Small Intestinal Bacterial Overgrowth Is a Predictor of Overt Hepatic Encephalopathy in Patients with Liver Cirrhosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Breath Test
2.3. Neuro-Psychological Tests
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LC | Liver cirrhosis |
SIBO | Small intestinal bacterial overgrowth |
HE | Hepatic encephalopathy |
H-SIBO | Hydrogen producing SIBO |
M-SIBO | Methane producing SIBO |
NCT | Number connection test |
HCC | Hepatocellular carcinoma |
UICC | Union for International Cancer Control |
BCLC | Barcelona Clinic Liver Cancer |
HR | Hazard ratio |
CI | Confidence interval |
T-bil | Total bilirubin |
AST | Aspartate aminotransferase |
BUN | Blood urea nitrogen |
WBC | White blood cell |
References
- Schuppan, D.; Afdhal, N.H. Liver cirrhosis. Lancet 2008, 371, 838–851. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.D.; Willing, A.R.; Kairouz, A.; Cunningham, E.B.; Wheeler, A.; O’Brien, N.; Perera, V.; Ward, J.W.; Hiebert, L.; Degenhardt, L.; et al. Direct-acting antiviral therapies for hepatitis c infection: Global registration, reimbursement, and restrictions. Lancet Gastroenterol. Hepatol. 2024, 9, 366–382. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, H.; Akuta, N.; Hikita, H.; Suda, G.; Inoue, J.; Tamaki, N.; Ito, K.; Akahane, T.; Kawaoka, T.; Morishita, A.; et al. Etiological changes of liver cirrhosis and hepatocellular carcinoma-complicated liver cirrhosis in Japan: Updated nationwide survey from 2018 to 2021. Hepatol. Res. 2024, 54, 763–772. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef]
- Maslennikov, R.; Pavlov, C.; Ivashkin, V. Small intestinal bacterial overgrowth in cirrhosis: Systematic review and meta-analysis. Hepatol. Int. 2018, 12, 567–576. [Google Scholar] [CrossRef]
- Nicoletti, A.; Ponziani, F.R.; Biolato, M.; Valenza, V.; Marrone, G.; Sganga, G.; Gasbarrini, A.; Miele, L.; Grieco, A. Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation. World J. Gastroenterol. 2019, 25, 4814–4834. [Google Scholar] [CrossRef]
- Bernsmeier, C.; van der Merwe, S.; Périanin, A. Innate immune cells in cirrhosis. J. Hepatol. 2020, 73, 186–201. [Google Scholar] [CrossRef]
- Wiest, R.; Lawson, M.; Geuking, M. Pathological bacterial translocation in liver cirrhosis. J. Hepatol. 2014, 60, 197–209. [Google Scholar] [CrossRef]
- Ishikawa, M.; Uemura, M.; Matsuyama, T.; Matsumoto, M.; Ishizashi, H.; Kato, S.; Morioka, C.; Fujimoto, M.; Kojima, H.; Yoshiji, H.; et al. Potential role of enhanced cytokinemia and plasma inhibitor on the decreased activity of plasma adamts13 in patients with alcoholic hepatitis: Relationship to endotoxemia. Alcohol. Clin. Exp. Res. 2010, 34, S25–S33. [Google Scholar] [CrossRef]
- Creely, S.J.; McTernan, P.G.; Kusminski, C.M.; Fisher, F.M.; Da Silva, N.F.; Khanolkar, M.; Evans, M.; Harte, A.L.; Kumar, S. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E740–E747. [Google Scholar] [CrossRef]
- Yokoyama, K.; Sakamaki, A.; Takahashi, K.; Naruse, T.; Sato, C.; Kawata, Y.; Tominaga, K.; Abe, H.; Sato, H.; Tsuchiya, A.; et al. Hydrogen-producing small intestinal bacterial overgrowth is associated with hepatic encephalopathy and liver function. PLoS ONE 2022, 17, e0264459. [Google Scholar] [CrossRef] [PubMed]
- Patidar, K.R.; Thacker, L.R.; Wade, J.B.; Sterling, R.K.; Sanyal, A.J.; Siddiqui, M.S.; Matherly, S.C.; Stravitz, R.T.; Puri, P.; Luketic, V.A.; et al. Covert hepatic encephalopathy is independently associated with poor survival and increased risk of hospitalization. Am. J. Gastroenterol. 2014, 109, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Vierling, J.M.; Mokhtarani, M.; Brown, R.S., Jr.; Mantry, P.; Rockey, D.C.; Ghabril, M.; Rowell, R.; Jurek, M.; Coakley, D.F.; Scharschmidt, B.F. Fasting blood ammonia predicts risk and frequency of hepatic encephalopathy episodes in patients with cirrhosis. Clin. Gastroenterol. Hepatol. 2016, 14, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, S.; Riggio, O.; Gioia, S.; Merli, M.; Spagnoli, A.; di Martino, M.; Pelle, G.; Ridola, L. Risk factors for hepatic encephalopathy and mortality in cirrhosis: The role of cognitive impairment, muscle alterations and shunts. Dig. Liver Dis. 2022, 54, 1060–1065. [Google Scholar] [CrossRef]
- Friis, K.H.; Thomsen, K.L.; Laleman, W.; Montagnese, S.; Vilstrup, H.; Lauridsen, M.M. Post-Transjugular Intrahepatic Portosystemic Shunt (TIPS) Hepatic Encephalopathy-A Review of the Past Decade’s Literature Focusing on Incidence, Risk Factors, and Prophylaxis. J. Clin. Med. 2023, 13, 14. [Google Scholar] [CrossRef]
- Quigley, E.M.; Abu-Shanab, A. Small intestinal bacterial overgrowth. Infect. Dis. Clin. N. Am. 2010, 24, 943–959. [Google Scholar] [CrossRef]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and Methane-Based Breath Testing in Gastrointestinal Disorders: The North American Consensus. Am. J. Gastroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef]
- Suri, J.; Kataria, R.; Malik, Z.; Parkman, H.P.; Schey, R. Elevated methane levels in small intestinal bacterial overgrowth suggests delayed small bowel and colonic transit. Medicine 2018, 97, e10554. [Google Scholar] [CrossRef]
- Kato, A.; Tanaka, H.; Kawaguchi, T.; Kanazawa, H.; Iwasa, M.; Sakaida, I.; Moriwaki, H.; Murawaki, Y.; Suzuki, K.; Okita, K. Nutritional management contributes to improvement in minimal hepatic encephalopathy and quality of life in patients with liver cirrhosis: A preliminary, prospective, open-label study. Hepatol. Res. 2013, 43, 452–458. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Konishi, M.; Kato, A.; Kato, M.; Kooka, Y.; Sawara, K.; Endo, R.; Torimura, T.; Suzuki, K.; Takikawa, Y. Updating the neuropsychological test system in japan for the elderly and in a modern touch screen tablet society by resetting the cut-off values. Hepatol. Res. 2017, 47, 1335–1339. [Google Scholar] [CrossRef]
- Yoshiji, H.; Nagoshi, S.; Akahane, T.; Asaoka, Y.; Ueno, Y.; Ogawa, K.; Kawaguchi, T.; Kurosaki, M.; Sakaida, I.; Shimizu, M.; et al. Evidence-based clinical practice guidelines for Liver Cirrhosis 2020. J. Gastroenterol. 2021, 56, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Strocchi, A.; Corazza, G.; Ellis, C.J.; Gasbarrini, G.; Levitt, M.D. Detection of malabsorption of low doses of carbohydrate: Accuracy of various breath H2 criteria. Gastroenterology 1993, 105, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, M.; Lin, H.C.; Enayati, P.; van den Burg, B.; Lee, H.R.; Chen, J.H.; Park, S.; Kong, Y.; Conklin, J. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G1089–G1095. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Park, S.; Low, K.; Kong, Y.; Pimentel, M. The degree of breath methane production in ibs correlates with the severity of constipation. Am. J. Gastroenterol. 2007, 102, 837–841. [Google Scholar] [CrossRef]
- Kunkel, D.; Basseri, R.J.; Makhani, M.D.; Chong, K.; Chang, C.; Pimentel, M. Methane on breath testing is associated with constipation: A systematic review and meta-analysis. Dig. Dis. Sci. 2011, 56, 1612–1618. [Google Scholar] [CrossRef]
- Pantham, G.; Post, A.; Venkat, D.; Einstadter, D.; Mullen, K.D. A new look at precipitants of overt hepatic encephalopathy in cirrhosis. Dig. Dis. Sci. 2017, 62, 2166–2173. [Google Scholar] [CrossRef]
- Gunnarsdottir, S.A.; Sadik, R.; Shev, S.; Simrén, M.; Sjövall, H.; Stotzer, P.O.; Abrahamsson, H.; Olsson, R.; Björnsson, E.S. Small intestinal motility disturbances and bacterial overgrowth in patients with liver cirrhosis and portal hypertension. Am. J. Gastroenterol. 2003, 98, 1362–1370. [Google Scholar] [CrossRef]
- Ghosh, G.; Jesudian, A.B. Small Intestinal Bacterial Overgrowth in Patients With Cirrhosis. J. Clin. Exp. Hepatol. 2019, 9, 257–267. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, B.C.; Puri, V.; Sarin, S.K. An open-label randomized controlled trial of lactulose and probiotics in the treatment of minimal hepatic encephalopathy. Eur. J. Gastroenterol. Hepatol. 2008, 20, 506–511. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Gargante, M.P.; Malaguarnera, G.; Salmeri, M.; Mastrojeni, S.; Rampello, L.; Pennisi, G.; Li Volti, G.; Galvano, F. Bifidobacterium combined with fructo-oligosaccharide versus lactulose in the treatment of patients with hepatic encephalopathy. Eur. J. Gastroenterol. Hepatol. 2010, 22, 199–206. [Google Scholar] [CrossRef]
- Gluud, L.L.; Vilstrup, H.; Morgan, M.Y. Nonabsorbable disaccharides for hepatic encephalopathy: A systematic review and meta-analysis. Hepatology 2016, 64, 908–922. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL clinical practice guidelines on the management of hepatic encephalopathy. J. Hepatol. 2022, 77, 807–824. [Google Scholar] [CrossRef] [PubMed]
- Vilstrup, H.; Amodio, P.; Bajaj, J.; Cordoba, J.; Ferenci, P.; Mullen, K.D.; Weissenborn, K.; Wong, P. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the american association for the study of liver diseases and the european association for the study of the liver. Hepatology 2014, 60, 715–735. [Google Scholar] [CrossRef] [PubMed]
- Sama, C.; Morselli-Labate, A.M.; Pianta, P.; Lambertini, L.; Berardi, S.; Martini, G. Clinical effects of rifaximin in patientswith hepatic encephalopathy intolerant or nonresponsive to previous lactulose treatment: An open-label, pilot study. Curr. Ther. Res. Clin. Exp. 2004, 65, 413–422. [Google Scholar] [CrossRef]
- Kimer, N.; Krag, A.; Møller, S.; Bendtsen, F.; Gluud, L.L. Systematic review with meta-analysis: The effects of rifaximin in hepatic encephalopathy. Aliment. Pharmacol. Ther. 2014, 40, 123–132. [Google Scholar] [CrossRef]
- Gatta, L.; Scarpignato, C. Systematic review with meta-analysis: Rifaximin is effective and safe for the treatment of small intestine bacterial overgrowth. Aliment. Pharmacol. Ther. 2017, 45, 604–616. [Google Scholar] [CrossRef]
- Pimentel, M.; Chang, C.; Chua, K.S.; Mirocha, J.; DiBaise, J.; Rao, S.; Amichai, M. Antibiotic treatment of constipation-predominant irritable bowel syndrome. Dig. Dis. Sci. 2014, 59, 1278–1285. [Google Scholar] [CrossRef]
- Rezaie, A.; Pimentel, M.; Rao, S.S. How to test and treat small intestinal bacterial overgrowth: An evidence-based approach. Curr. Gastroenterol. Rep. 2016, 18, 8. [Google Scholar] [CrossRef]
- Low, K.; Hwang, L.; Hua, J.; Zhu, A.; Morales, W.; Pimentel, M. A combination of rifaximin and neomycin is most effective in treating irritable bowel syndrome patients with methane on lactulose breath test. J. Clin. Gastroenterol. 2010, 44, 547–550. [Google Scholar] [CrossRef]
Median (Min–Max) | Median (Min–Max) | ||
---|---|---|---|
or n (%) | n = 107 | or n (%) | n = 107 |
Age, years | 70 (40–86) | Albumin, g/dL | 3.8 (2.1–5.0) |
Gender | Total bilirubin, mg/dL | 0.9 (0.3–14.2) | |
Males | 81 (75.7) | Prothrombin time, % | 92 (25–131) |
Females | 26 (24.3) | Ammonia, μg/dL | 64 (28–242) |
Body mass index, kg/m2 | 24.8 (12.6–47.7) | Creatinine, mg/dL | 0.81 (0.45–3.31) |
The etiology of liver cirrhosis | Blood urea nitrogen, mg/dL | 16 (5–61) | |
Hepatitis B virus | 20 (18.7) | White blood cell count, ×103/µL | 4.3 (1.3–14.8) |
Hepatitis C virus | 23 (21.5) | Platelet count, ×104/µL | 10.9 (2.6–26.3) |
Alcoholic liver disease | 31 (29.0) | Child–Pugh score | 5 (5–12) |
Non-alcoholic steatohepatitis | 23 (21.5) | Child–Pugh grade (A/B/C) | 85/17/5 |
Others | 10 (9.3) | ALBI score | −2.45 (−0.47–−3.32) |
PPI administration | 63 (58.9) | mALBI grade (1/2a/2b/3) | 38/29/31/9 |
Gastroprokinetic drug administration | 6 (5.6) | Gastroesophageal varices | 59 (55.1) |
Probiotics administration | 14 (13.1) | Rupture of gastroesophageal varices | 5 (4.7) |
HCC complication | 77 (72.0) | Covert HE | 30 (28.0) |
UICC stage of HCC (I/II/III/IV) | 18/29/17/13 | SIBO | 31 (29.0) |
BCLC stage of HCC (I/II/III/IV) | 30/31/14/2 | Hydrogen producing SIBO | 16 (15.0) |
Aspartate aminotransferase, U/L | 36 (12–209) | Methane producing SIBO | 19 (17.8) |
Alanine aminotransferase, U/L | 29 (10–217) | An increase of ≥10 ppm in hydrogen | 37 (34.6) |
Alkaline Phosphatase, U/L | 281 (64–3147) | ≥5 ppm in methane | 24 (22.4) |
Gamma-glutamyl transpeptidase, U/L | 68 (13–691) | Observation period, m | 29.4 (0.9–36.0) |
Cholinesterase, U/L | 210 (47–484) |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
p Value | Hazard Ratio | p Value | Hazard Ratio | |
Age, years | 0.948 | 1.002 (0.956–1.049) | ||
Gender | 0.210 | 0.392 (0.090–1.696) | ||
Body mass index, kg/m2 | 0.431 | 1.031 (0.955–1.114) | ||
The etiology of liver cirrhosis | ||||
Hepatitis B virus | ||||
Hepatitis C virus | ||||
Alcoholic liver disease | ||||
Non-alcoholic steatohepatitis | ||||
Others | ||||
PPI administration | 0.109 | 0.474 (0.191–1.181) | ||
HCC complication | 0.102 | 3.399 (0.785–14.721) | ||
UICC stage of HCC (0/I/II/III/IV) | <0.001 * | 2.323 (1.540–3.503) | <0.001 * | 2.767 (1.780–4.302) |
BCLC stage of HCC (0/I/II/III/IV) | <0.001 * | 2.259 (1.480–3.446) | ||
Aspartate aminotransferase, U/L | 0.037 * | 1.013 (1.001–1.025) | 0.074 | |
Alanine aminotransferase, U/L | 0.146 | 1.013 (0.996–1.030) | ||
Alkaline Phosphatase, U/L | 0.008 * | 1.001 (1.000–1.003) | 0.402 | |
Gamma-glutamyl transpeptidase, U/L | 0.066 | 1.003 (1.000–1.006) | ||
Cholinesterase, U/L | 0.669 | 1.001 (0.995–1.008) | ||
Albumin, g/dL | 0.424 | 0.712 (0.309–1.639) | ||
Total bilirubin, mg/dL | 0.025 * | 1.247 (1.028–1.513) | ||
Prothrombin time, % | 0.768 | 1.004 (0.979–1.030) | ||
Ammonia, μg/dL | 0.348 | 1.006 (0.993–1.020) | ||
Creatinine, mg/dL | 0.316 | 1.587 (0.643–3.914) | ||
Blood urea nitrogen, mg/dL | 0.009 * | 1.047 (1.011–1.084) | 0.001 * | 1.076 (1.030–1.123) |
White blood cell count, ×103/µL | 0.021 * | 1.193 (1.027–1.385) | 0.626 | |
Platelet count, ×104/µL | 0.173 | 1.052 (0.978–1.131) | ||
Child–Pugh score | 0.471 | 1.117 (0.827–1.508) | 0.002 * | 3.733 (1.592–8.754) |
Child–Pugh grade (A/B/C) | 0.193 | 1.701 (0.764–3.790) | ||
ALBI score | 0.392 | 1.448 (0.620–3.381) | ||
mALBI grade (1/2a/2b/3) | 0.732 | 1.086 (0.676–1.747) | ||
Gastroesophageal varices Rupture of gastroesophageal varices | 0.085 0.538 | 0.441 (0.173–1.120) 0.046 (0.000–808.7) | ||
Covert HE | 0.479 | 1.418 (0.539–3.733) | ||
SIBO | 0.483 | 1.414 (0.537–3.721) | ||
Hydrogen producing SIBO | 0.130 | 2.348 (0.777–7.096) | ||
Methane producing SIBO An increase of ≥10 ppm in hydrogen | 0.983 0.996 | 1.013 (0.295–3.479) 1.003 (0.381–2.639) | ||
≥5 ppm in methane | 0.898 | 1.075 (0.356–3.242) |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
p Value | Hazard Ratio | p Value | Hazard Ratio | |
Age, years | 0.631 | 0.982 (0.914–1.056) | ||
Gender | 0.218 | 2.562 (0.573–11.458) | ||
Body mass index, kg/m2 | 0.159 | 1.079 (0.971–1.199) | ||
The etiology of liver cirrhosis | ||||
Hepatitis B virus | ||||
Hepatitis C virus | ||||
Alcoholic liver disease | ||||
Non-alcoholic steatohepatitis | ||||
Others | ||||
PPI administration | 0.310 | 0.460 (0.102–2.062) | ||
HCC complication | 0.406 | 2.455 (0.295–20.423) | ||
UICC stage of HCC (0/I/II/III/IV) | 0.029 * | 2.046 (1.076–3.889) | 0.065 | |
BCLC stage of HCC (0/I/II/III/IV) | 0.088 | 1.804 (0.917–3.551) | ||
Aspartate aminotransferase, U/L | 0.065 | 1.017 (0.999–1.035) | ||
Alanine aminotransferase, U/L | 0.587 | 1.009 (0.977–1.041) | ||
Alkaline Phosphatase, U/L | 0.567 | 1.001 (0.998–1.003) | ||
Gamma-glutamyl transpeptidase, U/L | 0.052 | 1.004 (1.000–1.008) | ||
Cholinesterase, U/L | 0.073 | 0.989 (0.978–1.001) | ||
Albumin, g/dL | 0.178 | 0.443 (0.135–1.449) | ||
Total bilirubin, mg/dL | 0.189 | 1.202 (0.913–1.581) | ||
Prothrombin time, % | 0.406 | 0.985 (0.949–1.021) | ||
Ammonia, μg/dL | 0.079 | 1.016 (0.998–1.035) | 0.145 | |
Creatinine, mg/dL | 0.476 | 1.719 (0.387–7.632) | ||
Blood urea nitrogen, mg/dL | 0.338 | 1.036 (0.964–1.114) | ||
White blood cell count, ×103/µL | 0.391 | 0.804 (0.488–1.324) | ||
Platelet count, ×104/µL | 0.443 | 0.940 (0.803–1.100) | ||
Child–Pugh score | 0.148 | 1.328 (0.904–1.952) | ||
Child–Pugh grade (A/B/C) | 0.165 | 2.270 (0.714–7.221) | ||
ALBI score | 0.109 | 2.625 (0.806–8.551) | ||
mALBI grade (1/2a/2b/3) | 0.129 | 1.826 (0.840–3.970) | ||
Gastroesophageal varices Rupture of gastroesophageal varices | 0.451 0.741 | 1.878 (0.364–9.686) 0.047 (0.000–3.61 × 106) | ||
Covert HE | 0.067 | 4.058 (0.908–18.142) | 0.038 * | 5.008 (1.096–22.892) |
SIBO | 0.015 * | 7.610 (1.475–39.625) | ||
Hydrogen producing SIBO | 0.131 | 3.553 (0.685–18.415) | ||
Methane producing SIBO An increase of ≥10 ppm in hydrogen | 0.010 * 0.550 | 7.228 (1.614–32.361) 1.579 (0.353–7.060) | 0.006 * | 8.597 (1.881–39.291) |
≥5 ppm in methane | 0.024 * | 5.649 (1.258–25.369) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakamaki, A.; Yokoyama, K.; Yamazaki, H.; Wakabayashi, T.; Kojima, Y.; Tominaga, K.; Tsuchiya, A.; Kamimura, K.; Yokoyama, J.; Terai, S. Small Intestinal Bacterial Overgrowth Is a Predictor of Overt Hepatic Encephalopathy in Patients with Liver Cirrhosis. J. Clin. Med. 2025, 14, 1491. https://doi.org/10.3390/jcm14051491
Sakamaki A, Yokoyama K, Yamazaki H, Wakabayashi T, Kojima Y, Tominaga K, Tsuchiya A, Kamimura K, Yokoyama J, Terai S. Small Intestinal Bacterial Overgrowth Is a Predictor of Overt Hepatic Encephalopathy in Patients with Liver Cirrhosis. Journal of Clinical Medicine. 2025; 14(5):1491. https://doi.org/10.3390/jcm14051491
Chicago/Turabian StyleSakamaki, Akira, Kunihiko Yokoyama, Hanako Yamazaki, Takuya Wakabayashi, Yuichi Kojima, Kentaro Tominaga, Atsunori Tsuchiya, Kenya Kamimura, Junji Yokoyama, and Shuji Terai. 2025. "Small Intestinal Bacterial Overgrowth Is a Predictor of Overt Hepatic Encephalopathy in Patients with Liver Cirrhosis" Journal of Clinical Medicine 14, no. 5: 1491. https://doi.org/10.3390/jcm14051491
APA StyleSakamaki, A., Yokoyama, K., Yamazaki, H., Wakabayashi, T., Kojima, Y., Tominaga, K., Tsuchiya, A., Kamimura, K., Yokoyama, J., & Terai, S. (2025). Small Intestinal Bacterial Overgrowth Is a Predictor of Overt Hepatic Encephalopathy in Patients with Liver Cirrhosis. Journal of Clinical Medicine, 14(5), 1491. https://doi.org/10.3390/jcm14051491