Clinical and Biochemical Factors Associated with Infliximab Pharmacokinetics in Paediatric Patients with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Clinical Characteristics
2.3. IFX and Antibody-Towards-IFX (ATI) Level Analysis
2.4. Statistical Analysis
2.5. Literature Search
3. Results
3.1. Clinical Characteristics of Participants
3.2. Target Attainment
3.3. Associations Between Clinical and Biochemical Factors and IFX Serum Concentrations
4. Discussion
4.1. Albumin
4.2. Treatment Phase
4.3. IFX Dose
4.4. Other Covariates
4.5. CRP
4.6. Target Attainment
4.7. Limitations
4.8. Future Research
Author (year) [citation] | Drug | Administration | Study Design | N | Age and Weight | Disease State | Covariates | Magnitude of Influence of Covariates | Conclusion |
---|---|---|---|---|---|---|---|---|---|
Non-compartmental analysis | |||||||||
Vermiere et al. (2024) [52] | IFX | 1. STD 2. STD induction + start maintenance with PK and clinical outcome of induction 3. PRO | Three retrospective cohorts | 307 | a 16.7 (13–27) yrs a 54 (41–66) kg at INF 3 | CD, UC | IFX TL, ATI, ALB, WT | Logistic regression and Kaplan Meier analysis with hazard ratio calculation IFX TL above 15 μg/mL at third INF increased likeliness of having CRP-based clinical remission in maintenance phase. (OR = 2.5, 95% CI 1.2–4.2) (p < 0.01) IFX conc. above 10 μg/mL at fourth INF were significantly associated with higher rates of remission (HR = 1.5, 95% CI: 1.9–3.6) and shorter time to remission (clinical and biochemical) than IFX conc. Below 10 μg/mL (p < 0.01) Forecasted IFX conc. above 10 μg/mL at fourth INF in patients also resulted in 3.9-fold increased chance of sustained remission in maintenance phase. (OR = 3.9 95%, CI 2.3–6.5) (p < 0.01) | Analysing performances of PK dosing tool. Data indicates that forecasted IFX levels indicate suboptimal IFX levels could affect clinical outcome |
Dipsaquale et al. (2023) [53] | IFX | STD | Prospective cohort | 55 | c 10.6 ± 3.5 yrs WT: NR | CD, UC | Univariate and multivariate regression models Age at diagnosis was positively correlated to IFX TL (B = 1.950, 95% CI 0.019, 3.882) (p = 0.048) PCDAI/PUCAI negatively correlated to IFX TL at 4th INF (B = −0.401, CI −0.738, −0.064) (p = 0.023) Haemoglobin levels were positively correlated with IFX TLs at sixth INF (B = 1.853, 95% CI: 0.501–3.204) (p = 0.011) Presence of ATI correlated with lower IFX TL (p = 0.003) IFX TLs were not significantly associated with combined clinical and biochemical remission at fourth INF (OR = 0.01, 95%: 0.928–11.099) (p = 0.819) or sixth INF (OR = 0.017, 95%: 0.924–1.119) (p = 0.0732) | IFX dose/kg is positively correlated to IFX TL (p = 0.032) Concomitant treatment with other maintenance drugs resulted in higher TL in patients (p = 0.001) | |
Levy et al. (2023) [48] | IFX | STD | Retrospective cohort | 86 | IFX a 13.6 (11.8–15.7) yrs WT: NR | CD, UC | Dose and interval changes on TL | Generalized estimating equation Interval increase was negatively associated with IFX TL. For every 10% increase, TL decreased by 0.66 μg/mL (B = 0.66, 95% CI: 0.2–1.2) (p = 0.01) and for every 10% decrease in interval, TL increased by 1.6 μg/mL (B = 1.6, 95% CI: 0.9–2.4) (p = 0.01) Presence of perianal disease was negatively associated with increase in IFX TL and resulted in a median reduction of 2.5 μg/mL in TL after interval decrease. (OR = 2.4, 95% CI: 1.1–3.9) (p < 0.001) | Trough concentration response to IFX dose and interval changes are variable |
Dubinsky et al. (2023) [75] | IFX | 1. STD 2. PRO | 2 prospective cohort studies | 145 | Standard a 13 (10–14) yrs a 39.1 (29.5–52.9) kg Proactive a 13.5 (11–15) yrs a 41.5 (30.3–53.0) kg | CD | Treatment group (standard/proactive), predictive factor of pharmacokinetic origin (IFX conc and baseline clearance) | Lower baseline clearance and proactive dosing are associated with increased disease control during induction Higher IFX conc. and lower clearance during induction and first maintenance INF increased disease control in maintenance phase IFX conc. And clearance together are better predictors of therapeutic outcome than either alone | |
Dubinsky et al. (2022) [76] | IFX | INF 1 and 2 STD PRO from INF 3 | Prospective single arm intervention trial | 156 | 5 mg/kg a 14.1 (11.3–16.7) yrs a 44.5 (30.5–66.1) kg 10 mg/kg a 15.3 (12.6–18.1) yrs a 49.8 (39.5–63.1) kg | CD, UC | CRP, WT, ALB, IFX dose, IFX TL, ATI | ||
Salvador-Martin et al. (2021) [77] | IFX | 1. STD 2. Intensified dosing:
| Observational, cross-sectional cohort | 154 | a 12 (3–17.5) yrs WT: NR | CD, UC | DNA variants rs5030728 (TLR4) and rs11465996 (LY96) | Linear-by-linear association Fisher exact (univariate associations) rs5030728 (TLR4) and subtherapeutic IFX levels (OR = 3.434, 95% CI = 1.354–8.714) (p = 0.020) rs11465996 (LY96) and subtherapeutic IFX levels (OR= 0.241, 95% CI: 0.098–0.592) (p = 0.006) | DNA variant rs5030728 (TLR4) was positively associated with subtherapeutic IFX levels DNA variant rs11465996 (LY96) was negatively associated with subtherapeutic IFX levels |
Jongsma et al. (2020) [47] | IFX | STD | Retrospective case control study | 215 | <10 yrs: a 8.32 (6.95–8.93) yrs >10 yrs a 14.32 (12.79–15.6) yrs WT: NR | CD, UC, IBD-U | IFX dose and interval, ATI | Linear mixed model More intensive treatment regimen, accounted to shorter intervals and IFX TL (β = − 0.006, 95% CI: 0.010 − 0.001) (p = 0.011) ATI positivity and IFX TL (β = − 0.681; 95% CI: 0.446–0.914) (p < 0.001) | More intensive treatment regimen, accounted to shorter intervals was positively associated with IFX TL. ATI positivity was negatively associated with IFX TL. |
Moore et al. (2020) [62] | IFX | STD | Retrospective study | 90 | Severe UC b 13.6 (6.5–18.2) yrs Moderate UC b 14.9 (6.4–21.2) yrs WT: NR | UC | PUCAI ≥ 65 at start of IFX treatment and Time interval from the last IFX (days) | Spearman correlation coefficient PUCAI ≥ 65 at start of IFX treatment and IFX TL (β = −6.57, 95% CI −11.87 to −1.27) (p = 0.016) Time interval from the last IFX and IFX TL (β=−0.25, 95% CI: −0.45 to −0.05) (p = 0.0167) | PUCAI 65 at start of IFX treatment is negatively associated with IFX TL. Time interval from the last IFX is negatively associated with IFX TL. |
Choi et al. (2019) [46] | IFX | STD | Retrospective analysis | 103 | b 14 (13.3–17.5) yrs WT: NR | CD | ESR (cutoff value of 18 mm/hr) | Spearman correlation coefficient ESR and IFX TL during maintenance (spearman correlation coefficient, −0.11; p = 0.0005). | ESR is negatively associated with IFX TL. |
Clarkston et al. (2019) [27] | IFX | NR | Sub-analysis of the PROSE study | 72 | c 13.6 (4) yrs WT: NR | CD | prednisone, BMI, ESR, CRP, ALB, INF 2 IFX <29 ug/mL | Univariate regression analysis IFX conc. <29 μg/mL at INF 2 is associated with 13 times higher chance of clinical nonresponse (OR = 13.1, 95% CI: 2.4–246) (p = 0.016) Patients IFX conc. <18 μg/mL at INF 3 have a 6 times higher chance of developing clinical nonresponse (OR = 6.2, 95% CI: 1.5–4.2) (p = 0.024) Pre-IFX prednisone and biological non-response (OR = 3.9, 95% CI: 1.1–15.5) (p = 0.04) IFX conc <18 μg/mL at INF 3 is associated with biological nonresponse (OR = 11, 95% CI: 1.8–218) (p = 0.03) Pre-IFX prednisone is associated with IFX conc <29 μg/mL at INF 2 (OR = 4, 95% CI:1.3–13.1) (p = 0.018) BMI < 18 kg/m2 is associated with IFX conc. <29 μg/mL at INF 2 (OR = 4.9, 95% CI: 1.6–17.5) (p = 0.01) Use of pre-IFX prednisone is associated with IFX conc <18 μg/mL at INF 3 (OR = 4.8, 95% CI: 1.6–16) (p = 0.008) BMI < 18 kg/m2 before first IFX dose is associated with IFX conc < 18 μg/mL at INF 3 (OR = 3.6, 95%CI: 1.2–11.9) (p = 0.029) Pre-IFX ESR ≥ 20 mm/hr is associated with IFX <18 μg/mL at INF 3 (OR = 3.9, 95% CI: 1.1–15.9) (p = 0.04) CRP ≥ 0.5 mg/dL before first IFX dose is associated with IFX conc. <18 μg/mL at INF 3 (OR = 3.9, 95%CI: 1.1–15.4) (p = 0.04) ALB ≤ 3.5 g/dL before first IFX dose is associated with IFX conc. <18 μg/mL at INF 3 (OR = 5.4, 95%CI: 1.6–19.1) (p = 0.007) IFX conc. <29 μg/mL at INF 2 is associated with IFX conc. <18 μg/mL at INF 3 (OR = 17.8, 95%CI: 4.7–8) (p < 0.001) | |
Naviglio et al. (2019) [26] | IFX | STD | Observational Cohort Study | 49 | a 14.4 (11.6–16.2) yrs WT: NR | CD, UC | CRP, fCal | Multivariate logistic regression model and linear mixed effect model Patients who had IFX levels of 3.11 μg/mL at week 14 had a higher chance of achieving sustained remission at 54 weeks compared to patients with lower TL (OR = 32.0, 95% CI: 5.5–297.8) (p = 3 × 10−5) IFX TL are directly correlated to ALB levels (p = 0.0033) and inversely correlated with CRP (p = 0.0008) and fCal levels (p = 0.025). Patients with IFX TL <3.11 μg/mL had lower ALB (p = 0.03) and higher CRP (p = 3.6 × 10−5) and fCal (p = 0.0014) levels compared to patients who had higher IFX TL CRP (p = 0.0031) and fCal (p = 0.00017) levels at week 14 was also significantly associated with week 54 sustained remission. CRP levels were significantly associated with IFX TL <3 μg/mL in multivariate logistic regression (p = 0.0065) | |
Chi et al. (2018) [45] | IFX | STD (4 dose categories) | Cross-sectional analysis of prospective observational study | 223 | a 18.5 (4.4) yrs WT: NR | CD, UC, IBD-U | Combination therapy Age, sex, BMI, CRP, and IFX dose | Multi-linear regression model Patients currently on combination therapy had a higher IFX levels (17.00 ± 1.33 μg/mL) than those currently on IFX monotherapy (13.18 ± 1.26 μg/mL), IFX levels ≥3.5 μg/mL were associated with sustained response. 8.3% of patients on combination therapy had IFX levels <3.5 μg/mL compared to 27.3% of patients on monotherapy. (adjusted OR = 0.13, 95% CI: 0.04–0.39) (p = 0.01) There was a significantly lower risk of ATI in patients on combination therapy (9.5%) than in patients on monotherapy (20%) (OR = 0.3, 95% CI: 0.1–0.7) (p = 0.01) Patients with CRP levels >0.5 mg/dL had lower IFX levels (12.03 μg/mL) compared to patients with CRP ≤ 0.5 mg/dL (p = 0.03) Age was positively associated with IFX levels (B = 0.31, p = 0.04) | |
Ungar et al. (2018) [61] | IFX | STD | Retrospective Cohort study | 63 | a 14 (11.75–16) yrs WT: NR | CD, UC | PCDAI, PUCAI, HBI, CRP | Spearman correlation coefficient IFX TL negatively correlated with PCDAI (rho = −0.380, p < 0.0001) IFX TL negatively correlated with PUCAI (rho = −0.308, p = 0.0001) IFX TL negatively correlated with HBI (rho = −0.33, p < 0.0001) Patients in clinical remission had higher median IFX TLs (4 μg/mL) than patients with active disease (2.25 μg/mL) (p = 0.0001) Patients with normal CRP levels had higher median IFX TL (3.3 μg/mL) than patients with elevated CRP (2.7 μg/mL) (p = 0.02) | IFX TL have a negative correlation with PCDAI, PUCAI and HBI Normal CRP was positively associated with IFX TL than those with elevated CRP |
Ohem et al. (2017) [60] | IFX | Median dose/kg: 6.5 (5.2–8.3) mg | Prospective observational study | 65 | a 14 (11.4–16.4) yrs WT: NR | CD | ATI, CRP, ESR, CPT | Linear mixed model CRP (≤5 mg/L) and IFX level > 1.1 ug/mL (OR = 3.096, 95% CI: 1.394–6.874) (p = 0.005) ESR (≤200 mm/h) and IFX level > 2 ug/mL (OR = 2.872, 95% CI: 1.273–6.477) (p = 0.011) fCal (≤100 ug/g) and IFX level 3.5 ug/mL (OR = 3.333, 95% CI: 1.324–8.387) (p = 0.011) ATI (> 30 ng/mL) associated with IFX level (<30 ng/mL) (OR 0.027, 95% CI: 0.009–0.077) | CRP, ESR, ATI and fCal are negatively associated with IFX levels |
Rolandsdotter et al. (2017) [25] | IFX | Mean dose/kg: 6.4 ± 1.7 mg Mean interval: 44.8 ± 11.2 days | Retrospective cohort study | 45 | b 16 (7–18) yrs WT: NR | CD, UC | CRP, ESR, ALB, PUCAI and PCDAI | Linear Regression Mean IFX TL (7.2 μg/mL) higher in remission compared to TL in active disease (4.5 μg/mL) (p < 0.05) CRP levels negatively correlated with IFX TL (p = 0.0084, r2 = 0.0491) ESR negatively correlated with IFX TL (p = 0.0035, r2 = 0.1388) PUCAI and PCDAI negatively correlated with IFX TL (p = 0.0259, r2 = 0.0687) ALB positevely correlated with IFX levels (p = 0.0005, r2 = 0.2182). | CRP, ESR, PUCAI, PCAI were negatively correlated with IFX levels, while ALB was positively correlated with IFX level |
Minar et al. (2016) [78] | IFX | STD + TDM | Retrospective cohort | 75 | c 13 (4) yrs WT: NR | CD | IFX dose, IFX dosing frequency, ESR | Multiple Regression analysis ESR ≥ 15 mL/h was significantly associated with undetectable IFX TL (AUC = 0.70, 95% CI: 0.59–0.81) (p < 0.01) Undetectable IFX conc. associated with elevated serum biomarkers (ESR and albumin) (p < 0.01) Patients with undetectable IFX TL had significantly lower hematocrit comparted to patients with detectable IFX TL (p = 0.015) CRP, ALB, and platelet count preinduction were not associated with TDM outcomes in first year of therapy. | |
Hämäläinen et al. (2013) [54] | IFX | STD | Prospective cohort study | 37 | b 14 (5.6–18) yrs b 43.5 (19.6–67.1) kg | CD, UC | IFX dose and interval, CRP | Linear Regression Analysis Week 2 and week 6 IFX TL were significantly associated with total IFX dose, patients with lower body WT had lower IFX TL. (week 2: p < 0.001, week 6: p < 0.05) fCal >1000 mg/g in induction phase was correlated with lower IFX TL (4 ug/mL) than fCal <1000 mg/g (IFX TL 20 ug/mL) (p < 0.005) Shortening IFX dose intervals in maintenance phase was associated with higher IFX TL (p = 0.0002 for dose 5 mg/kg; p = 0.0013 for dose 10 mg/kg) | |
Colman et al. (2024) [31] | IFX | Mono Cohort: STD Combo Cohort: STD + AZA | Mono Cohort: REFINE prospective cohort Combo Cohort: TISKids randomized controlled trial | 128 | a 14 (11.1–16.0) yrs a 45.5 (33.2–55.8) kg | CD | ESR, ALB, WT | Parameter (%RSE) CL (L/day) 0.0151 V1 (L) 4.44 V2 (L) 1.94 Q (L) 0.000953 Covariate WT WT on CL 0.603 ALB on CL −0.731 ESR on CL 0.151 Model Equations Not provided | |
Clemente et al. (2024) [30] | IFX | 1. CD: 5 mg/kg at weeks 0, 2, 6 then every 8 weeks 2. Moderate UC: 10 mg/kg at weeks 0, 2, 6 then every 8 weeks 3. Severe UC: 10 mg/kg 0, 1, 3, and 7 then every 8 weeks | Observational cohort | 30 | b 13 (1.3–16) yrs b 39.1 kg (9.6–74) | CD, UC | WT, ESR, fCal, SNP rs1048610 (ADAM17), and ALB | Parameter (RE%) θGeno (L/h) AA = 6.6 × 10−3 AG = 5.5 × 10−3 GG = 8.1 × 10−3 θVc (L) 0.6750 θVp (L) 1.19 Q (L/h) 2.9 × 10−3 Covariate WT θWT 0.36 θfCal 13.7 × 10−3 θESR 62.8 × 10−3 θALB 7.39 Model Equations | |
Maximova et al. (2023) [49] | IFX | Four doses of 10 mg/kg weekly | Prospective cohort | 28 | Early b 6.5 (0.6–17) yrs WT: NR Standard b 8 (1.1–17) yrs WT: NR | Acute Intestinal and Liver GVHD | WT | Parameter (%RSE) CL (L/day) 0.146 V(L) 3.43 Covariate WT WT on CL 0.75 WT on V 1 Model Equations | Early: IFX use in first three days of steroids (first line) Standard: IFX in steroid refractory or second phase (second line) |
Chung et al. (2023) [29] | IFX | a Baseline dose: 6.58 mg/kg (5.92–7.36) a Baseline interval: 6 weeks (4–8) | Retrospective cohort | 85 | a 12.7 (10.1–14.6) yrs a 37.4 (28–49.8) kg | CD | WT, ALB, CRP, Sex, ATI | Parameter (RE%) CL (L/day) 0.299 (1.3%) V1 (L) 3.3 (1.1%) V2 (L) 1.21 (9.6%) Q (L/day) 0.0697 (4.4%) Covariate WT WT on CL 0.75 (Fixed) ALB on CL −0.806 (7.9%) CRP on CL 0.0281 (20.9%) Sex on CL(F) −0.129 (26.7%) ATI on CL(+) 0.126 (39.3%) WT on V1 1 (Fixed) WT on V2 0.75 (Fixed) WT on Q 1 (Fixed) Model Equations Not provided. | |
Whaley et al. (2023) [35] | IFX | a Initial dose: 9.9 (9.3–10.3) | Prospective cohort | 38 | a 14.5 (4–18) yrs a 52.6 (42.4–64.7) kg | UC | WT, ALB, ATI, WBC, CRP, PLT | Parameter (%RSE) CL (L/h) 0.0112 V1(L) 2.69 Q(L/h) 0.00731 V2(L) 2.8 Covariate WT ALB on CL −0.718 ATI on CL 4.61 WBC on CL 0.235 WT on V1 0.666 PLT on V2 −2.11 WT on V2 0.666 CRP on Q −0.592 Model Equations: | |
Funk et al. (2021) [18] | IFX | a Dose -IBD 7.7 (6.2–9.4) -JIA 9.7 (8.5–10.8) -Uveitis 10.5 (7.5–12) a Interval -IBD 6 (4–8) weeks -JIA 4 (4–4.8) weeks -Uveitis 4 (4–5.5) weeks | Prospective cohort | 97 | a 16 (5–21) yrs WT: NR | CD, UC, JIA, Uveitis | ALB, ESR, ATI | Parameter (%RSE) Cl (L/kg/d) 0.00231 (47.2) V1 (L/kg) 0.0542 (FIX) Q (L/kg/d) 0.00352 (FIX) V2 (L/kg) 0.0292 (FIX) Covariate WT ALB on CL −1.8 (25.3) ESR on CL 0.687 (39.6) ATI on CL 1.04 (18.2) Model Equations: ATI = 1 in patients with ATI ATI = 0 in patients without ATI | |
Xiong et al. (2021) [36] | IFX | a Dose 6.1 mg/kg (5.2–7.1) | Prospective cohort | 78 | c 13 (3.7) yrs a 41 (28–56.8) | CD | WT, ALB, ATI, ESR, nCD64 | Parameter (%RSE) Cl (L/h/65 kg) 0.0138 (5.7) V1 (L/65 kg) 2.97 (4.5) Q (L/h/65 kg) 0.0095 (FIX) V2 (L/65 kg) 2.84 (3.6) Covariate WT: WT on CL 0.5941 (10.2) ALB on CL −1.07 (9.6) ATI on CL 0.134 (9.6) ESR on CL 0.101 (27.7) nCD64 on CL 0.168 (16) WT on V1 0.55 (20.2) WT on V2 0.586 (FIX) WT on Q 1 (FIX) Model Equations: | |
Bauman et al. (2020) [28] | IFX | STD | Retrospective cohort | 228 | c 14.5 ± 3.6 yrs c 56.25 ± 22 kg | CD, UC | WT, ALB, ATI, ESR | Parameter (%RSE) CL (L/h/65 kg) 0.0122 (3.4) V1 (L/65 kg) 3.52 (FIX) Q (L/h/65 Kg) 0.0095 (FIX) V2 (L/65 kg) 1.9 (FIX) Covariate WT WT on CL 0.698 (8.5) ALB on CL −1.1 (10.9) ATI on CL 1.18 (2) ESR on CL 0.109 (28.6) WT on V1 0.829 (FIX) WT on V2 0.586 (FIX) WT on Q 1 (FIX) Model Equations: | |
Kimura et al. (2020) [79] | IFX | STD | Prospective cohort | 15 | d 44 (13–76) yrs WT: NR | CD, UC | - | Two models: PK Parameter: Crohn’s Disease: Cl (L/d) 0.35 (0.21–0.44) V1 (L) 2.97 (1.96–5) Q (L/d) 1.2 (1.1–1.5) V2 (L) 0.137 (0.09–0.27) UC: Cl (L/d) 0.45 (0.22–0.8) V1 (L) 2.25 (1.6–3.2) Q (L/d) 7.1 (6.96–7.32) V2 (L) 3.7 (3.29–4.06) Model Equations: Used Fasanmade et al. model equations | |
Petitcollin et al. (2018) [34] | IFX | STD | Observational cohort | 20 | b 13.4 (6.7–16.2) yrs b 36.9 (25.8–50.6) kg | CD | ALB, Clearance variation magnitude | PK Parameters (RSE%): Fixed effects CLbase (L/d−1) 0.289 (9) V (L) 4.86 (11) ALB on CL −2.33 (37) Base-risk 4.07 (15) Beta 0.0484 (16) CLvar 1.01 (28) Model Equations: | Abbreviations |
Kevans et al. (2018) [33] | IFX | STD | Retrospective cohort | 36 | b 28 (11.6–64.9) yrs b 61 (44–104) kg | UC | WT, ALB, ATI, Time Dependent CL | PK Parameters (SE%): Fixed effects CL (L/d) 0.368 (0.5) V1 (L) 3.3 (0.2) Q (L/d) 0.308 (0.1) V2 (L) 3.42 (0.5) Covariate WT: WT on CL 0.709 (0) ALB on CL −0.445 (2.6) ATI on CL −0.0373 (4.9) WT on V1 0.64 (0) WT on V2 0.991 (0) WT on Q 1.52 (0) Cltime 0.105 (0.4) KINC 0.138 (25.5) Model Equations: No equations provided | |
Van de Casteele et al. (2018) [80] | IFX | Study 1: 5 mg/kg Study 2 IFX: 5 mg/kg or Placebo Saline 5 mL/kg | Two randomized, prospective, clinical trials | 16 + 54 | a 2.9 (1.3–4.4) yrs a 14 (10–18.2) kg | Kawasaki Disease | Prior IVIG | Parameter CL (L/d) 0.117 V1 (L) 0.758 V2 (L) 0.973 Q (L/d) 0.683 Covariate Model: V2 × Prior IVIG −0.466 Model Equations: IVIG = 1 for patients who received IVIG INF before IFX | |
Fasanmade et al. (2011) [32] | IFX | STD | Randomized, multi-centre, open label study | 112 | b 13 (6–17) yrs b 42 (20.4–97.7) kg | CD | WT, ALB | Parameter (RSE%): Cl (mL/kg/d) 5.43 (2.8) V1 (mL/kg) 54.2 (2.1) Q (mL/kg/d) 3.52 (20.1) V2 (mL/kg) 29.2 (7.0) Covariate WT ALB on CL −1.22 (20.4) WT on CL −0.34 (25.6) WT on V1 −0.171 (40.2) WT on V2 −0.414 (32.6) Model Equations: |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Sykora, J.; Pomahacova, R.; Kreslova, M.; Cvalinova, D.; Stych, P.; Schwarz, J. Current global trends in the incidence of pediatric-onset inflammatory bowel disease. World J. Gastroenterol. 2018, 24, 2741–2763. [Google Scholar] [CrossRef] [PubMed]
- Van Limbergen, J.; Russell, R.K.; Drummond, H.E.; Aldhous, M.C.; Round, N.K.; Nimmo, E.R.; Smith, L.; Gillett, P.M.; McGrogan, P.; Weaver, L.T.; et al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology 2008, 135, 1114–1122. [Google Scholar] [CrossRef] [PubMed]
- Goodhand, J.; Dawson, R.; Hefferon, M.; Tshuma, N.; Swanson, G.; Wahed, M.; Croft, N.M.; Lindsay, J.O. Inflammatory bowel disease in young people: The case for transitional clinics. Inflamm. Bowel Dis. 2010, 16, 947–952. [Google Scholar] [CrossRef]
- Paul, T.; Birnbaum, A.; Pal, D.K.; Pittman, N.; Ceballos, C.; LeLeiko, N.S.; Benkov, K. Distinct phenotype of early childhood inflammatory bowel disease. J. Clin. Gastroenterol. 2006, 40, 583–586. [Google Scholar] [CrossRef]
- Heyman, M.B.; Kirschner, B.S.; Gold, B.D.; Ferry, G.; Baldassano, R.; Cohen, S.A.; Winter, H.S.; Fain, P.; King, C.; Smith, T.; et al. Children with early-onset inflammatory bowel disease (IBD): Analysis of a pediatric IBD consortium registry. J. Pediatr. 2005, 146, 35–40. [Google Scholar] [CrossRef]
- Hyams, J.; Crandall, W.; Kugathasan, S.; Griffiths, A.; Olson, A.; Johanns, J.; Liu, G.; Travers, S.; Heuschkel, R.; Markowitz, J.; et al. Induction and maintenance infliximab therapy for the treatment of moderate-to-severe Crohn’s disease in children. Gastroenterology 2007, 132, 863–873, quiz 1165–1166. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Grossman, A.B.; Rosh, J.; Kugathasan, S.; Gilman, A.R.; Baldassano, R.; Griffiths, A.M. Methotrexate following unsuccessful thiopurine therapy in pediatric Crohn’s disease. Am. J. Gastroenterol. 2007, 102, 2804–2812, quiz 2803, 2813. [Google Scholar] [CrossRef]
- Klang, E.; Barash, Y.; Soffer, S.; Shachar, E.; Lahat, A. Trends in inflammatory bowel disease treatment in the past two decades-a high-level text mining analysis of PubMed publications. United Eur. Gastroenterol. J. 2021, 9, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Higashiyama, M.; Hokari, R. New and Emerging Treatments for Inflammatory Bowel Disease. Digestion 2023, 104, 74–81. [Google Scholar] [CrossRef]
- Aardoom, M.A.; Veereman, G.; de Ridder, L. A Review on the Use of Anti-TNF in Children and Adolescents with Inflammatory Bowel Disease. Int. J. Mol. Sci. 2019, 20, 2529. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.J.; Dhawan, A.; Saeed, S.A. Inflammatory Bowel Disease in Children and Adolescents. JAMA Pediatr. 2015, 169, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.; Lee, D.; Leonard, M.B.; Thayu, M.; Denson, L.A.; Chuang, E.; Herskovitz, R.; Kerbowski, T.; Baldassano, R.N. Serum Infliximab, Antidrug Antibodies, and Tumor Necrosis Factor Predict Sustained Response in Pediatric Crohn’s Disease. Inflamm. Bowel Dis. 2016, 22, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Lyles, J.L.; Mulgund, A.A.; Bauman, L.E.; Su, W.; Fei, L.; Chona, D.L.; Sharma, P.; Etter, R.K.; Hellmann, J.; Denson, L.A.; et al. Effect of a Practice-wide Anti-TNF Proactive Therapeutic Drug Monitoring Program on Outcomes in Pediatric Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021, 27, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Hanauer, S.B.; Feagan, B.G.; Lichtenstein, G.R.; Mayer, L.F.; Schreiber, S.; Colombel, J.F.; Rachmilewitz, D.; Wolf, D.C.; Olson, A.; Bao, W.; et al. Maintenance infliximab for Crohn’s disease: The ACCENT I randomised trial. Lancet 2002, 359, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, J.P.; Panes, J. Loss of response and requirement of infliximab dose intensification in Crohn’s disease: A review. Am. J. Gastroenterol. 2009, 104, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, M.; Guerra, I.; Munoz-Linares, P.; Gisbert, J.P. Systematic review: Antibodies and anti-TNF-alpha levels in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2012, 35, 971–986. [Google Scholar] [CrossRef]
- Schnitzler, F.; Fidder, H.; Ferrante, M.; Noman, M.; Arijs, I.; Van Assche, G.; Hoffman, I.; Van Steen, K.; Vermeire, S.; Rutgeerts, P. Long-term outcome of treatment with infliximab in 614 patients with Crohn’s disease: Results from a single-centre cohort. Gut 2009, 58, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Funk, R.S.; Shakhnovich, V.; Cho, Y.K.; Polireddy, K.; Jausurawong, T.; Gress, K.; Becker, M.L. Factors associated with reduced infliximab exposure in the treatment of pediatric autoimmune disorders: A cross-sectional prospective convenience sampling study. Pediatr. Rheumatol. Online J. 2021, 19, 62. [Google Scholar] [CrossRef] [PubMed]
- Alsoud, D.; Moes, D.; Wang, Z.; Soenen, R.; Layegh, Z.; Barclay, M.; Mizuno, T.; Minichmayr, I.K.; Keizer, R.J.; Wicha, S.G.; et al. Best Practice for Therapeutic Drug Monitoring of Infliximab: Position Statement from the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther. Drug Monit. 2024, 46, 291–308. [Google Scholar] [CrossRef]
- Minichmayr, I.K.; Dreesen, E.; Centanni, M.; Wang, Z.; Hoffert, Y.; Friberg, L.E.; Wicha, S.G. Model-informed precision dosing: State of the art and future perspectives. Adv. Drug Deliv. Rev. 2024, 215, 115421. [Google Scholar] [CrossRef] [PubMed]
- Sanquin. Concentratie Infliximab (IFX)—Diagnostische Testen. Available online: https://www.sanquin.org/nl/producten-en-diensten/diagnostiek/diagnostische-testen/index/name/j289-concentratie-infliximab-ifx (accessed on 18 August 2024).
- Sanquin. Antistoffen Tegen Infliximab (IFX)—Diagnostische Testen. Available online: https://www.sanquin.org/nl/producten-en-diensten/diagnostiek/diagnostische-testen/index/name/j288-antistoffen-tegen-infliximab-ifx (accessed on 18 August 2024).
- Sanquin. Concentratie Infliximab (IFX) of Biosimiliar, Indien Lager Dan Verwacht ook Antistoffen Tegen—Diagnostische Testen. Available online: https://www.sanquin.org/nl/producten-en-diensten/diagnostiek/diagnostische-testen/index/name/j285-concentratie-infliximab-ifx-of-biosimilar-indien-lager-dan-verwacht-ook-antistoffen-tegen (accessed on 18 August 2024).
- Van Rheenen, P.F.; Aloi, M.; Assa, A.; Bronsky, J.; Escher, J.C.; Fagerberg, U.L.; Gasparetto, M.; Gerasimidis, K.; Griffiths, A.; Henderson, P.; et al. The Medical Management of Paediatric Crohn’s Disease: An ECCO-ESPGHAN Guideline Update. J. Crohns Colitis 2020, 15, 171–194. [Google Scholar] [CrossRef] [PubMed]
- Rolandsdotter, H.; Marits, P.; Sundin, U.; Wikstrom, A.C.; Fagerberg, U.L.; Finkel, Y.; Eberhardson, M. Serum-Infliximab Trough Levels in 45 Children with Inflammatory Bowel Disease on Maintenance Treatment. Int. J. Mol. Sci. 2017, 18, 575. [Google Scholar] [CrossRef]
- Naviglio, S.; Lacorte, D.; Lucafo, M.; Cifu, A.; Favretto, D.; Cuzzoni, E.; Silvestri, T.; Pozzi Mucelli, M.; Radillo, O.; Decorti, G.; et al. Causes of Treatment Failure in Children With Inflammatory Bowel Disease Treated With Infliximab: A Pharmacokinetic Study. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 37–44. [Google Scholar] [CrossRef]
- Clarkston, K.; Tsai, Y.T.; Jackson, K.; Rosen, M.J.; Denson, L.A.; Minar, P. Development of Infliximab Target Concentrations During Induction in Pediatric Crohn Disease Patients. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 68–74. [Google Scholar] [CrossRef]
- Bauman, L.E.; Xiong, Y.; Mizuno, T.; Minar, P.; Fukuda, T.; Dong, M.; Rosen, M.J.; Vinks, A.A. Improved Population Pharmacokinetic Model for Predicting Optimized Infliximab Exposure in Pediatric Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 429–439. [Google Scholar] [CrossRef]
- Chung, A.; Carroll, M.; Almeida, P.; Petrova, A.; Isaac, D.; Mould, D.; Wine, E.; Huynh, H. Early Infliximab Clearance Predicts Remission in Children with Crohn’s Disease. Dig. Dis. Sci. 2023, 68, 1995–2005. [Google Scholar] [CrossRef]
- Clemente-Bautista, S.; Troconiz, I.F.; Segarra-Canton, O.; Salvador-Marin, S.; Parramon-Teixido, C.J.; Alvarez-Beltran, M.; Lopez-Fernandez, L.A.; Colom, H.; Cabanas-Poy, M.J.; Gorgas-Torner, M.Q.; et al. The Effect of Polymorphisms and Other Biomarkers on Infliximab Exposure in Paediatric Inflammatory Bowel Disease: Development of a Population Pharmacokinetic Model. Paediatr. Drugs 2024, 26, 331–346. [Google Scholar] [CrossRef]
- Colman, R.J.; Vuijk, S.A.; Mathot, R.A.A.; Van Limbergen, J.; Jongsma, M.M.E.; Schreurs, M.W.J.; Minar, P.; de Ridder, L.; D’Haens, G. Infliximab Monotherapy vs Combination Therapy for Pediatric Crohn’s Disease Exhibit Similar Pharmacokinetics. Inflamm. Bowel Dis. 2024, 30, 1678–1685. [Google Scholar] [CrossRef] [PubMed]
- Fasanmade, A.A.; Adedokun, O.J.; Blank, M.; Zhou, H.; Davis, H.M. Pharmacokinetic properties of infliximab in children and adults with Crohn’s disease: A retrospective analysis of data from 2 phase III clinical trials. Clin. Ther. 2011, 33, 946–964. [Google Scholar] [CrossRef] [PubMed]
- Kevans, D.; Murthy, S.; Mould, D.R.; Silverberg, M.S. Accelerated Clearance of Infliximab is Associated With Treatment Failure in Patients With Corticosteroid-Refractory Acute Ulcerative Colitis. J. Crohns Colitis 2018, 12, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Petitcollin, A.; Leuret, O.; Tron, C.; Lemaitre, F.; Verdier, M.C.; Paintaud, G.; Bouguen, G.; Willot, S.; Bellissant, E.; Ternant, D. Modeling Immunization To Infliximab in Children With Crohn’s Disease Using Population Pharmacokinetics: A Pilot Study. Inflamm. Bowel Dis. 2018, 24, 1745–1754. [Google Scholar] [CrossRef]
- Whaley, K.G.; Xiong, Y.; Karns, R.; Hyams, J.S.; Kugathasan, S.; Boyle, B.M.; Walters, T.D.; Kelsen, J.; LeLeiko, N.; Shapiro, J.; et al. Multicenter Cohort Study of Infliximab Pharmacokinetics and Therapy Response in Pediatric Acute Severe Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2023, 21, 1338–1347. [Google Scholar] [CrossRef]
- Xiong, Y.; Mizuno, T.; Colman, R.; Hyams, J.; Noe, J.D.; Boyle, B.; Tsai, Y.T.; Dong, M.; Jackson, K.; Punt, N.; et al. Real-World Infliximab Pharmacokinetic Study Informs an Electronic Health Record-Embedded Dashboard to Guide Precision Dosing in Children with Crohn’s Disease. Clin. Pharmacol. Ther. 2021, 109, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Fasanmade, A.A.; Adedokun, O.J.; Ford, J.; Hernandez, D.; Johanns, J.; Hu, C.; Davis, H.M.; Zhou, H. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur. J. Clin. Pharmacol. 2009, 65, 1211–1228. [Google Scholar] [CrossRef]
- Dotan, I.; Ron, Y.; Yanai, H.; Becker, S.; Fishman, S.; Yahav, L.; Ben Yehoyada, M.; Mould, D.R. Patient factors that increase infliximab clearance and shorten half-life in inflammatory bowel disease: A population pharmacokinetic study. Inflamm. Bowel Dis. 2014, 20, 2247–2259. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Crowley, A.R.; Heyndrickx, L.; Rogiers, I.; Parthoens, E.; Van Santbergen, J.; Ober, R.J.; Bobkov, V.; de Haard, H.; Ulrichts, P.; et al. Differential effects of FcRn antagonists on the subcellular trafficking of FcRn and albumin. JCI Insight 2024, 9, e176166. [Google Scholar] [CrossRef] [PubMed]
- Levitt, D.G.; Levitt, M.D. Human serum albumin homeostasis: A new look at the roles of synthesis, catabolism, renal and gastrointestinal excretion, and the clinical value of serum albumin measurements. Int. J. Gen. Med. 2016, 9, 229–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 2008, 84, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Sand, K.M.; Bern, M.; Nilsen, J.; Noordzij, H.T.; Sandlie, I.; Andersen, J.T. Unraveling the Interaction between FcRn and Albumin: Opportunities for Design of Albumin-Based Therapeutics. Front. Immunol. 2014, 5, 682. [Google Scholar] [CrossRef] [PubMed]
- Frymoyer, A.; Piester, T.L.; Park, K.T. Infliximab Dosing Strategies and Predicted Trough Exposure in Children With Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 723–727. [Google Scholar] [CrossRef]
- Falaiye, T.O.; Mitchell, K.R.; Lu, Z.; Saville, B.R.; Horst, S.N.; Moulton, D.E.; Schwartz, D.A.; Wilson, K.T.; Rosen, M.J. Outcomes following infliximab therapy for pediatric patients hospitalized with refractory colitis-predominant IBD. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Chi, L.Y.; Zitomersky, N.L.; Liu, E.; Tollefson, S.; Bender-Stern, J.; Naik, S.; Snapper, S.; Bousvaros, A. The Impact of Combination Therapy on Infliximab Levels and Antibodies in Children and Young Adults With Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2018, 24, 1344–1351. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kang, B.; Choe, Y.H. Serum Infliximab Cutoff trough Level Values for Maintaining Hematological Remission in Pediatric Inflammatory Bowel Disease. Gut Liver 2019, 13, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Jongsma, M.M.E.; Winter, D.A.; Huynh, H.Q.; Norsa, L.; Hussey, S.; Kolho, K.L.; Bronsky, J.; Assa, A.; Cohen, S.; Lev-Tzion, R.; et al. Infliximab in young paediatric IBD patients: It is all about the dosing. Eur. J. Pediatr. 2020, 179, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.; Matar, M.; Zvuloni, M.; Shamir, R.; Assa, A. Trough Concentration Response in Infliximab and Adalimumab Treated Children With Inflammatory Bowel Disease Following Treatment Adjustment: A Pharmacokinetic Model. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Maximova, N.; Nistico, D.; Riccio, G.; Maestro, A.; Barbi, E.; Faganel Kotnik, B.; Marcuzzi, A.; Rimondi, E.; Di Paolo, A. Advantage of First-Line Therapeutic Drug Monitoring-Driven Use of Infliximab for Treating Acute Intestinal and Liver GVHD in Children: A Prospective, Single-Center Study. Cancers 2023, 15, 3605. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A.; Joosse, M.E.; de Wildt, S.N.; Taminiau, J.; de Ridder, L.; Escher, J.C. Pharmacokinetics, Pharmacodynamics, and Immunogenicity of Infliximab in Pediatric Inflammatory Bowel Disease: A Systematic Review and Revised Dosing Considerations. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 763–776. [Google Scholar] [CrossRef]
- Adedokun, O.J.; Xu, Z.; Padgett, L.; Blank, M.; Johanns, J.; Griffiths, A.; Ford, J.; Zhou, H.; Guzzo, C.; Davis, H.M.; et al. Pharmacokinetics of infliximab in children with moderate-to-severe ulcerative colitis: Results from a randomized, multicenter, open-label, phase 3 study. Inflamm. Bowel Dis. 2013, 19, 2753–2762. [Google Scholar] [CrossRef]
- Vermeire, S.; Dubinsky, M.C.; Rabizadeh, S.; Panetta, J.C.; Spencer, E.A.; Dreesen, E.; D’Haens, G.; Dervieux, T.; Laharie, D. Forecasted infliximab concentrations during induction predict time to remission and sustained disease control of inflammatory bowel disease. Clin. Res. Hepatol. Gastroenterol. 2024, 48, 102374. [Google Scholar] [CrossRef]
- Dipasquale, V.; Alibrandi, A.; Pellegrino, S.; Ramistella, V.; Romano, C. Factors that influence infliximab biosimilar trough levels in the pediatric inflammatory bowel disease population. Expert. Rev. Clin. Immunol. 2024, 20, 237–244. [Google Scholar] [CrossRef]
- Hamalainen, A.; Sipponen, T.; Kolho, K.L. Serum infliximab concentrations in pediatric inflammatory bowel disease. Scand. J. Gastroenterol. 2013, 48, 35–41. [Google Scholar] [CrossRef] [PubMed]
- deBruyn, J.C.C.; Jacobson, K.; El-Matary, W.; Wine, E.; Carroll, M.W.; Goedhart, C.; Panaccione, R.; Wrobel, I.T.; Huynh, H.Q. Early Serum Infliximab Levels in Pediatric Ulcerative Colitis. Front. Pediatr. 2021, 9, 668978. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Noman, M.; Van Assche, G.; Baert, F.; D’Haens, G.; Rutgeerts, P. Effectiveness of concomitant immunosuppressive therapy in suppressing the formation of antibodies to infliximab in Crohn’s disease. Gut 2007, 56, 1226–1231. [Google Scholar] [CrossRef]
- Kim, Y.Z.; Kang, B.; Kim, E.S.; Kwon, Y.; Choe, Y.H.; Kim, M.J. Efficacy of Combined Initial Treatment of Methotrexate with Infliximab in Pediatric Crohn’s Disease: A Pilot Study. Biomedicines 2023, 11, 2575. [Google Scholar] [CrossRef] [PubMed]
- Parsi, M.A.; Achkar, J.P.; Richardson, S.; Katz, J.; Hammel, J.P.; Lashner, B.A.; Brzezinski, A. Predictors of response to infliximab in patients with Crohn’s disease. Gastroenterology 2002, 123, 707–713. [Google Scholar] [CrossRef]
- Baert, F.; Noman, M.; Vermeire, S.; Van Assche, G.; Haens, G.D.; Carbonez, A.; Rutgeerts, P. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N. Engl. J. Med. 2003, 348, 601–608. [Google Scholar] [CrossRef]
- Ohem, J.; Hradsky, O.; Zarubova, K.; Copova, I.; Bukovska, P.; Prusa, R.; Malickova, K.; Bronsky, J. Evaluation of Infliximab Therapy in Children with Crohn’s Disease Using Trough Levels Predictors. Dig. Dis. 2018, 36, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Ungar, B.; Glidai, Y.; Yavzori, M.; Picard, O.; Fudim, E.; Lahad, A.; Haberman, Y.; Shouval, D.S.; Weintraub, I.; Eliakim, R.; et al. Association Between Infliximab Drug and Antibody Levels and Therapy Outcome in Pediatric Inflammatory Bowel Diseases. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 507–512. [Google Scholar] [CrossRef]
- Moore, H.; Dolce, P.; Devas, N.; Baldassano, R.; Martinelli, M. Post-induction infliximab trough levels and disease activity in the clinical evolution of pediatric ulcerative colitis. United European Gastroenterol. J. 2020, 8, 425–435. [Google Scholar] [CrossRef]
- Van Hoeve, K.; Dreesen, E.; Hoffman, I.; Van Assche, G.; Ferrante, M.; Gils, A.; Vermeire, S. Higher Infliximab Trough Levels Are Associated With Better Outcome in Paediatric Patients With Inflammatory Bowel Disease. J. Crohns Colitis 2018, 12, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Heikal, O.S.; van Rheenen, P.F.; Touw, D.J.; Kosterink, J.G.W.; Maurer, M.; Koomen, J.V.; Chelle, P.; Mian, P. Infliximab in paediatric inflammatory bowel disease: External evaluation of population pharmacokinetic models. Br. J. Clin. Pharmacol. 2024, 90, 2200–2214. [Google Scholar] [CrossRef] [PubMed]
- Kelly, O.B.; Donnell, S.O.; Stempak, J.M.; Steinhart, A.H.; Silverberg, M.S. Therapeutic Drug Monitoring to Guide Infliximab Dose Adjustment is Associated with Better Endoscopic Outcomes than Clinical Decision Making Alone in Active Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 1202–1209. [Google Scholar] [CrossRef]
- Levesque, B.G.; Greenberg, G.R.; Zou, G.; Sandborn, W.J.; Singh, S.; Hauenstein, S.; Ohrmund, L.; Wong, C.J.; Stitt, L.W.; Shackelton, L.M.; et al. A prospective cohort study to determine the relationship between serum infliximab concentration and efficacy in patients with luminal Crohn’s disease. Aliment. Pharmacol. Ther. 2014, 39, 1126–1135. [Google Scholar] [CrossRef]
- Bortlik, M.; Duricova, D.; Malickova, K.; Machkova, N.; Bouzkova, E.; Hrdlicka, L.; Komarek, A.; Lukas, M. Infliximab trough levels may predict sustained response to infliximab in patients with Crohn’s disease. J. Crohns Colitis 2013, 7, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Vande Casteele, N.; Khanna, R.; Levesque, B.G.; Stitt, L.; Zou, G.Y.; Singh, S.; Lockton, S.; Hauenstein, S.; Ohrmund, L.; Greenberg, G.R.; et al. The relationship between infliximab concentrations, antibodies to infliximab and disease activity in Crohn’s disease. Gut 2015, 64, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Van Hoeve, K.; Seyed Tabib, N.S.; Dreesen, E.; Tops, S.; Hoffman, I.; Gils, A.; Ferrante, M.; Vermeire, S. Infliximab Concentrations during Induction Are Predictive for Endoscopic Remission in Pediatric Patients with Inflammatory Bowel Disease under Combination Therapy. J. Pediatr. 2022, 240, 150–157 e154. [Google Scholar] [CrossRef] [PubMed]
- Frymoyer, A.; Hoekman, D.R.; Piester, T.L.; de Meij, T.G.; Hummel, T.Z.; Benninga, M.A.; Kindermann, A.; Park, K.T. Application of Population Pharmacokinetic Modeling for Individualized Infliximab Dosing Strategies in Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Hofmekler, T.; Bertha, M.; McCracken, C.; Martineau, B.; McKinnon, E.; Schoen, B.T.; McElhanon, B.O.; Tenjarla, G.; Kugathasan, S.; Sauer, C.G. Infliximab Optimization Based on Therapeutic Drug Monitoring in Pediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 580–585. [Google Scholar] [CrossRef]
- Bouhuys, M.; Lexmond, W.S.; van Rheenen, P.F. Pediatric Inflammatory Bowel Disease. Pediatrics 2023, 151, e2022058037. [Google Scholar] [CrossRef]
- Imaeda, H.; Bamba, S.; Takahashi, K.; Fujimoto, T.; Ban, H.; Tsujikawa, T.; Sasaki, M.; Fujiyama, Y.; Andoh, A. Relationship between serum infliximab trough levels and endoscopic activities in patients with Crohn’s disease under scheduled maintenance treatment. J. Gastroenterol. 2014, 49, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Björkesten, C.-G.A.; Nieminen, U.; Turunen, U.; Arkkila, P.E.; Sipponen, T.; Farkkila, M.A. Endoscopic monitoring of infliximab therapy in Crohn’s disease. Inflamm. Bowel Dis. 2011, 17, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, M.C.; Rabizadeh, S.; Panetta, J.C.; Spencer, E.A.; Everts-van der Wind, A.; Dervieux, T. The Combination of Predictive Factors of Pharmacokinetic Origin Associates with Enhanced Disease Control during Treatment of Pediatric Crohn’s Disease with Infliximab. Pharmaceutics 2023, 15, 2408. [Google Scholar] [CrossRef] [PubMed]
- Dubinsky, M.C.; Mendiolaza, M.L.; Phan, B.L.; Moran, H.R.; Tse, S.S.; Mould, D.R. Dashboard-Driven Accelerated Infliximab Induction Dosing Increases Infliximab Durability and Reduces Immunogenicity. Inflamm. Bowel Dis. 2022, 28, 1375–1385. [Google Scholar] [CrossRef]
- Salvador-Martin, S.; Pujol-Muncunill, G.; Bossacoma, F.; Navas-Lopez, V.M.; Gallego-Fernandez, C.; Segarra, O.; Clemente, S.; Munoz-Codoceo, R.; Viada, J.; Magallares, L.; et al. Pharmacogenetics of trough serum anti-TNF levels in paediatric inflammatory bowel disease. Br. J. Clin. Pharmacol. 2021, 87, 447–457. [Google Scholar] [CrossRef]
- Minar, P.; Saeed, S.A.; Afreen, M.; Kim, M.O.; Denson, L.A. Practical Use of Infliximab Concentration Monitoring in Pediatric Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Yoshida, A.; Katagiri, F.; Takayanagi, R.; Yamada, Y. Prediction of treatment failure during infliximab induction therapy in inflammatory bowel disease patients based on pharmacokinetic and pharmacodynamic modeling. Eur. J. Pharm. Sci. 2020, 150, 105317. [Google Scholar] [CrossRef] [PubMed]
- Vande Casteele, N.; Oyamada, J.; Shimizu, C.; Best, B.M.; Capparelli, E.V.; Tremoulet, A.H.; Burns, J.C. Infliximab Pharmacokinetics are Influenced by Intravenous Immunoglobulin Administration in Patients with Kawasaki Disease. Clin. Pharmacokinet. 2018, 57, 1593–1601. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Number |
---|---|
Total nr. of IFX concentrations | 417 |
Total nr. of paediatrics | 115 (100%) |
Sex
| Sex 51 (44.3%) 64 (55.7%) |
Age (years) | 14.5 [5–17] |
Height (cm) | 161.9 |16.5| |
Weight (kg) | 51.4 |17.1| |
BMI (kg/m2) | 19.0 [IQR: 16.8–21.6] |
Diagnosis
| 81 (70.4%) 27 (23.5%) 3 (2.6%) 2 (1.7%) 2 (1.7%) |
Nr. patients receiving co-medication
| 78 (67.8%) 7 (6.1%) 2 (1.7%) 21 (18.3%) 7 (6.1%) |
Use of corticosteroids
| 8 (7.0%) 107 (93%) |
Median serum concentrations
| 8.7 [0.05–74] 45 [24–55] 0.8 [0.15–148] 17.4% 239 [3–13,590] |
Smoking
| 6 (5.2%) 109 (94.8%) |
Dose of IFX (mg/kg)
| 56 (33.3%) 1 (0.5%) 77 (63.8%) 3 (2.4%) |
Variable | b (SE) | 95% CI | p-Value | F-Statistics | p-Value |
---|---|---|---|---|---|
Sex
| reference 1.737 (1.946) | - −2.123–5.597 | - 0.374 | 0.797 | 0.374 |
Age | 0.099 (0.299) | −0.493–0.691 | 0.742 | 0.109 | 0.742 |
Height | −0.006 (0.069) | −0.143–0.131 | 0.928 | 0.008 | 0.928 |
Weight | −0.037 (0.067) | −0.170–0.096 | 0.579 | 0.310 | 0.579 |
BMI | −0.166 (0.299) | −0.757–0.425 | 0.579 | 0.309 | 0.579 |
Diagnosis
| reference −0.088 (2.233) | - −4.523–4.348 | - 0.969 | 0.002 | 0.969 |
IFX dose
| reference 6.534 (1.440) 9.424 (5.201) | - 3.701–9.367 −0.854–19.701 | - <0.001 0.072 | 9.904 | <0.001 * |
IFX phase Induction maintenance | reference −4.922 (1.229) | - −7.338–−2.507 | - <0.001 | 16.046 | <0.001 * |
Albumin | 0.388 (0.188) | 0.019–0.757 | 0.039 * | 4.270 | 0.039 * |
CRP | −0.006 (0.048) | −0.101–0.089 | 0.902 | 0.015 | 0.902 |
fCal | 0.001 (4.8 × 10−4) | −2.8 × 10−4–0.002 | 0.171 | 1.886 | 0.171 |
Concurrent medication ^
| −2.536 (2.286) 2.333 (3.933) −4.132 (2.526) | −2.003–7.706 −5.473–10.139 −9.151–0.888 | 0.270 0.555 0.106 | 1.231 0.352 2.674 | 0.270 0.555 0.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.Y.; Heikal, O.S.; van Rheenen, P.F.; Touw, D.J.; Bourgonje, A.R.; Mian, P. Clinical and Biochemical Factors Associated with Infliximab Pharmacokinetics in Paediatric Patients with Inflammatory Bowel Disease. J. Clin. Med. 2025, 14, 845. https://doi.org/10.3390/jcm14030845
Wang KY, Heikal OS, van Rheenen PF, Touw DJ, Bourgonje AR, Mian P. Clinical and Biochemical Factors Associated with Infliximab Pharmacokinetics in Paediatric Patients with Inflammatory Bowel Disease. Journal of Clinical Medicine. 2025; 14(3):845. https://doi.org/10.3390/jcm14030845
Chicago/Turabian StyleWang, Ka Yu, Omnia Salah Heikal, Patrick F. van Rheenen, Daan J. Touw, Arno R. Bourgonje, and Paola Mian. 2025. "Clinical and Biochemical Factors Associated with Infliximab Pharmacokinetics in Paediatric Patients with Inflammatory Bowel Disease" Journal of Clinical Medicine 14, no. 3: 845. https://doi.org/10.3390/jcm14030845
APA StyleWang, K. Y., Heikal, O. S., van Rheenen, P. F., Touw, D. J., Bourgonje, A. R., & Mian, P. (2025). Clinical and Biochemical Factors Associated with Infliximab Pharmacokinetics in Paediatric Patients with Inflammatory Bowel Disease. Journal of Clinical Medicine, 14(3), 845. https://doi.org/10.3390/jcm14030845