Vasopressor Use in Acute Spinal Cord Injury: Current Evidence and Clinical Implications
Abstract
:1. Introduction
2. AANS/CNS Joint Committee Guidelines
3. Management of Acute Spinal Cord Injury
3.1. Hemodynamic Autoregulation
3.2. Regional Vulnerability to Ischemia
3.3. Vasopressor and Inotrope Selection
3.4. Additional Considerations
4. Spinal Cord Perfusion Pressure
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kwon, B.K.; Tetreault, L.A.; Martin, A.R.; Arnold, P.M.; Marco, R.A.; Newcombe, V.F.; Zipser, C.M.; McKenna, S.L.; Korupolu, R.; Neal, C.J.; et al. A Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury: Recommendations on Hemodynamic Management. Glob. Spine J. 2024, 14 (Suppl. S3), 187S–211S. [Google Scholar] [CrossRef] [PubMed]
- Evaniew, N.; Davies, B.; Farahbakhsh, F.; Fehlings, M.G.; Ganau, M.; Graves, D.; Guest, J.D.; Korupolu, R.; Martin, A.R.; McKenna, S.L.; et al. Interventions to Optimize Spinal Cord Perfusion in Patients With Acute Traumatic Spinal Cord Injury: An Updated Systematic Review. Glob. Spine J. 2024, 14 (Suppl. S3), 58S–79S. [Google Scholar] [CrossRef] [PubMed]
- Tator, C.H.; Fehlings, M.G. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J. Neurosurg. 1991, 75, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, C.S.; Wilson, J.R.; Nori, S.; Kotter, M.; Druschel, C.; Curt, A.; Fehlings, M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 2017, 3, 17018. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, J.H.; Roh, S.W.; Rhim, S.C.; Jeon, S.R. Prognostic factor analysis after surgical decompression and stabilization for cervical spinal-cord injury. Br. J. Neurosurg. 2017, 31, 194–198. [Google Scholar] [CrossRef]
- Ryken, T.C.; Hurlbert, R.J.; Hadley, M.N.; Aarabi, B.; Dhall, S.S.; Gelb, D.E.; Rozzelle, C.J.; Theodore, N.; Walters, B.C. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery 2013, 72 (Suppl. S2), 84–92. [Google Scholar] [CrossRef]
- Weber-Levine, C.; Judy, B.F.; Hersh, A.M.; Awosika, T.; Tsehay, Y.; Kim, T.; Chara, A.; Theodore, N. Multimodal interventions to optimize spinal cord perfusion in patients with acute traumatic spinal cord injuries: A systematic review. J. Neurosurg. Spine 2022, 37, 729–739. [Google Scholar] [CrossRef]
- Khan, N.R.; Smalley, Z.; Nesvick, C.L.; Lee, S.L.; Michael, L.M., 2nd. The use of lumbar drains in preventing spinal cord injury following thoracoabdominal aortic aneurysm repair: An updated systematic review and meta-analysis. J. Neurosurg. Spine 2016, 25, 383–393. [Google Scholar] [CrossRef]
- Hawryluk, G.; Whetstone, W.; Saigal, R.; Ferguson, A.; Talbott, J.; Bresnahan, J.; Dhall, S.; Pan, J.; Beattie, M.; Manley, G. Mean Arterial Blood Pressure Correlates with Neurological Recovery after Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data. J. Neurotrauma 2015, 32, 1958–1967. [Google Scholar] [CrossRef]
- Katoh, S.; El Masry, W.S. Motor recovery of patients presenting with motor paralysis and sensory sparing following cervical spinal cord injuries. Paraplegia 1995, 33, 506–509. [Google Scholar] [CrossRef]
- Dakson, A.; Brandman, D.; Thibault-Halman, G.; Christie, S.D. Optimization of the mean arterial pressure and timing of surgical decompression in traumatic spinal cord injury: A retrospective study. Spinal Cord. 2017, 55, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Levi, L.; Wolf, A.; Belzberg, H. Hemodynamic parameters in patients with acute cervical cord trauma: Description, intervention, and prediction of outcome. Neurosurgery 1993, 33, 1007–1016, discussion 1016–1017. [Google Scholar] [CrossRef] [PubMed]
- Vale, F.L.; Burns, J.; Jackson, A.B.; Hadley, M.N. Combined medical and surgical treatment after acute spinal cord injury: Results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J. Neurosurg. 1997, 87, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Catapano, J.S.; John Hawryluk, G.W.; Whetstone, W.; Saigal, R.; Ferguson, A.; Talbott, J.; Bresnahan, J.; Dhall, S.; Pan, J.; Beattie, M.; et al. Higher Mean Arterial Pressure Values Correlate with Neurologic Improvement in Patients with Initially Complete Spinal Cord Injuries. World Neurosurg. 2016, 96, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Gee, C.M.; Tsang, A.; Belanger, L.M.; Ritchie, L.; Ailon, T.; Paquette, S.; Charest-Morin, R.; Dea, N.; Street, J.; Fisher, C.G.; et al. All over the MAP: Describing pressure variability in acute spinal cord injury. Spinal Cord. 2022, 60, 470–475. [Google Scholar] [CrossRef]
- Chen, S.; Smielewski, P.; Czosnyka, M.; Papadopoulos, M.C.; Saadoun, S. Continuous Monitoring and Visualization of Optimum Spinal Cord Perfusion Pressure in Patients with Acute Cord Injury. J. Neurotrauma 2017, 34, 2941–2949. [Google Scholar] [CrossRef]
- Ehsanian, R.; Haefeli, J.; Quach, N.; Kosarchuk, J.; Torres, D.; Stuck, E.D.; Endo, J.; Crew, J.D.; Dirlikov, B.; Bresnahan, J.C.; et al. Exploration of surgical blood pressure management and expected motor recovery in individuals with traumatic spinal cord injury. Spinal Cord. 2020, 58, 377–386. [Google Scholar] [CrossRef]
- Haldrup, M.; Dyrskog, S.; Thygesen, M.M.; Kirkegaard, H.; Kasch, H.; Rasmussen, M.M. Initial blood pressure is important for long-term outcome after traumatic spinal cord injury. J. Neurosurg. Spine 2020, 33, 256–260. [Google Scholar] [CrossRef]
- Hogg, F.R.A.; Kearney, S.; Zoumprouli, A.; Papadopoulos, M.C.; Saadoun, S. Acute Spinal Cord Injury: Correlations and Causal Relations Between Intraspinal Pressure, Spinal Cord Perfusion Pressure, Lactate-to-Pyruvate Ratio, and Limb Power. Neurocrit. Care 2021, 34, 121–129. [Google Scholar] [CrossRef]
- Cohn, J.; Wright, J.; McKenna, S.; Bushnik, T. Impact of mean arterial blood pressure during the first seven days post spinal cord injury. Top. Spinal Cord. Inj. Rehabil. 2010, 15, 96–106. [Google Scholar] [CrossRef]
- Hogg, F.R.A.; Gallagher, M.J.; Kearney, S.; Zoumprouli, A.; Papadopoulos, M.C.; Saadoun, S. Acute Spinal Cord Injury: Monitoring Lumbar Cerebrospinal Fluid Provides Limited Information about the Injury Site. J. Neurotrauma 2020, 37, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Martin, N.D.; Kepler, C.; Zubair, M.; Sayadipour, A.; Cohen, M.; Weinstein, M. Increased mean arterial pressure goals after spinal cord injury and functional outcome. J. Emerg. Trauma. Shock 2015, 8, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, J.A.; Farber, S.H.; Kalamchi, L.D.; Brigeman, S.T.; Bohl, M.A.; Varda, B.M.; Sioda, N.A.; Radosevich, J.J.; Chapple, K.M.; Snyder, L.A. Mean arterial pressure maintenance following spinal cord injury: Does meeting the target matter? J. Trauma. Acute Care Surg. 2021, 90, 97–106. [Google Scholar] [CrossRef]
- Sewell, M.D.; Vachhani, K.; Hockings, J.; Chan, J.; Alrawi, A.; Williams, R. A Hemodynamic Safety Checklist Can Improve Blood Pressure Monitoring in Patients with Acute Spinal Cord Injury. World Neurosurg. 2019, 128, e225–e230. [Google Scholar] [CrossRef]
- Hou, S.; Rabchevsky, A.G. Autonomic consequences of spinal cord injury. Compr. Physiol. 2014, 4, 1419–1453. [Google Scholar] [CrossRef]
- Dave, S.; Dahlstrom, J.J.; Weisbrod, L.J. Neurogenic Shock. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Epstein, N.E. Effect of spinal cord compression on local vascular blood flow and perfusion capacity by Alshareef M, Krishna V, Ferdous J, Aishareef A, Kindy M, Kolachalama VB; et al. Surg. Neurol. Int. 2016, 7, S682–S685. [Google Scholar] [CrossRef]
- Novy, J.; Carruzzo, A.; Maeder, P.; Bogousslavsky, J. Spinal cord ischemia: Clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch. Neurol. 2006, 63, 1113–1120. [Google Scholar] [CrossRef]
- Hu, X.; Xu, W.; Ren, Y.; Wang, Z.; He, X.; Huang, R.; Ma, B.; Zhao, J.; Zhu, R.; Cheng, L. Spinal cord injury: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023, 8, 245. [Google Scholar] [CrossRef]
- Vargas, M.I.; Gariani, J.; Sztajzel, R.; Barnaure-Nachbar, I.; Delattre, B.M.; Lovblad, K.O.; Dietemann, J.L. Spinal cord ischemia: Practical imaging tips, pearls, and pitfalls. AJNR Am. J. Neuroradiol. 2015, 36, 825–830. [Google Scholar] [CrossRef]
- Abou Al-Shaar, H.; AbouAl-Shaar, I.; Al-Kawi, M.Z. Acute cervical cord infarction in anterior spinal artery territory with acute swelling mimicking myelitis. Neurosciences 2015, 20, 372–375. [Google Scholar] [CrossRef]
- Duggal, N.; Lach, B. Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension. Stroke 2002, 33, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, E.S.; Brock, J.H.; Culbertson, M.D.; Lu, P.; Moseanko, R.; Edgerton, V.R.; Havton, L.A.; Tuszynski, M.H. Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J. Comp. Neurol. 2009, 513, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.N.; Zaaimi, B.; Fisher, K.M.; Edgley, S.A.; Soteropoulos, D.S. Pathways mediating functional recovery. Prog. Brain Res. 2015, 218, 389–412. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Arain, A. Neuroanatomy, Spinal Cord Arteries. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Gofur, E.M.; Singh, P. Anatomy, Back, Vertebral Canal Blood Supply. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019, 10, 282. [Google Scholar] [CrossRef]
- Gupta, A.; Taly, A.B.; Srivastava, A.; Vishal, S.; Murali, T. Traumatic vs non-traumatic spinal cord lesions: Comparison of neurological and functional outcome after in-patient rehabilitation. Spinal Cord. 2008, 46, 482–487. [Google Scholar] [CrossRef]
- Alito, A.; Filardi, V.; Fama, F.; Bruschetta, D.; Ruggeri, C.; Basile, G.; Stancanelli, L.; D’Amico, C.; Bianconi, S.; Tisano, A. Traumatic and non-traumatic spinal cord injury: Demographic characteristics, neurological and functional outcomes. A 7-year single centre experience. J. Orthop. 2021, 28, 62–66. [Google Scholar] [CrossRef]
- Inoue, T.; Manley, G.T.; Patel, N.; Whetstone, W.D. Medical and surgical management after spinal cord injury: Vasopressor usage, early surgerys, and complications. J. Neurotrauma 2014, 31, 284–291. [Google Scholar] [CrossRef]
- Yue, J.K.; Tsolinas, R.E.; Burke, J.F.; Deng, H.; Upadhyayula, P.S.; Robinson, C.K.; Lee, Y.M.; Chan, A.K.; Winkler, E.A.; Dhall, S.S. Vasopressor support in managing acute spinal cord injury: Current knowledge. J. Neurosurg. Sci. 2019, 63, 308–317. [Google Scholar] [CrossRef]
- Altaf, F.; Griesdale, D.E.; Belanger, L.; Ritchie, L.; Markez, J.; Ailon, T.; Boyd, M.C.; Paquette, S.; Fisher, C.G.; Street, J.; et al. The differential effects of norepinephrine and dopamine on cerebrospinal fluid pressure and spinal cord perfusion pressure after acute human spinal cord injury. Spinal Cord. 2017, 55, 33–38. [Google Scholar] [CrossRef]
- Phang, I.; Zoumprouli, A.; Saadoun, S.; Papadopoulos, M.C. Safety profile and probe placement accuracy of intraspinal pressure monitoring for traumatic spinal cord injury: Injured Spinal Cord Pressure Evaluation study. J. Neurosurg. Spine 2016, 25, 398–405. [Google Scholar] [CrossRef]
- Streijger, F.; So, K.; Manouchehri, N.; Gheorghe, A.; Okon, E.B.; Chan, R.M.; Ng, B.; Shortt, K.; Sekhon, M.S.; Griesdale, D.E.; et al. A Direct Comparison between Norepinephrine and Phenylephrine for Augmenting Spinal Cord Perfusion in a Porcine Model of Spinal Cord Injury. J. Neurotrauma 2018, 35, 1345–1357. [Google Scholar] [CrossRef] [PubMed]
- Sonne, J.; Goyal, A.; Lopez-Ojeda, W. Dopamine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Richards, E.; Lopez, M.J.; Maani, C.V. Phenylephrine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Evaniew, N.; Mazlouman, S.J.; Belley-Cote, E.P.; Jacobs, W.B.; Kwon, B.K. Interventions to Optimize Spinal Cord Perfusion in Patients with Acute Traumatic Spinal Cord Injuries: A Systematic Review. J. Neurotrauma 2020, 37, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.M.; Manouchehri, N.; Erskine, E.; Tauh, K.; So, K.; Shortt, K.; Webster, M.; Fisk, S.; Billingsley, A.; Munro, A.; et al. Cardio-centric hemodynamic management improves spinal cord oxygenation and mitigates hemorrhage in acute spinal cord injury. Nat. Commun. 2020, 11, 5209. [Google Scholar] [CrossRef] [PubMed]
- Readdy, W.J.; Whetstone, W.D.; Ferguson, A.R.; Talbott, J.F.; Inoue, T.; Saigal, R.; Bresnahan, J.C.; Beattie, M.S.; Pan, J.Z.; Manley, G.T.; et al. Complications and outcomes of vasopressor usage in acute traumatic central cord syndrome. J. Neurosurg. Spine 2015, 23, 574–580. [Google Scholar] [CrossRef]
- Readdy, W.J.; Saigal, R.; Whetstone, W.D.; Mefford, A.N.; Ferguson, A.R.; Talbott, J.F.; Inoue, T.; Bresnahan, J.C.; Beattie, M.S.; Pan, J.; et al. Failure of Mean Arterial Pressure Goals to Improve Outcomes Following Penetrating Spinal Cord Injury. Neurosurgery 2016, 79, 708–714. [Google Scholar] [CrossRef]
- Ashkar, H.; Adnan, G.; Patel, P.; Makaryus, A.N. Dobutamine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- VanValkinburgh, D.; Kerndt, C.C.; Hashmi, M.F. Inotropes and Vasopressors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Beanlands, R.S.; Bach, D.S.; Raylman, R.; Armstrong, W.F.; Wilson, V.; Montieth, M.; Moore, C.K.; Bates, E.; Schwaiger, M. Acute effects of dobutamine on myocardial oxygen consumption and cardiac efficiency measured using carbon-11 acetate kinetics in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 1993, 22, 1389–1398. [Google Scholar] [CrossRef]
- Squair, J.W.; Belanger, L.M.; Tsang, A.; Ritchie, L.; Mac-Thiong, J.M.; Parent, S.; Christie, S.; Bailey, C.; Dhall, S.; Street, J.; et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology 2017, 89, 1660–1667. [Google Scholar] [CrossRef]
- Theodore, N.; Martirosyan, N.; Hersh, A.M.; Ehresman, J.; Ahmed, A.K.; Danielson, J.; Sullivan, C.; Shank, C.D.; Almefty, K.; Lemole, G.M., Jr.; et al. Cerebrospinal Fluid Drainage in Patients with Acute Spinal Cord Injury: A Multi-Center Randomized Controlled Trial. World Neurosurg. 2023, 177, e472–e479. [Google Scholar] [CrossRef]
- Saadoun, S.; Papadopoulos, M.C. Targeted Perfusion Therapy in Spinal Cord Trauma. Neurotherapeutics 2020, 17, 511–521. [Google Scholar] [CrossRef]
- Chen, S.; Gallagher, M.J.; Papadopoulos, M.C.; Saadoun, S. Non-linear Dynamical Analysis of Intraspinal Pressure Signal Predicts Outcome After Spinal Cord Injury. Front. Neurol. 2018, 9, 493. [Google Scholar] [CrossRef]
- Saadoun, S.; Chen, S.; Papadopoulos, M.C. Intraspinal pressure and spinal cord perfusion pressure predict neurological outcome after traumatic spinal cord injury. J. Neurol. Neurosurg. Psychiatry 2017, 88, 452–453. [Google Scholar] [CrossRef] [PubMed]
- Phang, I.; Werndle, M.C.; Saadoun, S.; Varsos, G.; Czosnyka, M.; Zoumprouli, A.; Papadopoulos, M.C. Expansion duroplasty improves intraspinal pressure, spinal cord perfusion pressure, and vascular pressure reactivity index in patients with traumatic spinal cord injury: Injured spinal cord pressure evaluation study. J. Neurotrauma 2015, 32, 865–874. [Google Scholar] [CrossRef]
- Zhu, F.; Yao, S.; Ren, Z.; Telemacque, D.; Qu, Y.; Chen, K.; Yang, F.; Zeng, L.; Guo, X. Early durotomy with duroplasty for severe adult spinal cord injury without radiographic abnormality: A novel concept and method of surgical decompression. Eur. Spine J. 2019, 28, 2275–2282. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, S.; Grassner, L.; Belci, M.; Cook, J.; Knight, R.; Davies, L.; Asif, H.; Visagan, R.; Gallagher, M.J.; Thome, C.; et al. Duroplasty for injured cervical spinal cord with uncontrolled swelling: Protocol of the DISCUS randomized controlled trial. Trials 2023, 24, 497. [Google Scholar] [CrossRef]
- Hogg, F.R.A.; Kearney, S.; Solomon, E.; Gallagher, M.J.; Zoumprouli, A.; Papadopoulos, M.C.; Saadoun, S. Acute, severe traumatic spinal cord injury: Improving urinary bladder function by optimizing spinal cord perfusion. J. Neurosurg. Spine 2022, 36, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.K.; Curt, A.; Belanger, L.M.; Bernardo, A.; Chan, D.; Markez, J.A.; Gorelik, S.; Slobogean, G.P.; Umedaly, H.; Giffin, M.; et al. Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: A prospective randomized trial. J. Neurosurg. Spine 2009, 10, 181–193. [Google Scholar] [CrossRef]
- Squair, J.W.; Belanger, L.M.; Tsang, A.; Ritchie, L.; Mac-Thiong, J.M.; Parent, S.; Christie, S.; Bailey, C.; Dhall, S.; Charest-Morin, R.; et al. Empirical targets for acute hemodynamic management of individuals with spinal cord injury. Neurology 2019, 93, e1205–e1211. [Google Scholar] [CrossRef]
- Yue, J.K.; Hemmerle, D.D.; Winkler, E.A.; Thomas, L.H.; Fernandez, X.D.; Kyritsis, N.; Pan, J.Z.; Pascual, L.U.; Singh, V.; Weinstein, P.R.; et al. Clinical Implementation of Novel Spinal Cord Perfusion Pressure Protocol in Acute Traumatic Spinal Cord Injury at U.S. Level I Trauma Center: TRACK-SCI Study. World Neurosurg. 2020, 133, e391–e396. [Google Scholar] [CrossRef]
- Saadoun, S.; Papadopoulos, M.C. Spinal cord injury: Is monitoring from the injury site the future? Crit. Care 2016, 20, 308. [Google Scholar] [CrossRef]
Region | Vessel | Vascular Anatomy | Clinical Relevance |
---|---|---|---|
Cervical (C1–C8) | Anterior Spinal Artery (ASA) | Arises from the vertebral arteries, supplying the two anterior thirds of the spinal cord. | Cervical segments are vulnerable to ischemia during hypotension or arterial compression. Posterior cervical spinal procedures risk injury to vertebral arteries. Impaired drainage through the IVVP can elevate intraspinal pressure, contributing to cord edema and worsening secondary injury. |
Posterior Spinal Arteries (PSAs) | Paired arteries originating from the vertebral or posterior inferior cerebellar arteries (PICAs), supplying the posterior third of the spinal cord. | ||
Radicular Arteries | Segmental contributions from the vertebral and ascending cervical arteries. | ||
Anterior Spinal Vein | Drains the two anterior thirds of the cord. | ||
Posterior Spinal Veins | Paired veins draining the posterior third of the spinal cord. | ||
Radicular Veins | Drain into the internal vertebral venous plexus (IVVP). | ||
IVVP | Connects to external venous systems, including the vertebral and jugular veins. | ||
Upper Thoracic (T1–T6) | ASA and PSAs | Continue to supply anterior and posterior regions, respectively. | The limited collateral arterial supply increases the risk of ischemic injury during systemic hypoperfusion. Thoracic surgeries, particularly spine or aortic procedures, may damage radiculomedullary arteries and can lead to anterior spinal artery syndrome. Congestion in the azygos system may exacerbate cord edema or secondary injury. |
Radiculomedullary Arteries | Arise from the intercostal arteries, providing collateral support. | ||
Segmental Arteries | Arise from the thoracic aorta, feeding radicular branches. | ||
Anterior and Posterior Spinal Veins | Continue their roles from the cervical region. | ||
Radicular Veins | Drain into the azygos and hemiazygos systems. | ||
IVVP | Communicates with systemic venous systems, aiding in drainage. | ||
Lower Thoracic (T7–T12) | ASA | Narrower in diameter, requiring reinforcement from the artery of Adamkiewicz (AKA) | Injury to the AKA, particularly during thoracoabdominal aortic surgery, can result in anterior spinal artery syndrome with paralysis and motor deficits. This leaves the thoracolumbar region highly susceptible to ischemic injury due to its reliance on a single dominant arterial supply. Venous drainage challenges: compression or disruption in the venous system may lead to impaired perfusion and worsening of spinal cord injury. |
AKA | Arises from the descending aorta (most often on the left at T8–L2). | ||
PSAs | Continue as paired longitudinal arteries. | ||
Segmental Arteries | Arise from the posterior intercostal arteries and lumbar arteries, providing radicular branches to support spinal cord perfusion. | ||
Anterior and Posterior Spinal Veins | Continue to drain their respective regions. | ||
Radicular Veins | Connect to the intercostal and lumbar venous systems. | ||
IVVP | Extends into the lower thoracic and lumbar regions, with connections to the iliac venous system. |
Vasopressor | Norepinephrine | Epinephrine | Dopamine | Phenylephrine | Dobutamine |
---|---|---|---|---|---|
Receptor Activity | Alpha-1, Mild Beta-1 | Alpha-1, Beta-1, Beta-2 | Low dose: Dopaminergic; Moderate dose: Beta-1; High dose: Alpha-1 | Selective Alpha-1 | Beta-1, Mild Beta-2, Mild Alpha-1 |
Physiological Effects | Increases PVR, slight increase in HR and CO | Increases HR, CO, and PVR | Low dose: Vasodilation; Moderate dose: Increased HR and contractility; High dose: Increased PVR | Increases PVR with minimal effect on HR | Increases PVR, slight increase in HR and CO |
Adverse Effects | Arrhythmias, tissue necrosis with extravasation, HTN | Arrhythmias, increased myocardial oxygen demand, HTN | Arrhythmias, increased intrathecal pressure, risk of reduced SCPP, tissue necrosis | Bradycardia, HTN, tissue necrosis with extravasation, reduced CO in heart dysfunction | Arrhythmias, increased myocardial oxygen demand, tissue necrosis with extravasation, HTN |
Central Access Required for Prolonged Use | Yes | Yes | Yes | Yes | Typically not required unless at high doses or prolonged use |
Precautions | Peripheral vascular disease | Caution in patients with cardiac conditions or arrhythmia risk | Older adults due to arrhythmia risk; Contraindicated in pheochromocytoma | Severe bradycardia or heart block | Severe aortic stenosis, significant tachyarrhythmia |
Drug Interactions | Beta-blockers, MAOI | Significant interactions with MAOIs, tricyclic antidepressants | Significant interactions with MAOI, tricyclic antidepressants | Beta-blockers, other vasoconstrictors | Beta-blockers, MAOI |
Patient-Specific Considerations | Preferred in patients with shock requiring vasoconstriction | Useful in patients requiring both inotropic and vasoconstrictive effects | Caution in elderly; Avoid in pheochromocytoma | Useful in tachyarrhythmias where HR control is needed | Preferred in patients with heart failure or significant myocardial dysfunction; Use cautiously in patients at risk of tachyarrhythmias or with myocardial ischemia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taman, M.; Abdulrazeq, H.; Chuck, C.; Sastry, R.A.; Ali, R.; Chen, C.C.; Malik, A.N.; Sullivan, P.L.Z.; Oyelese, A.; Gokaslan, Z.L.; et al. Vasopressor Use in Acute Spinal Cord Injury: Current Evidence and Clinical Implications. J. Clin. Med. 2025, 14, 902. https://doi.org/10.3390/jcm14030902
Taman M, Abdulrazeq H, Chuck C, Sastry RA, Ali R, Chen CC, Malik AN, Sullivan PLZ, Oyelese A, Gokaslan ZL, et al. Vasopressor Use in Acute Spinal Cord Injury: Current Evidence and Clinical Implications. Journal of Clinical Medicine. 2025; 14(3):902. https://doi.org/10.3390/jcm14030902
Chicago/Turabian StyleTaman, Mazen, Hael Abdulrazeq, Carlin Chuck, Rahul A. Sastry, Rohaid Ali, Clark C. Chen, Athar N. Malik, Patricia Leigh Zadnik Sullivan, Adetokunbo Oyelese, Ziya L. Gokaslan, and et al. 2025. "Vasopressor Use in Acute Spinal Cord Injury: Current Evidence and Clinical Implications" Journal of Clinical Medicine 14, no. 3: 902. https://doi.org/10.3390/jcm14030902
APA StyleTaman, M., Abdulrazeq, H., Chuck, C., Sastry, R. A., Ali, R., Chen, C. C., Malik, A. N., Sullivan, P. L. Z., Oyelese, A., Gokaslan, Z. L., & Fridley, J. S. (2025). Vasopressor Use in Acute Spinal Cord Injury: Current Evidence and Clinical Implications. Journal of Clinical Medicine, 14(3), 902. https://doi.org/10.3390/jcm14030902