Relationship Between Serum Levels of Pancreatic Exocrine Enzymes on Admission and Long-Term Clinical Outcomes in Patients with Acute Decompensated Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HF | Heart failure |
ADHF | Acute decompensated heart failure |
eGFR | Estimated glomerular filtration rate |
LVEF | Left ventricular ejection fraction |
GNRI | Geriatric Nutritional Risk Index |
BMI | Body mass index |
BUN | Blood urea nitrogen |
CRP | C-reactive protein |
BNP | B-type natriuretic peptide |
HR | Hazard ratio |
CI | Confidence interval |
References
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421. [Google Scholar] [CrossRef]
- Harjola, V.P.; Mullens, W.; Banaszewski, M.; Bauersachs, J.; Brunner-La Rocca, H.P.; Chioncel, O.; Collins, S.P.; Doehner, W.; Filippatos, G.S.; Flammer, A.J.; et al. Organ dysfunction, injury and failure in acute heart failure: From pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. J. Heart Fail. 2017, 19, 821–836. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Canepa, M.; Straburzynska-Migaj, E.; Drozdz, J.; Fernandez-Vivancos, C.; Pinilla, J.M.G.; Nyolczas, N.; Temporelli, P.L.; Mebazaa, A.; Lainscak, M.; Laroche, C.; et al. Characteristics, treatments and 1-year prognosis of hospitalized and ambulatory heart failure patients with chronic obstructive pulmonary disease in the European Society of Cardiology Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2018, 20, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, M.; Parissis, J.; Yilmaz, M.B.; Seronde, M.F.; Kivikko, M.; Laribi, S.; Paugam-Burtz, C.; Cai, D.; Pohjanjousi, P.; Laterre, P.F.; et al. Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure. Eur. Heart J. 2013, 34, 742–749. [Google Scholar] [CrossRef]
- Vonglahn, W.C.; Chobot, R. The Histological Alterations of the Pancreas in Chronic Passive Congestion. Am. J. Pathol. 1925, 1, 373–382.3. [Google Scholar]
- Gullo, L.; Cavicchi, L.; Tomassetti, P.; Spagnolo, C.; Freyrie, A.; D’Addato, M. Effects of ischemia on the human pancreas. Gastroenterology 1996, 111, 1033–1038. [Google Scholar] [CrossRef]
- Sakorafas, G.H.; Tsiotos, G.G.; Sarr, M.G. Ischemia/Reperfusion-Induced pancreatitis. Dig. Surg. 2000, 17, 3–14. [Google Scholar] [CrossRef]
- Hackert, T.; Hartwig, W.; Fritz, S.; Schneider, L.; Strobel, O.; Werner, J. Ischemic acute pancreatitis: Clinical features of 11 patients and review of the literature. Am. J. Surg. 2009, 197, 450–454. [Google Scholar] [CrossRef]
- Takahashi, T.; Yaginuma, N. Ischemic injury of the human pancreas. Its basic patterns correlated with the pancreatic microvasculature. Pathol. Res. Pract. 1985, 179, 645–651. [Google Scholar] [CrossRef]
- Dams, O.C.; Vijver, M.A.T.; van Veldhuisen, C.L.; Verdonk, R.C.; Besselink, M.G.; van Veldhuisen, D.J. Heart Failure and Pancreas Exocrine Insufficiency: Pathophysiological Mechanisms and Clinical Point of View. J. Clin. Med. 2022, 11, 4128. [Google Scholar] [CrossRef] [PubMed]
- Thibault, R.; Pichard, C. Nutrition and clinical outcome in intensive care patients. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Stotts, N.A.; Froelicher, E.S.; Engler, M.M.; Porter, C. Why patients in critical care do not receive adequate enteral nutrition? A review of the literature. J. Crit. Care 2012, 27, 702–713. [Google Scholar] [CrossRef] [PubMed]
- Sikkens, E.C.; Cahen, D.L.; Koch, A.D.; Braat, H.; Poley, J.W.; Kuipers, E.J.; Bruno, M.J. The prevalence of fat-soluble vitamin deficiencies and a decreased bone mass in patients with chronic pancreatitis. Pancreatology 2013, 13, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Munoz, J.E. Pancreatic exocrine insufficiency: Diagnosis and treatment. J. Gastroenterol. Hepatol. 2011, 26, 12–16. [Google Scholar] [CrossRef]
- Carr, J.G.; Stevenson, L.W.; Walden, J.A.; Heber, D. Prevalence and hemodynamic correlates of malnutrition in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 1989, 63, 709–713. [Google Scholar] [CrossRef]
- Rahman, A.; Jafry, S.; Jeejeebhoy, K.; Nagpal, A.D.; Pisani, B.; Agarwala, R. Malnutrition and Cachexia in Heart Failure. JPEN J. Parenter. Enteral Nutr. 2016, 40, 475–486. [Google Scholar] [CrossRef]
- Narumi, T.; Arimoto, T.; Funayama, A.; Kadowaki, S.; Otaki, Y.; Nishiyama, S.; Takahashi, H.; Shishido, T.; Miyashita, T.; Miyamoto, T.; et al. Prognostic importance of objective nutritional indexes in patients with chronic heart failure. J. Cardiol. 2013, 62, 307–313. [Google Scholar] [CrossRef]
- Iwakami, N.; Nagai, T.; Furukawa, T.A.; Sugano, Y.; Honda, S.; Okada, A.; Asaumi, Y.; Aiba, T.; Noguchi, T.; Kusano, K.; et al. Prognostic value of malnutrition assessed by Controlling Nutritional Status score for long-term mortality in patients with acute heart failure. Int. J. Cardiol. 2017, 230, 529–536. [Google Scholar] [CrossRef]
- Shirakabe, A.; Hata, N.; Kobayashi, N.; Okazaki, H.; Matsushita, M.; Shibata, Y.; Nishigoori, S.; Uchiyama, S.; Asai, K.; Shimizu, W. The prognostic impact of malnutrition in patients with severely decompensated acute heart failure, as assessed using the Prognostic Nutritional Index (PNI) and Controlling Nutritional Status (CONUT) score. Heart Vessels 2018, 33, 134–144. [Google Scholar] [CrossRef]
- Hirose, S.; Miyazaki, S.; Yatsu, S.; Sato, A.; Ishiwata, S.; Matsumoto, H.; Shitara, J.; Murata, A.; Kato, T.; Suda, S.; et al. Impact of the Geriatric Nutritional Risk Index on In-Hospital Mortality and Length of Hospitalization in Patients with Acute Decompensated Heart Failure with Preserved or Reduced Ejection Fraction. J. Clin. Med. 2020, 9, 1169. [Google Scholar] [CrossRef] [PubMed]
- Hiki, M.; Kasai, T.; Sato, A.; Ishiwata, S.; Yatsu, S.; Shitara, J.; Matsumoto, H.; Shimizu, M.; Murata, A.; Kato, T.; et al. Serum levels of exocrine pancreatic enzymes in patients with acute decompensated heart failure. Rev. Cardiovasc. Med. 2025, 26. in press. [Google Scholar] [CrossRef]
- Lesi, C.; Melzi D‘Eril, G.V.; Pavesi, F.; Scandellari, A.; Faccenda, F.; Grazia Casertano, M.; Savoia, M.; Zoni, L.; Peppi, M. Clinical significance of serum pancreatic enzymes in the quiescent phase of chronic pancreatitis. Clin. Biochem. 1985, 18, 235–238. [Google Scholar] [CrossRef] [PubMed]
- McKee, P.A.; Castelli, W.P.; McNamara, P.M.; Kannel, W.B. The natural history of congestive heart failure: The Framingham study. N. Engl. J. Med. 1971, 285, 1441–1446. [Google Scholar] [CrossRef]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S.; Acute Pancreatitis Classification Working, G. Classification of acute pancreatitis--2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Kwon, C.I.; Kim, H.J.; Korc, P.; Choi, E.K.; McNulty, G.M.; Easler, J.J.; El, H.I.I.; Watkins, J.; Fogel, E.L.; McHenry, L.; et al. Can We Detect Chronic Pancreatitis with Low Serum Pancreatic Enzyme Levels? Pancreas 2016, 45, 1184–1188. [Google Scholar] [CrossRef]
- Chase, C.W.; Barker, D.E.; Russell, W.L.; Burns, R.P. Serum amylase and lipase in the evaluation of acute abdominal pain. Am. Surg. 1996, 62, 1028–1033. [Google Scholar]
- Joseph, J.; Viney, S.; Beck, P.; Strange, C.; Sahn, S.A.; Basran, G.S. A prospective study of amylase-rich pleural effusions with special reference to amylase isoenzyme analysis. Chest 1992, 102, 1455–1459. [Google Scholar] [CrossRef]
- Berk, J.E.; Fridhandler, L. Hyperamylasemia: Interpretation and newer approaches to evaluation. Adv. Intern. Med. 1980, 26, 235–264. [Google Scholar]
- Clavien, P.A.; Burgan, S.; Moossa, A.R. Serum enzymes and other laboratory tests in acute pancreatitis. Br. J. Surg. 1989, 76, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Vijver, M.A.T.; Dams, O.C.; Ter Maaten, J.M.; Beldhuis, I.E.; Damman, K.; Voors, A.A.; Verdonk, R.C.; van Veldhuisen, D.J. Increase of serum pancreatic enzymes during hospitalization for acute heart failure. ESC Heart Fail. 2024, 11, 3656–3661. [Google Scholar] [CrossRef] [PubMed]
Variables | All n = 146 | Amylase ≤ 39 IU/L n = 37 | Amylase > 39 IU/L n = 109 | p |
---|---|---|---|---|
Age, years | 71.5 ± 14.3 | 66.6 ± 16.4 | 73.1 ± 13.1 | 0.027 |
Female gender, n (%) | 50 (34.2) | 11 (29.7) | 39 (35.8) | 0.639 |
Body mass index, kg/m2 | 23.6 ± 5.0 | 25.3 ± 6.4 | 23.0 ± 4.3 | 0.045 |
Ischemic etiology, n (%) | 64 (43.8) | 13 (35.1) | 51 (46.8) | 0.297 |
AF, n (%) | 74 (50.7) | 16 (43.2) | 58 (53.2) | 0.391 |
History of heart failure, n (%) | 75 (51.4) | 13 (35.1) | 62 (56.9) | 0.036 |
Systolic blood pressure, mmHg | 135.9 ± 29.8 | 141.6 ± 29.8 | 133.9 ± 29.8 | 0.219 |
Diastolic blood pressure, mmHg | 79.3 ± 19.3 | 84.1 ± 18.9 | 77.7 ± 19.3 | 0.088 |
Heart rate, per min | 91.5 ± 24.6 | 95.0 ± 24.2 | 89.7 ± 24.3 | 0.329 |
Left ventricular ejection fraction, % | 42.1 ± 17.0 | 38.4 ± 15.1 | 43.1 ± 17.6 | 0.119 |
eGFR, mL/min/1.73 m2 | 53.8 ± 25.1 | 67.8 ± 22.3 | 49.0 ± 24.2 | <0.001 |
Hemoglobin, g/dL | 12.0 ± 2.3 | 12.5 ± 2.3 | 11.8 ± 2.3 | 0.141 |
Albumin, g/dL | 3.1 ± 0.5 | 3.1 ± 0.5 | 3.1 ± 0.5 | 0.491 |
GNRI | 91.0 ± 12.3 | 93.5 ± 15.4 | 90.0 ± 10.8 | 0.202 |
Cholinesterase, U/L | 206.3 ± 64.5 | 211.7 ± 65.7.0 | 204.7 ± 64.5 | 0.625 |
LDL cholesterol, mg/dL | 98.4 ± 31.7 | 101.1 ± 34.0 | 96.5 ± 31.4 | 0.545 |
HbA1c, % | 6.3 ± 1.2 | 6.5 ± 1.4 | 6.3 ± 1.1 | 0.346 |
BUN, mg/dL | 26.1 ± 16.1 | 19.8 ± 11.4 | 28.3 ± 17.0 | 0.001 |
Uric acid, mg/dL | 7.2 ± 2.4 | 7.9 ± 2.5 | 7.0 ± 2.3 | 0.067 |
Sodium, mmol/L | 139.5 ± 3.8 | 139.8 ± 3.8 | 139.4 ± 3.8 | 0.585 |
Potassium, mmol/L | 4.0 ± 0.6 | 4.1 ± 0.7 | 4.0 ± 0.6 | 0.744 |
CRP, mg/dL | 0.9 (3.0) | 1.0 (2.7) | 3.1 (3.1) | 0.688 |
BNP, pg/mL | 811.0 (953.5) | 822.0 (1064.1) | 811.0 (957.5) | 0.577 |
Beta blockers, n (%) | 68 (46.6) | 9 (24.3) | 59 (54.1) | 0.003 |
ACE-Is/ARBs, n (%) | 74 (50.7) | 13 (35.1) | 61 (56.0) | 0.046 |
MR antagonists, n (%) | 34 (16.4) | 4 (10.8) | 20 (18.3) | 0.417 |
Diuretics, n (%) | 76 (52.1) | 13 (35.1) | 63 (57.8) | 0.028 |
Variables | All n = 146 | Lipase ≤ 17 IU/L n = 36 | Lipase > 17 IU/L n = 110 | p |
---|---|---|---|---|
Age, years | 71.5 ± 14.3 | 73.6 ± 14.8 | 70.7 ± 14.1 | 0.301 |
Female gender, n (%) | 50 (34.2) | 15 (41.7) | 35 (31.8) | 0.380 |
BMI, kg/m2 | 23.6 ± 5.0 | 22.2 ± 3.9 | 24.0 ± 5.3 | 0.049 |
Ischemic etiology, n (%) | 64 (43.8) | 22 (61.1) | 42 (38.2) | 0.027 |
AF, n (%) | 74 (50.7) | 14 (38.9) | 60 (54.4) | 0.150 |
History of heart failure, n (%) | 75 (51.4) | 18 (50.0) | 57 (51.8) | 0.999 |
Systolic blood pressure, mmHg | 135.9 ± 29.8 | 132.6 ± 32.6 | 137.0 ± 29.1 | 0.499 |
Diastolic blood pressure, mmHg | 79.3 ± 19.3 | 75.5 ± 18.1 | 80.7 ± 19.6 | 0.166 |
Heart rate, per min | 91.5 ± 24.6 | 87.4 ± 22.1 | 92.3 ± 24.9 | 0.293 |
Left ventricular ejection fraction, % | 42.1 ± 17.0 | 41.8 ± 15.6 | 42.2 ± 17.6 | 0.887 |
eGFR, mL/min/1.73 m2 | 53.8 ± 25.1 | 59.2 ± 25.2 | 52.3 ± 24.9 | 0.051 |
Hemoglobin, g/dL | 12.0 ± 2.3 | 11.5 ± 2.0 | 12.2 ± 2.4 | 0.109 |
Albumin, g/dL | 3.1 ± 0.5 | 3.0 ± 0.5 | 3.2 ± 0.4 | 0.202 |
GNRI | 91.0 ± 12.3 | 85.9 ± 8.8 | 92.5 ± 12.7 | 0.001 |
Cholinesterase, U/L | 206.3 ± 64.5 | 190.2 ± 50.6 | 209.9 ± 68.5 | 0.150 |
LDL cholesterol, mg/dL | 98.4 ± 31.7 | 89.6 ± 25.8 | 100.7 ± 33.5 | 0.133 |
HbA1c, % | 6.3 ± 1.2 | 6.5 ± 1.0 | 6.3 ± 1.2 | 0.293 |
BUN, mg/dL | 26.1 ± 16.1 | 25.9 ± 13.5 | 26.1 ± 16.9 | 0.928 |
Uric acid, mg/dL | 7.2 ± 2.4 | 7.0 ± 2.6 | 7.4 ± 2.3 | 0.342 |
Sodium, mmol/L | 139.5 ± 3.8 | 139.4 ± 3.8 | 139.5 ± 3.8 | 0.691 |
Potassium, mmol/L | 4.0 ± 0.6 | 4.1 ± 0.7 | 4.0 ± 0.6 | 0.759 |
CRP, mg/dL | 0.9 (3.0) | 2.0 (5.3) | 0.7 (2.4) | 0.062 |
BNP, pg/mL | 811.0 (953.5) | 928.0 (1280.3) | 806.0 (869.0) | 0.213 |
Beta blockers, n (%) | 68 (46.6) | 17 (47.2) | 51 (46.4) | 0.999 |
ACE-Is/ARBs, n (%) | 74 (50.7) | 17 (47.2) | 57 (51.8) | 0.774 |
MR antagonists, n (%) | 34 (16.4) | 3 (8.3) | 21 (19.1) | 0.210 |
Diuretics, n (%) | 76 (52.1) | 17 (47.2) | 59 (53.6) | 0.634 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | |
Age (1 year increase) | 1.03 | 1.01–1.05 | 0.015 | 1.03 | 1.00–1.05 | 0.016 |
History of heart failure (yes) | 2.43 | 1.43–4.14 | 0.001 | 2.70 | 1.55–4.72 | 0.001 |
Ischemic etiology (yes) | 2.19 | 1.32–3.62 | 0.002 | - | - | - |
Diastolic blood pressure (1 mmHg increase) | 0.98 | 0.97–0.99 | 0.016 | - | - | - |
Hemoglobin (1 g/dL increase) | 0.86 | 0.77–0.95 | 0.005 | - | - | - |
Albumin (1 g/dL increase) | 0.42 | 0.24–0.74 | 0.003 | - | - | - |
Cholinesterase (1 U/L increase) | 0.99 | 0.98–0.99 | <0.001 | 0.99 | 0.98–0.99 | 0.001 |
LDL cholesterol (1 mg/dL increase) | 0.98 | 0.97–0.99 | 0.002 | - | - | - |
HbA1c (1% increase) | 1.23 | 1.02–1.49 | 0.032 | 1.43 | 1.16–1.76 | 0.001 |
BUN (1 mg/dL increase) | 1.03 | 1.01–1.04 | <0.001 | - | - | - |
eGFR (1 mL/min/1.73 m increase) | 0.99 | 0.98–0.99 | 0.013 | - | - | - |
GNRI (1 increase) * | 0.97 | 0.95–0.99 | 0.013 | - | - | - |
Sodium (1 mmol/L increase) | 0.92 | 0.87–0.98 | 0.011 | - | - | - |
Log-CRP (1 increase) | 1.18 | 0.99–1.41 | 0.061 | - | - | - |
Log-BNP (1 increase) | 1.44 | 1.04–2.00 | 0.028 | - | - | - |
Use of Beta blocker (yes) | 1.99 | 1.20–3.31 | 0.008 | - | - | - |
Use of MR antagonists (yes) | 1.72 | 0.91–3.24 | 0.094 | - | - | - |
Use of diuretics (yes) | 2.00 | 1.19–3.35 | 0.009 | - | - | - |
Low amylase (yes) | 1.08 | 0.62–1.88 | 0.796 | - | - | - |
Low lipase (yes) | 2.45 | 1.47–4.08 | 0.001 | 1.96 | 1.16–3.32 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiki, M.; Kasai, T.; Sato, A.; Ishiwata, S.; Yatsu, S.; Shitara, J.; Matsumoto, H.; Shimizu, M.; Murata, A.; Kato, T.; et al. Relationship Between Serum Levels of Pancreatic Exocrine Enzymes on Admission and Long-Term Clinical Outcomes in Patients with Acute Decompensated Heart Failure. J. Clin. Med. 2025, 14, 1500. https://doi.org/10.3390/jcm14051500
Hiki M, Kasai T, Sato A, Ishiwata S, Yatsu S, Shitara J, Matsumoto H, Shimizu M, Murata A, Kato T, et al. Relationship Between Serum Levels of Pancreatic Exocrine Enzymes on Admission and Long-Term Clinical Outcomes in Patients with Acute Decompensated Heart Failure. Journal of Clinical Medicine. 2025; 14(5):1500. https://doi.org/10.3390/jcm14051500
Chicago/Turabian StyleHiki, Masaru, Takatoshi Kasai, Akihiro Sato, Sayaki Ishiwata, Shoichiro Yatsu, Jun Shitara, Hiroki Matsumoto, Megumi Shimizu, Azusa Murata, Takao Kato, and et al. 2025. "Relationship Between Serum Levels of Pancreatic Exocrine Enzymes on Admission and Long-Term Clinical Outcomes in Patients with Acute Decompensated Heart Failure" Journal of Clinical Medicine 14, no. 5: 1500. https://doi.org/10.3390/jcm14051500
APA StyleHiki, M., Kasai, T., Sato, A., Ishiwata, S., Yatsu, S., Shitara, J., Matsumoto, H., Shimizu, M., Murata, A., Kato, T., Suda, S., Iwata, H., & Daida, H. (2025). Relationship Between Serum Levels of Pancreatic Exocrine Enzymes on Admission and Long-Term Clinical Outcomes in Patients with Acute Decompensated Heart Failure. Journal of Clinical Medicine, 14(5), 1500. https://doi.org/10.3390/jcm14051500