Evaluation of Serum Soluble Lectin-like Oxidised Low-Density Lipoprotein Receptor-1 (sLOX-1) Level in Children with Non-Complicated Type-1 Diabetes Mellitus (T1DM) and Its Relationship with Carotid Intima Media Thickness (cIMT)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurement of Carotid Intima-Media Thickness
2.3. Blood Sampling and sLOX-1 Measurements
2.4. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AGEs | Advanced glycation end products |
ACVD | Atherosclerotic cardiovascular disease |
BMI | Body mass index |
cIMT | Carotid intima-media thickness |
CRP | C-reactive protein |
ELISA | Enzyme-linked immunosorbent assay |
HDL | High density lipoprotein |
hs-CRP | High sensitive C-reactive protein |
ISPAD | International Society for Paediatric and Adolescent Diabetes |
LDL | Low-density lipoprotein cholesterol |
LOX-1 | Lectin-like oxidised low-density lipoprotein receptor-1 |
sLOX-1 | soluble Lectin-like oxidised low-density lipoprotein receptor-1 |
MMP-10 | Metalloprotease-10 |
MIS-C | multisystem inflammatory syndrome in children |
ox-LDL | Oxidised low-density lipoprotein |
PCOS | Polycystic ovary syndrome |
T1DM | Type 1 diabetes mellitus |
T2DM | Type 2 diabetes mellitus |
References
- Soedamah-Muthu, S.S.; Chaturvedi, N.; Witte, D.; Stevens, L.K.; Porta, M.; Fuller, J.H.; EURODIAB Prospective Complications Study Group. Relationship between risk factors and mortality in type 1 diabetic patients in Europe: The EURODIAB Prospective Complications Study (PCS). Diabetes Care 2008, 31, 1360–1366. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.; Svensson, A.-M.; Kosiborod, M.; Gudbjörnsdottir, S.; Pivodic, A.; Wedel, H.; Dahlqvist, S.; Clements, M.; Rosengren, A. Glycemic control and excess mortality in type 1 diabetes. N. Engl. J. Med. 2014, 371, 1972–1982. [Google Scholar] [CrossRef] [PubMed]
- Rawshani, A.; Sattar, N.; Franzen, S.; Rawshani, A.; Hattersley, A.T.; Svensson, A.-M.; Eliasson, B.; Gudbjornsdottir, S. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: A nationwide, register-based cohort study. Lancet 2019, 392, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Torkar, A.D.; Plesnik, E.; Groselj, U.; Battelino, T.; Kotnik, P. Carotid intima-media thickness in healthy children and adolescents: Normative data and systematic literature review. Front. Cardiovasc. Med. 2020, 7, 7. [Google Scholar] [CrossRef]
- Magge, S.N. Cardiovascular risk in children and adolescents with type 1 and type 2 diabetes mellitus. Curr. Cardiovasc. Risk Rep. 2012, 6, 591–600. [Google Scholar] [CrossRef]
- de Ferranti, S.D.; Steinberger, J.; Ameduri, R.; Baker, A.; Gooding, H.; Kelly, A.S.; Mietus-Snyder, M.; Mitsnefes, M.M.; Peterson, A.L.; St-Pierre, J.; et al. Cardiovascular risk reduction in high-risk pediatric patients: A scientific statement from the American Heart Association. Circulation 2019, 139, e603–e634. [Google Scholar] [CrossRef]
- De Ferranti, S.D.; de Boer, I.H.; Fonseca, V.; Fox, C.S.; Golden, S.H.; Lavie, C.J.; Magge, S.N.; Marx, N.; McGuire, D.K.; Orchard, T.J.; et al. Type 1 diabetes mellitus and cardiovascular disease: A scientific statement from the American Heart Association and American Diabetes Association. Circulation 2014, 130, 1110–1130. [Google Scholar] [CrossRef]
- Järvisalo, M.J.; Raitakari, M.; Toikka, J.O.; Putto-Laurila, A.; Rontu, R.; Laine, S.; Lehtimäki, T.; Rönnemaa, T.; Viikari, J.; Raitakari, O.T. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation 2004, 109, 1750–1755. [Google Scholar] [CrossRef]
- Zmysłowski, A.; Szterk, A. Current knowledge on the mechanism of atherosclerosis and pro-atherosclerotic properties of oxysterols. Lipids Health Dis. 2017, 16, 188. [Google Scholar] [CrossRef]
- Jackson, A.O.; Regine, M.A.; Subrata, C.; Long, S. Molecular mechanisms and genetic regulation in atherosclerosis. IJC Heart Vasc. 2018, 21, 36–44. [Google Scholar] [CrossRef]
- Hofmann, A.; Brunssen, C.; Wolk, S.; Reeps, C.; Morawietz, H. Soluble LOX-1: A novel biomarker in patients with coronary artery disease, stroke, and acute aortic dissection? J. Am. Heart Assoc. 2020, 9, e013803. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Cong, S. LOX-1 and atherosclerotic-related diseases. Clin. Chim. Acta 2019, 491, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Kattoor, A.J.; Goel, A.; Mehta, J.L. LOX-1: Regulation, signaling and its role in atherosclerosis. Antioxidants 2019, 8, 218. [Google Scholar] [CrossRef] [PubMed]
- Markstad, H.; Edsfeldt, A.; Yao Mattison, I.; Bengtsson, E.; Singh, P.; Cavalera, M.; Asciutto, G.; Björkbacka, H.; Fredrikson, G.N.; Dias, N.; et al. High levels of soluble lectin-like oxidized low-density lipoprotein receptor-1 are associated with carotid plaque inflammation and increased risk of ischemic stroke. J. Am. Heart Assoc. 2019, 8, e009874. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Davis, E.J.; Kahkoska, A.R.; Jefferies, C.; Dabelea, D.; Balde, N.; Gong, C.X.; Aschner, P.; Craig, M.E. ISPAD Clinical Practice Consensus Guidelines 2018: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr. Diabetes 2018, 19 (Suppl. 27), 7–19. [Google Scholar] [CrossRef]
- DiMeglio, L.A.; Acerini, C.L.; Codner, E.; Craig, M.E.; Hofer, S.E.; Pillay, K.; Maahs, D.M. ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes. Pediatr. Diabetes 2018, 19 (Suppl. S27), 105–114. [Google Scholar] [CrossRef]
- Donaghue, K.C.; Marcovecchio, M.L.; Wadwa, R.P.; Chew, E.Y.; Wong, T.Y.; Calliari, L.E.; Zabeen, B.; Salem, M.A.; Craig, M.E. ISPAD Clinical Practice Consensus Guidelines 2018: Microvascular and macrovascular complications in children and adolescents. Pediatr. Diabetes 2018, 19 (Suppl. 27), 262–274. [Google Scholar] [CrossRef]
- Urbina, E.M.; Williams, R.V.; Alpert, B.S.; Collins, R.T.; Daniels, S.R.; Hayman, L.; Jacobson, M.; Mahoney, L.; Mietus-Snyder, M.; Rocchini, A.; et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: Recommendations for standard assessment for clinical research: A scientific statement from the American Heart Association. Hypertension 2009, 54, 919–950. [Google Scholar] [CrossRef]
- Ueda, A.; Kume, N.; Hayashida, K.; Inui-Hayashida, A.; Asai, M.; Kita, T.; Kominami, G. ELISA for soluble form of lectin-like oxidized LDL receptor-1, a novel marker of acute coronary syndrome. Clin. Chem. 2006, 52, 1210–1211. [Google Scholar] [CrossRef]
- Margeirsdottir, H.D.; Stensaeth, K.H.; Larsen, J.R.; Brunborg, C.; Dahl-Jørgensen, K. Early signs of atherosclerosis in diabetic children on intensive insulin treatment: A population-based study. Diabetes Care 2010, 33, 2043–2048. [Google Scholar] [CrossRef]
- Lilje, C.; Cronan, J.C.; Schwartzenburg, E.J.; Owers, E.M.; Clesi, P.; Gomez, R.; Stender, S.; Hempe, J.; Chalew, S.A.; Cardinale, J.P. Intima-media thickness at different arterial segments in pediatric type 1 diabetes patients and its relationship with advanced glycation end products. Pediatr. Diabetes 2018, 19, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Li, P. Cardiovascular risk factors in children with type 1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 2019, 32, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Civelek, S.; Kutnu, M.; Uzun, H.; Erdenen, F.; Altunoglu, E.; Andican, G.; Seven, A.; Sahin, A.O.; Burcak, G. Soluble lectin-like oxidized LDL receptor 1 as a possible mediator of endothelial dysfunction in patients with metabolic syndrome. J. Clin. Lab. Anal. 2015, 29, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Oncul, M.; Albayrak, M.; Sozer, V.; Karakus, B.; Gelisgen, R.; Karatas, S.; Simsek, G.; Uzun, H. Polycystic ovary syndrome and endothelial dysfunction: A potential role for soluble lectin-like oxidized low-density lipoprotein receptor-1. Reprod. Biol. 2020, 20, 396–401. [Google Scholar] [CrossRef]
- Stinson, S.E.; Jonsson, A.E.; Andersen, M.K.; Lund, M.A.V.; Holm, L.A.; Fonvig, C.E.; Huang, Y.; Stankevič, E.; Juel, H.B.; Ängquist, L.; et al. High plasma levels of soluble lectin-like oxidized low-density lipoprotein receptor-1 are associated with inflammation and cardiometabolic risk profiles in pediatric overweight and obesity. J. Am. Heart Assoc. 2023, 12, e8145. [Google Scholar] [CrossRef]
- Tan, K.C.; Shiu, S.W.; Wong, Y.; Leng, L.; Bucala, R. Soluble lectin-like oxidized low-density lipoprotein receptor-1 in type 2 diabetes mellitus. J. Lipid Res. 2008, 49, 1438–1444. [Google Scholar] [CrossRef]
- Shiu, S.W.; Tan, K.C.; Wong, Y.; Leng, L.; Bucala, R. Glycoxidized LDL increases lectin-like oxidized low-density lipoprotein receptor-1 in diabetes mellitus. Atherosclerosis 2009, 203, 522–527. [Google Scholar] [CrossRef]
- Lam, S.; Shiu, S.W.; Wong, Y.; Tan, K.C. Effect of type 2 diabetes on a disintegrin and metalloprotease 10. J. Diabetes 2022, 14, 394–400. [Google Scholar] [CrossRef]
- Stankova, T.; Delcheva, G.; Maneva, A.; Vladeva, S. Serum levels of carbamylated LDL and soluble lectin-like oxidized low-density lipoprotein receptor-1 are associated with coronary artery disease in patients with metabolic syndrome. Medicina 2019, 55, 493. [Google Scholar] [CrossRef]
- Fukui, M.; Tanaka, M.; Senmaru, T.; Nakanishi, M.; Mukai, J.; Ohki, M.; Asano, M.; Yamazaki, M.; Hasegawa, G.; Nakamura, N. LOX-1 is a novel marker for peripheral artery disease in patients with type 2 diabetes. Metabolism 2013, 62, 935–938. [Google Scholar] [CrossRef]
- Takebayashi, K.; Suzuki, T.; Yamauchi, M.; Hara, K.; Tsuchiya, T.; Inukai, T.; Hashimoto, K. Association of circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 with inflammatory markers and urinary albumin excretion in patients with type 2 diabetes. SAGE Open Med. 2021, 9, 20503121211064468. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.J.; Naqvi, T.Z.; Gardin, J.M.; Gerhard-Herman, M.; Jaff, M.; Mohler, E. Clinical application of noninvasive vascular ultrasound in cardiovascular risk stratification: A report from the American Society of Echocardiography and the Society of Vascular Medicine and Biology. J. Am. Soc. Echocardiogr. 2006, 19, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Cai, Y.Y.; Li, H.M.; Deng, S.M.; Leng, R.X.; Pan, H.F. Increased carotid intima-media thickness (CIMT) levels in patients with type 1 diabetes mellitus (T1DM): A meta-analysis. J. Diabetes Complicat. 2015, 29, 724–730. [Google Scholar] [CrossRef]
- Dalla Pozza, R.; Bechtold, S.; Bonfig, W.; Putzker, S.; Kozlik-Feldmann, R.; Netz, H.; Schwarz, H.P. Age of onset of type 1 diabetes in children and carotid intima-media thickness. J. Clin. Endocrinol. Metab. 2007, 92, 2053–2057. [Google Scholar] [CrossRef] [PubMed]
- Van der Heyden, J.C.; Birnie, E.; Bovenberg, S.A.; Cabezas, M.C.; van der Meulen, N.; Mul, D.; Veeze, H.J.; Aanstoot, H.J. Do traditional cardiovascular risk factors solely explain intima-media thickening in youth with type 1 diabetes? J. Diabetes Complicat. 2016, 30, 1137–1143. [Google Scholar] [CrossRef]
- Jones, S.; Khanolkar, A.R.; Gevers, E.; Stephenson, T.; Amin, R. Cardiovascular risk factors from diagnosis in children with type 1 diabetes mellitus: A longitudinal cohort study. BMJ Open Diabetes Res. Care 2019, 7, e000625. [Google Scholar] [CrossRef]
- de Ferranti, S.; Rifai, N. C-reactive protein and cardiovascular disease: A review of risk prediction and interventions. Clin. Chim. Acta 2002, 317, 1–15. [Google Scholar] [CrossRef]
- Bhakdi, S.; Torzewski, M.; Klouche, M.; Hemmes, M. Complement and atherogenesis: Binding of CRP to degraded, nonoxidized LDL enhances complement activation. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 2348–2354. [Google Scholar] [CrossRef]
- Meier-Ewert, H.K.; Ridker, P.M.; Rifai, N.; Price, N.; Dinges, D.F.; Mullington, J.M. Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects. Clin. Chem. 2001, 47, 426–430. [Google Scholar] [CrossRef]
- Ockene, I.S.; Matthews, C.E.; Rifai, N.; Ridker, P.M.; Reed, G.; Stanek, E. Variability and classification accuracy of serial high-sensitivity C-reactive protein measurements in healthy adults. Clin. Chem. 2001, 47, 444–450. [Google Scholar] [CrossRef]
- Danesh, J.; Whincup, P.; Walker, M.; Lennon, L.; Thomson, A.; Appleby, P.; Gallimore, J.R.; Pepys, M.B. Low grade inflammation and coronary heart disease: Prospective study and updated meta-analyses. BMJ 2000, 321, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Hennekens, C.H.; Buring, J.E.; Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 2000, 342, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Schalkwijk, C.G.; Poland, D.C.; van Dijk, W.; Kok, A.; Emeis, J.J.; Drager, A.M.; Doni, A.; van Hinsbergh, V.W.; Stehouwer, C.D. Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: Evidence for chronic inflammation. Diabetologia 1999, 42, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Heier, M.; Margeirsdottir, H.D.; Brunborg, C.; Hanssen, K.F.; Dahl-Jørgensen, K.; Seljeflot, I. Inflammation in childhood type 1 diabetes; influence of glycemic control. Atherosclerosis 2015, 238, 33–37. [Google Scholar] [CrossRef]
- Weber, K.S.; Nowotny, B.; Strassburger, K.; Pacini, G.; Müssig, K.; Szendroedi, J.; Herder, C.; Roden, M.; GDS Group. The role of markers of low-grade inflammation for the early time course of glycemic control, glucose disappearance rate, and β-cell function in recently diagnosed type 1 and type 2 diabetes. Diabetes Care 2015, 38, 1758–1767. [Google Scholar] [CrossRef]
- Pérez-Segura, P.; de Dios, O.; Herrero, L.; Vales-Villamarín, C.; Aragón-Gómez, I.; Gavela-Pérez, T.; Garcés, C.; Soriano-Guillén, L. Children with type 1 diabetes have elevated high-sensitivity C-reactive protein compared with a control group. BMJ Open Diabetes Res. Care 2020, 8, e001424. [Google Scholar] [CrossRef]
- Snell-Bergeon, J.K.; West, N.A.; Mayer-Davis, E.J.; Liese, A.D.; Marcovina, S.M.; D’Agostino, R.B., Jr.; Hamman, R.F.; Dabelea, D. Inflammatory markers are increased in youth with type 1 diabetes: The SEARCH case-control study. J. Clin. Endocrinol. Metab. 2010, 95, 2868–2876. [Google Scholar] [CrossRef]
- Gordon, T.; Castelli, W.P.; Hjortland, M.C.; Kannel, W.B.; Dawber, T.R. High-density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med. 1977, 62, 707–714. [Google Scholar] [CrossRef]
- Orchard, T.J.; Costacou, T.; Kretowski, A.; Nesto, R.W.; Forrest, K.Y.-Z.; Smithline, K.L.; Ellis, D.; Becker, D.J. Type 1 diabetes and coronary artery disease. Diabetes Care 2006, 29, 2528–2538. [Google Scholar] [CrossRef]
- Chiesa, S.T.; Charakida, M.; McLoughlin, E.; Nguyen, H.C.; Georgiopoulos, G.; Motran, L.; Elia, Y.; Marcovecchio, M.L.; Dunger, D.B.; Dalton, R.N.; et al. Elevated high-density lipoprotein in adolescents with type 1 diabetes is associated with endothelial dysfunction in the presence of systemic inflammation. Eur. Heart J. 2019, 40, 3559–3566. [Google Scholar] [CrossRef]
Control Group (n = 72) | Patient Group (n = 80) | p Value | |
---|---|---|---|
Age, years | 16.3 ± 2.8 | 16.4 ± 2.8 | 0.779 |
Gender | |||
Male, n | 39 (48.8%) | 40 (55.6%) | 0.402 |
Female, n | 41 (51.3%) | 32 (44.4%) | |
BMI, kg/m2 | 20.1 ± 2.6 | 20.2 ± 3.2 | 0.897 |
BSA, m2 | 1.60 ± 0.19 | 1.61 ± 0.18 | 0.675 |
Systolic BP | 114.6 ± 8.6 | 112.4 ± 8.5 | 0.280 |
Diastolic | 76.5 ± 5.5 | 75.5 ± 10.0 | 0.190 |
Insulin dose, U/kg/day | - | 1.0 ± 0.0 | |
Conventional Subcutaneous Insulin Injection, n | - | 46 (57.5%) | |
Injection per day | |||
1–2 | - | 0 | |
3 | - | 0 | |
≥4 | - | 46 (57.5%) | |
Continuous Glucose Monitoring Systems (Insulin Pump), n | - | 34 (42.5%) | |
Duration of diabetes, year | - | 11.0 ± 1.8 | |
Mean HbA1c, (%) | - | 8.8 ± 1.6 | |
FBG, mg/dl | - | 197.9 ± 87.6 | - |
Control Group (n = 72) | Patient Group (n = 80) | p Value | |
---|---|---|---|
GFR, mL/min/1.73 m2 | 94.3 ± 2.9 | 94.4 ± 2.9 | 0.684 |
Urea, mg/dl | 13.5 ± 2.2 | 14.0 ± 1.5 | 0.203 |
Creatinine, mg/dl | 8.1 ± 0.0 | 8.3 ± 0.1 | 0.126 |
Uric acid, mg/dl | 4.8 ± 0.5 | 4.5 ± 0.5 | 0.836 |
AST, IU/I | 23.7 ± 5.0 | 24.4 ± 8.0 | 0.468 |
ALT, IU/I | 18.4 ± 5.6 | 19.9 ± 7.1 | 0.479 |
Total Cholesterol, mg/dl | 145.5 ± 22.6 | 166.1 ± 27.4 | 0.000 |
LDL, mg/dl | 85.6 ± 27.2 | 91.1 ± 24.9 | 0.132 |
HDL, mg/dl | 48.3 ± 9.2 | 58.2 ± 13.3 | 0.000 |
Triglyceride, mg/dl | 94.9 ± 57.0 | 130.8 ± 176.6 | 0.284 |
TSH, mIU/L | 2.6 ± 1.2 | 2.6 ± 1.3 | 0.755 |
Na+, mEq/L | 137.5 ± 2.5 | 137.8 ± 2.4 | 0.712 |
K+, mEq/L | 4.4 ± 0.3 | 4.4 ± 0.3 | 0.905 |
Hemoglobin, g/dL | 12.9 ± 1.3 | 13.2 ± 1.1 | 0.037 |
RBC, 1012/L | 4.4 ± 1.4 | 4.3 ± 1.0 | 0.092 |
MCH, pg/cell | 29.8 ± 7.7 | 30.2 ± 5.0 | 0.251 |
MCHC, Hgb/cell | 36.5 ± 8.2 | 34.05 ± 6.1 | 0.079 |
MCV, µm3 | 89.4 ± 5.6 | 91.0 ± 5.1 | 0.550 |
WBC, 109/L | 6.9 ± 1.9 | 6.7 ± 2.1 | 0.223 |
Platelet, 109/L | 324.0 ± 81.6 | 316.5 ± 65.5 | 0.507 |
hs-CRP, mg/dl | 0.09 ± 0.12 | 0.39 ± 0.26 | 0.000 |
sLOX-1, ng/ml | 0.49 ± 0.11 | 0.82 ± 0.35 | 0.000 |
cIMT, mm | 0.35 ± 0.03 | 0.47 ± 0.09 | 0.000 |
Univariate Model | Multivariate Model | |||||
---|---|---|---|---|---|---|
Odds Ratio | 95% Confidence Interval | p-Value | Odds Ratio | 95% Confidence Interval | p-Value | |
cIMT | 1.024 | 1.016–1.032 | 0.000 | 1.019 | 1.006–1.032 | 0.000 |
Total cholesterol | 1.034 | 1.019–1.050 | 0.000 | |||
HDL | 1.092 | 1.050–1.135 | 0.000 | 1.158 | 1.070–1.254 | 0.000 |
Hemoglobin | 1.231 | 0.967–1.567 | 0.091 | |||
hs-CRP | 1.080 | 1.049–1.230 | 0.003 | 0.775 | 0.525–0.875 | 0.003 |
sLOX-1 | 1.972 | 1.694–2.228 | 0.000 | 1.670 | 1.485–1.915 | 0.000 |
sLOX-1 | ||
---|---|---|
r | p | |
cIMT | 0.669 | 0.000 |
hs-CRP | 0.188 | 0.103 |
Mean-HgA1c | 0.015 | 0.577 |
HDL | 0.075 | 0.623 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozde, S.; Yavuzyilmaz, F.; Ozel, M.A.; Kayapinar, O.; Ozde, C.; Akture, G.; Arslanoglu, I. Evaluation of Serum Soluble Lectin-like Oxidised Low-Density Lipoprotein Receptor-1 (sLOX-1) Level in Children with Non-Complicated Type-1 Diabetes Mellitus (T1DM) and Its Relationship with Carotid Intima Media Thickness (cIMT). J. Clin. Med. 2025, 14, 935. https://doi.org/10.3390/jcm14030935
Ozde S, Yavuzyilmaz F, Ozel MA, Kayapinar O, Ozde C, Akture G, Arslanoglu I. Evaluation of Serum Soluble Lectin-like Oxidised Low-Density Lipoprotein Receptor-1 (sLOX-1) Level in Children with Non-Complicated Type-1 Diabetes Mellitus (T1DM) and Its Relationship with Carotid Intima Media Thickness (cIMT). Journal of Clinical Medicine. 2025; 14(3):935. https://doi.org/10.3390/jcm14030935
Chicago/Turabian StyleOzde, Sukriye, Fatma Yavuzyilmaz, Mehmet Ali Ozel, Osman Kayapinar, Cem Ozde, Gulsah Akture, and Ilknur Arslanoglu. 2025. "Evaluation of Serum Soluble Lectin-like Oxidised Low-Density Lipoprotein Receptor-1 (sLOX-1) Level in Children with Non-Complicated Type-1 Diabetes Mellitus (T1DM) and Its Relationship with Carotid Intima Media Thickness (cIMT)" Journal of Clinical Medicine 14, no. 3: 935. https://doi.org/10.3390/jcm14030935
APA StyleOzde, S., Yavuzyilmaz, F., Ozel, M. A., Kayapinar, O., Ozde, C., Akture, G., & Arslanoglu, I. (2025). Evaluation of Serum Soluble Lectin-like Oxidised Low-Density Lipoprotein Receptor-1 (sLOX-1) Level in Children with Non-Complicated Type-1 Diabetes Mellitus (T1DM) and Its Relationship with Carotid Intima Media Thickness (cIMT). Journal of Clinical Medicine, 14(3), 935. https://doi.org/10.3390/jcm14030935