartShoe: Wearable Sensor System for Ambulatory Monitoring of Physical Activity and Gait. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.D.; Ferro, D.; Mullaney, C.; Skrabonja, L.; Barnes, M.S.; Patton, S.R.; Lockee, B.; Tallon, E.M.; A Vandervelden, C.; Schweisberger, C.; et al. An “All-Data-on-Hand” Deep Learning Model to Predict Hospitalization for Diabetic Ketoacidosis in Youth with Type 1 Diabetes: Development and Validation Study. JMIR Diabetes 2023, 8, e47592. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Meslamani, A.Z. How AI is advancing asthma management? Insights into economic and clinical aspects. J. Med. Econ. 2023, 26, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Kifle, N.; Teti, S.; Ning, B.; Donoho, D.A.; Katz, I.; Keating, R.; Cha, R.J. Pediatric Brain Tissue Segmentation Using a Snapshot Hyperspectral Imaging (sHSI) Camera and Machine Learning Classifier. Bioengineering 2023, 10, 1190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adamson, P.M.; Bhattbhatt, V.; Principi, S.; Beriwal, S.; Strain, L.S.; Offe, M.; Wang, A.S.; Vo, N.; Schmidt, T.G.; Jordan, P. Technical note: Evaluation of a V-Net autosegmentation algorithm for pediatric CT scans: Performance, generalizability, and application to patient-specific CT dosimetry. Med. Phys. 2022, 49, 2342–2354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deoni, S.C.L.; Bruchhage, M.M.K.; Beauchemin, J.; Volpe, A.; D’Sa, V.; Huentelman, M.; Williams, S.C. Accessible pediatric neuroimaging using a low field strength MRI scanner. Neuroimage 2021, 238, 118273. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, H.A.; Latifi, S.Q.; Baloglu, O. Pediatric Intensive Care Unit Length of Stay Prediction by Machine Learning. Bioengineering 2024, 11, 962. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mocrii, A.A.; Chirila, O.S. AI-Assisted Application for Pediatric Drug Dosing. Stud. Health Technol. Inform. 2024, 321, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Pembegul Yildiz, E.; Coskun, O.; Kurekci, F.; Maras Genc, H.; Ozaltin, O. Machine learning models for predicting treatment response in infantile epilepsies. Epilepsy Behav. 2024, 160, 110075. [Google Scholar] [CrossRef] [PubMed]
- Bokov, P.; Mahut, B.; Flaud, P.; Delclaux, C. Wheezing recognition algorithm using recordings of respiratory sounds at the mouth in a pediatric population. Comput. Biol. Med. 2016, 70, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Dave, D.; DeSalvo, D.J.; Haridas, B.; McKay, S.; Shenoy, A.; Koh, C.J.; Lawley, M.; Erraguntla, M. Feature-Based Machine Learning Model for Real-Time Hypoglycemia Prediction. J. Diabetes Sci. Technol. 2021, 15, 842–855. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hattab, Z.; Moler-Zapata, S.; Doherty, E.; Sadique, Z.; Ramnarayan, P.; O’Neill, S. Exploring Heterogeneity in the Cost-Effectiveness of High-Flow Nasal Cannula Therapy in Acutely Ill Children-Insights From the Step-Up First-line Support for Assistance in Breathing in Children Trial Using a Machine Learning Method. Value Health 2024, 28, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Q.; Wang, R.Q.; Wu, L.Q.; Chen, D.M. Transfer learning-enabled outcome prediction for guiding CRRT treatment of the pediatric patients with sepsis. BMC Med. Inform. Decis. Mak. 2024, 24, 266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chollet, F. Deep Learning with Python, 2nd ed.; Manning Publications Co.: Shelter Island, NY, USA, 2021. [Google Scholar]
- Liu, G.; Poon, M.; Zapala, M.A.; Temple, W.C.; Vo, K.T.; Matthay, K.K.; Mitra, D.; Seo, Y. Incorporating Radiomics into Machine Learning Models to Predict Outcomes of Neuroblastoma. J. Digit. Imaging 2022, 35, 605–612. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Namdar, K.; Wagner, M.W.; Kudus, K.; Hawkins, C.; Tabori, U.; Ertl-Wagner, B.B.; Khalvati, F. Improving Deep Learning Models for Pediatric Low-Grade Glioma Tumours Molecular Subtype Identification Using MRI-based 3D Probability Distributions of Tumour Location. Can. Assoc. Radiol. J. 2024; Epub ahead of printing. [Google Scholar] [CrossRef] [PubMed]
- Wen, R.; Xu, P.; Cai, Y.; Wang, F.; Li, M.; Zeng, X.; Liu, C. A Deep Learning Model for the Diagnosis and Discrimination of Gram-Positive and Gram-Negative Bacterial Pneumonia for Children Using Chest Radiography Images and Clinical Information. Infect. Drug Resist. 2023, 16, 4083–4092. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xin, K.Z.; Li, D.; Yi, P.H. Limited generalizability of deep learning algorithm for pediatric pneumonia classification on external data. Emerg. Radiol. 2022, 29, 107–113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Habib, N.; Hasan, M.M.; Reza, M.M.; Rahman, M.M. Ensemble of CheXNet and VGG-19 Feature Extractor with Random Forest Classifier for Pediatric Pneumonia Detection. SN Comput. Sci. 2020, 1, 359. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ghomrawi, H.M.K.; O’Brien, M.K.; Carter, M.; Macaluso, R.; Khazanchi, R.; Fanton, M.; DeBoer, C.; Linton, S.C.; Zeineddin, S.; Pitt, J.B.; et al. Applying machine learning to consumer wearable data for the early detection of complications after pediatric appendectomy. NPJ Digit. Med. 2023, 6, 148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Onorati, F.; Regalia, G.; Caborni, C.; LaFrance, W.C.; Blum, A.S.; Bidwell, J.; De Liso, P.; El Atrache, R.; Loddenkemper, T.; Mohammadpour-Touserkani, F.; et al. Prospective Study of a Multimodal Convulsive Seizure Detection Wearable System on Pediatric and Adult Patients in the Epilepsy Monitoring Unit. Front. Neurol. 2021, 12, 724904. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garbern, S.C.; Mamun, G.M.S.; Shaima, S.N.; Hakim, N.; Wegerich, S.; Alla, S.; Sarmin, M.; Afroze, F.; Sekaric, J.; Genisca, A.; et al. A novel digital health approach to improving global pediatric sepsis care in Bangladesh using wearable technology and machine learning. PLoS Digit. Health 2024, 3, e0000634. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lemmon, J.; Guo, L.L.; Steinberg, E.; Morse, K.E.; Fleming, S.L.; Aftandilian, C.; Pfohl, S.R.; Posada, J.D.; Shah, N.; Fries, J.; et al. Self-supervised machine learning using adult inpatient data produces effective models for pediatric clinical prediction tasks. J. Am. Med. Inform. Assoc. 2023, 30, 2004–2011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khondker, A.; Kwong, J.C.C.; Rickard, M.; Erdman, L.; Gabrielson, A.T.; Nguyen, D.D.; Kim, J.K.; Abbas, T.; Fernandez, N.; Fischer, K.; et al. AI-PEDURO-Artificial intelligence in pediatric urology: Protocol for a living scoping review and online repository. J. Pediatr. Urol. 2024; Epub ahead of printing. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Wang, H.; Wan, J.; Zhang, L.; Huang, J.; Shen, Y. Efficient federated learning for pediatric pneumonia on chest X-ray classification. Sci. Rep. 2024, 14, 23272. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rb-Silva, R.; Ribeiro, X.; Almeida, F.; Ameijeiras-Rodriguez, C.; Souza, J.; Conceição, L.; Taveira-Gomes, T.; Marreiros, G.; Freitas, A. Secur-e-Health Project: Towards Federated Learning for Smart Pediatric Care. In Caring is Sharing–Exploiting the Value in Data for Health and Innovation; Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherland, 2023; Volume 302, pp. 516–520. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, P.; Macias, C.; Barda, A.; Fung, C.M. Federated data health networks hold potential for accelerating emergency research. J. Am. Coll. Emerg. Physicians Open 2023, 4, e12968. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Girard, C.I.; Romanchuk, N.J.; Del Bel, M.J.; Carsen, S.; Chan, A.D.C.; Benoit, D.L. Classifiers of anterior cruciate ligament status in female and male adolescents using return-to-activity criteria. Knee Surg. Sports Traumatol. Arthrosc. 2024; Epub ahead of printing. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, T.; Zhou, Y.; Liu, T.; Feng, S.; Xiong, X.; Fan, J.; Liang, Q.; Cui, Y.; Zhang, Y. A host immune-related LncRNA and mRNA signature as a discriminant classifier for bacterial from non-bacterial sepsis in children. Heliyon 2024, 10, e38728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simonini, A.; Murugan, J.; Vittori, A.; Pallotto, R.; Bignami, E.G.; Calevo, M.G.; Piazza, O.; Cascella, M. Data-driven Machine Learning Models for Risk Stratification and Prediction of Emergence Delirium in Pediatric Patients Underwent Tonsillectomy/Adenotonsillectomy. Ann. Ital. Chir. 2024, 95, 944–955. [Google Scholar] [CrossRef] [PubMed]
- Arab, A.; Kashani, B.; Cordova-Delgado, M.; Scott, E.N.; Alemi, K.; Trueman, J.; Groeneweg, G.; Chang, W.-C.; Loucks, C.M.; Ross, C.J.; et al. Machine learning model identifies genetic predictors of cisplatin-induced ototoxicity in CERS6 and TLR4. Comput. Biol. Med. 2024, 183, 109324. [Google Scholar] [CrossRef] [PubMed]
- Elnoor, Z.I.A.; Abdelmajeed, O.; Mustafa, A.; Gasim, T.; Musa, S.A.M.; Abdelmoneim, A.H.; Omer, I.I.A.; Fadl, H.A.O. Hematological picture of pediatric Sudanese patients with visceral leishmaniasis and prediction of leishmania donovani parasite load. World J. Clin. Cases 2024, 12, 6374–6382. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gray, G.M.; Ahumada, L.M.; Rehman, M.A.; Varughese, A.; Fernandez, A.M.; Fackler, J.; Yates, H.M.; Habre, W.; Disma, N.; Lonsdale, H. A machine-learning approach for decision support and risk stratification of pediatric perioperative patients based on the APRICOT dataset. Paediatr. Anaesth. 2023, 33, 710–719. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reddy, S.; Fox, J.; Purohit, M.P. Artificial intelligence-enabled healthcare delivery. J. R. Soc. Med. 2019, 112, 22–28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef] [PubMed]
- Shortliffe, E.H.; Sepúlveda, M.J. Clinical Decision Support in the Era of Artificial Intelligence. JAMA 2018, 320, 2199–2200. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Huang, W.; Luo, Y.; Xiong, S.; Tang, Y.; Yang, G.; Luo, D.; Zhou, X.; Zhang, Z.; Liu, H. Utility of Loneliness Status to Risk Stratification and Prediction of Recurrent Atrial Fibrillation After Catheter Ablation. Adv. Ther. 2024; Epub ahead of printing. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Sim, J.A.; Wang, J.X.; Forrest, C.B.; Krull, K.R.; Srivastava, D.; Hudson, M.M.; Robison, L.L.; Baker, J.N.; Huang, I.-C. Natural Language Processing and Machine Learning Methods to Characterize Unstructured Patient-Reported Outcomes: Validation Study. J. Med. Internet Res. 2021, 23, e26777. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ying, J.; Wang, Q.; Xu, T.; Lu, Z. Diagnostic potential of a gradient boosting-based model for detecting pediatric sepsis. Genomics 2021, 113 Pt 2, 874–883. [Google Scholar] [CrossRef] [PubMed]
Count (Percentage) | |
---|---|
Pediatric Subspecialty | |
Radiology | 225 (19.1%) |
Genetics | 139 (11.8%) |
Infectious diseases | 105 (8.9%) |
Hematology/oncology | 104 (8.8%) |
Cardiology | 99 (8.4%) |
Surgery | 90 (7.6%) |
Neurology | 85 (7.2%) |
Gastroenterology/nutrition | 84 (7.1%) |
Respiratory/pulmonology | 67 (5.7%) |
Critical care | 34 (2.9%) |
Nephrology | 23 (2.0%) |
Administrative | 22 (1.9%) |
Endocrinology | 19 (1.6%) |
Psychiatry/mental health | 16 (1.4%) |
Neonatology | 16 (1.4%) |
Ophthalmology | 14 (1.2%) |
Orthopedic/musculoskeletal | 12 (1.0%) |
Multiple specialties | 10 (0.8%) |
Pharmacology | 4 (0.3%) |
Dentistry | 4 (0.3%) |
Obstetric/gynecology | 3 (0.3%) |
Emergency medicine | 2 (0.2%) |
Urology | 2 (0.2%) |
Theme | |
Prognostics | 833 (70.7%) |
Diagnostics | 767 (65.1%) |
Screening | 511 (43.3%) |
Treatment | 443 (37.6%) |
ML methods | 46 (3.9%) |
Algorithm | Primary Applications | Advantages | Challenges |
---|---|---|---|
Random forest | Predictive modeling, risk stratification | Robust, handles missing data well, interpretable. | May struggle with very high-dimensional data. |
Neural networks | Imaging (e.g., X-rays, MRIs), diagnostics | Excels in complex data analysis, capable of identifying intricate patterns in imaging data. | Requires large datasets, computationally intense. |
Support vector machines | Classification tasks | Effective with smaller datasets, performs well on high-dimensional data. | Limited scalability to large datasets. |
Gradient boosting | Risk prediction, regression analysis | High accuracy, can handle mixed data types. | Prone to overfitting if not properly tuned. |
Decision trees | Simple decision-making models | Easy to interpret, trains quickly on small datasets. | Prone to overfitting, low predictive power. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganatra, H.A. Machine Learning in Pediatric Healthcare: Current Trends, Challenges, and Future Directions. J. Clin. Med. 2025, 14, 807. https://doi.org/10.3390/jcm14030807
Ganatra HA. Machine Learning in Pediatric Healthcare: Current Trends, Challenges, and Future Directions. Journal of Clinical Medicine. 2025; 14(3):807. https://doi.org/10.3390/jcm14030807
Chicago/Turabian StyleGanatra, Hammad A. 2025. "Machine Learning in Pediatric Healthcare: Current Trends, Challenges, and Future Directions" Journal of Clinical Medicine 14, no. 3: 807. https://doi.org/10.3390/jcm14030807
APA StyleGanatra, H. A. (2025). Machine Learning in Pediatric Healthcare: Current Trends, Challenges, and Future Directions. Journal of Clinical Medicine, 14(3), 807. https://doi.org/10.3390/jcm14030807