The Current State of the Art in Autologous Breast Reconstruction: A Review and Modern/Future Approaches
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Abdominally Based Flaps
3.1.1. TRAM
3.1.2. DIEP
3.1.3. SIEA
3.2. Alternative Flap Choices for Breast Reconstruction
3.2.1. LAP
3.2.2. SGAP and IGAP
3.2.3. TUG
3.2.4. PAP
4. Discussion
4.1. Donor Site Selection: Abdomen and Alternative Sites
4.2. Technical Advancements
4.3. Emergence of Multiple Free Flap Breast Reconstructions
4.4. Functional Restoration of Breast
4.5. Future Perspectives
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Common Cancer Sites—Cancer Stat Facts. 2025. Available online: https://seer.cancer.gov/statfacts/html/common.html (accessed on 9 February 2025).
- Kummerow, K.L.; Du, L.; Penson, D.F.; Shyr, Y.; Hooks, M.A. Nationwide Trends in Mastectomy for Early-Stage Breast Cancer. JAMA Surg. 2015, 150, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Plastic Surgery Statistics. Available online: https://www.plasticsurgery.org/news/plastic-surgery-statistics (accessed on 9 February 2025).
- Kroll, S.S.; Baldwin, B. A comparison of outcomes using three different methods of breast reconstruction. Plast. Reconstr. Surg. 1992, 90, 455–462. [Google Scholar] [CrossRef]
- Haddock, N.T.; Cho, M.-J.; Teotia, S.S. Comparative Analysis of Single versus Stacked Free Flap Breast Reconstruction: A Single-Center Experience. Plast. Reconstr. Surg. 2019, 144, 369e–377e. [Google Scholar] [CrossRef] [PubMed]
- Parham, C.S.; Hanson, S.E.; Butler, C.E.; Calobrace, M.B.; Hollrah, R.; Macgregor, T.; Clemens, M.W. Advising patients about breast implant associated anaplastic large cell lymphoma. Gland Surg. 2021, 10, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Pelc, Z.; Skórzewska, M.; Kurylcio, A.; Olko, P.; Dryka, J.; Machowiec, P.; Maksymowicz, M.; Rawicz-Pruszyński, K.; Polkowski, W. Current Challenges in Breast Implantation. Medicina 2021, 57, 1214. [Google Scholar] [CrossRef]
- Lee, B.T.; Agarwal, J.P.; Ascherman, J.A.; Caterson, S.A.; Gray, D.D.; Hollenbeck, S.T.; Khan, S.A.; Loeding, L.D.; Mahabir, R.C.; Miller, A.S.; et al. Evidence-Based Clinical Practice Guideline: Autologous Breast Reconstruction with DIEP or Pedicled TRAM Abdominal Flaps. Plast. Reconstr. Surg. 2017, 140, 651e–664e. [Google Scholar] [CrossRef]
- Masoomi, H.; Hanson, S.E.; Clemens, M.W.; Mericli, A.F. Autologous Breast Reconstruction Trends in the United States: Using the Nationwide Inpatient Sample Database. Ann. Plast. Surg. 2021, 87, 242–247. [Google Scholar] [CrossRef]
- Reyna, C.; Lee, M.C. Breast cancer in young women: Special considerations in multidisciplinary care. J. Multidiscip. Healthc. 2014, 7, 419–429. [Google Scholar] [CrossRef]
- Haddock, N.T.; Teotia, S.S. Modern Approaches to Alternative Flap-Based Breast Reconstruction: Stacked Flaps. Clin. Plast. Surg. 2023, 50, 325–335. [Google Scholar] [CrossRef]
- Myers, P.L.; Nelson, J.A.; Allen, R.J., Jr. Alternative flaps in autologous breast reconstruction. Gland Surg. 2021, 10, 444–459. [Google Scholar] [CrossRef]
- Sullivan, D.; Chung, K.C.; Eaves, F.F.; Rohrich, R.J. The Level of Evidence Pyramid: Indicating Levels of Evidence in Plastic and Reconstructive Surgery Articles. Plast. Reconstr. Surg. 2021, 148, 68S–71S. [Google Scholar] [CrossRef] [PubMed]
- Hallock, G.G. Physiological studies using laser Doppler flowmetry to compare blood flow to the zones of the free TRAM flap. Ann. Plast. Surg. 2001, 47, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Kroll, S.S.; Schusterman, M.A.; Reece, G.P.; Miller, M.J.; Robb, G.; Evans, G. Abdominal wall strength, bulging, and hernia after TRAM flap breast reconstruction. Plast. Reconstr. Surg. 1995, 96, 616–619. [Google Scholar] [CrossRef]
- Alderman, A.K.; Kuzon, W.M., Jr.; Wilkins, E.G. A two-year prospective analysis of trunk function in TRAM breast reconstructions. Plast. Reconstr. Surg. 2006, 117, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.J.; Treece, P. Deep inferior epigastric perforator flap for breast reconstruction. Ann. Plast. Surg. 1994, 32, 32–38. [Google Scholar] [CrossRef]
- Blondeel, P.N.; Boeckx, W.D. Refinements in free flap breast reconstruction: The free bilateral deep inferior epigastric perforator flap anastomosed to the internal mammary artery. Br. J. Plast. Surg. 1994, 47, 495–501. [Google Scholar] [CrossRef]
- Blondeel, N.; Vanderstraeten, G.G.; Monstrey, S.J.; Van Landuyt, K.; Tonnard, P.; Lysens, R.; Boeckx, W.; Matton, G. The donor site morbidity of free DIEP flaps and free TRAM flaps for breast reconstruction. Br. J. Plast. Surg. 1997, 50, 322–330. [Google Scholar] [CrossRef]
- Nahabedian, M.Y.; Manson, P.N. Contour abnormalities of the abdomen after transverse rectus abdominis muscle flap breast reconstruction: A multifactorial analysis. Plast. Reconstr. Surg. 2002, 109, 81–87; discussion 88–90. [Google Scholar] [CrossRef]
- Nahabedian, M.Y.; Tsangaris, T.; Momen, B. Breast reconstruction with the DIEP flap or the muscle-sparing (MS-2) free TRAM flap: Is there a difference? Plast. Reconstr. Surg. 2005, 115, 436–444; discussion 445–446. [Google Scholar] [CrossRef]
- Bajaj, A.K.; Chevray, P.M.; Chang, D.W. Comparison of donor-site complications and functional outcomes in free muscle-sparing TRAM flap and free DIEP flap breast reconstruction. Plast. Reconstr. Surg. 2006, 117, 737–746; discussion 747–750. [Google Scholar] [CrossRef]
- Man, L.X.; Selber, J.C.; Serletti, J.M. Abdominal wall following free TRAM or DIEP flap reconstruction: A meta-analysis and critical review. Plast. Reconstr. Surg. 2009, 124, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Selber, J.C.; Nelson, J.; Fosnot, J.; Goldstein, J.; Bergey, M.; Sonnad, S.S.; Serletti, J.M. A prospective study comparing the functional impact of SIEA, DIEP, and muscle-sparing free TRAM flaps on the abdominal wall: Part I. unilateral reconstruction. Plast. Reconstr. Surg. 2010, 126, 1142–1153. [Google Scholar] [CrossRef]
- Wan, D.C.; Tseng, C.Y.; Anderson-Dam, J.; Dalio, A.L.; Crisera, C.A.; Festekjian, J.H. Inclusion of mesh in donor-site repair of free TRAM and muscle-sparing free TRAM flaps yields rates of abdominal complications comparable to those of DIEP flap reconstruction. Plast. Reconstr. Surg. 2010, 126, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Garvey, P.B.; Salavati, S.; Feng, L.; Butler, C.E. Perfusion-related complications are similar for DIEP and muscle-sparing free TRAM flaps harvested on medial or lateral deep inferior epigastric Artery branch perforators for breast reconstruction. Plast. Reconstr. Surg. 2011, 128, 581e–589e. [Google Scholar] [CrossRef]
- Shubinets, V.; Fox, J.P.; Sarik, J.R.; Kovach, S.J.; Fischer, J.P. Surgically Treated Hernia following Abdominally Based Autologous Breast Reconstruction: Prevalence, Outcomes, and Expenditures. Plast. Reconstr. Surg. 2016, 137, 749–757. [Google Scholar] [CrossRef]
- Chen, C.M.; Halvorson, E.G.; Disa, J.J.; McCarthy, C.; Hu, Q.Y.; Pusic, A.L.; Cordeiro, P.G.; Mehrara, B.J. Immediate postoperative complications in DIEP versus free/muscle-sparing TRAM flaps. Plast. Reconstr. Surg. 2007, 120, 1477–1482. [Google Scholar] [CrossRef]
- Nelson, J.A.; Guo, Y.; Sonnad, S.S.; Low, D.W.; Kovach, S.J., 3rd; Wu, L.C.; Serletti, J.M. A Comparison between DIEP and muscle-sparing free TRAM flaps in breast reconstruction: A single surgeon’s recent experience. Plast. Reconstr. Surg. 2010, 126, 1428–1435. [Google Scholar] [CrossRef]
- Drazan, L.; Vesely, J.; Hyza, P.; Castagnetti, F.; Stupka, I.; Justan, I.; Novak, P.; Monni, N. Bilateral breast reconstruction with DIEP flaps: 4 years’ experience. J. Plast. Reconstr. Aesthet. Surg. 2008, 61, 1309–1315. [Google Scholar] [CrossRef]
- Damen, T.H.; Mureau, M.A.; Timman, R.; Rakhorst, H.A.; Hofer, S.O. The pleasing end result after DIEP flap breast reconstruction: A review of additional operations. J. Plast. Reconstr. Aesthet. Surg. 2009, 62, 71–76. [Google Scholar] [CrossRef]
- Figus, A.; Canu, V.; Iwuagwu, F.C.; Ramakrishnan, V. DIEP flap with implant: A further option in optimising breast reconstruction. J. Plast. Reconstr. Aesthet. Surg. 2009, 62, 1118–1126. [Google Scholar] [CrossRef]
- Ochoa, O.; Garza, R., 3rd; Pisano, S.; Chrysopoulo, M.; Ledoux, P.; Arishita, G.; Ketchum, N.; Michalek, J.E.; Nastala, C. Prospective Longitudinal Patient-Reported Satisfaction and Health-Related Quality of Life following DIEP Flap Breast Reconstruction: Relationship with Body Mass Index. Plast. Reconstr. Surg. 2019, 143, 1589–1600. [Google Scholar] [CrossRef] [PubMed]
- Santanelli, F.; Longo, B.; Angelini, M.; Laporta, R.; Paolini, G. Prospective computerized analyses of sensibility in breast reconstruction with non-reinnervated DIEP flap. Plast. Reconstr. Surg. 2011, 127, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Inbal, A.; Gur, E.; Otremski, E.; Zaretski, A.; Amir, A.; Weiss, J.; Barnea, Y. Simultaneous contralateral breast adjustment in unilateral deep inferior epigastric perforator breast reconstruction. J. Reconstr. Microsurg. 2012, 28, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.W.; Kuo, W.L.; Cheong, D.C.; Tsai, H.P.; Kao, S.W.; Chen, C.F.; Huang, J.-J.M. Six steps for a successful aesthetic free flap reconstruction after minimally invasive mastectomy: A retrospective case-control study. Int. J. Surg. 2024, 110, 645–653. [Google Scholar] [CrossRef]
- van Rooij, J.A.F.; Bijkerk, E.; van der Hulst, R.; van Kuijk, S.M.J.; Tuinder, S.M.H. Replacing an Implant-Based with a DIEP Flap Breast Reconstruction: Breast Sensation and Quality of Life. Plast. Reconstr. Surg. 2023, 152, 293–304. [Google Scholar]
- Cohen, O.; Small, K.; Lee, C.; Petruolo, O.; Karp, N.; Choi, M. Is Unilateral Implant or Autologous Breast Reconstruction Better in Obtaining Breast Symmetry? Breast J. 2016, 22, 75–82. [Google Scholar] [CrossRef]
- Bailey, E.; Chen, B.; Nelson, W.; Nosik, S.; Fortunato, R.; Moreira, A.A.; Murariu, D.M. Robotic versus Standard Harvest of Deep Inferior Epigastric Artery Perforator Flaps: Early Outcomes. Plast. Reconstr. Surg. Glob. Open 2022, 10 (Suppl. 10), 64–65. [Google Scholar] [CrossRef]
- Choi, J.H.; Song, S.Y.; Park, H.S.; Kim, C.H.; Kim, J.Y.; Roh, T.S.M.; Lee, D.W.M. Robotic DIEP Flap Harvest through a Totally Extraperitoneal Approach Using a Single-Port Surgical Robotic System. Plast. Reconstr. Surg. 2021, 148, 304–307. [Google Scholar] [CrossRef]
- Moreira, A.; Bailey, E.A.; Chen, B.; Nelson, W.; Li, J.; Fortunato, R.; Nosik, S.; Murariu, D. A New Era in Perforator Flap Surgery for Breast Reconstruction: A Comparative Study of Robotic versus Standard Harvest of Bilateral Deep Inferior Epigastric Artery Perforator Flaps. J. Reconstr. Microsurg. 2024. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Won, J.; Song, S.Y.; Park, H.S.; Kim, J.Y.; Shin, H.J.; Kwon, Y.I.; Lee, D.W.; Kim, N.Y. Clinical outcomes following robotic versus conventional DIEP flap in breast reconstruction: A retrospective matched study. Front. Oncol. 2022, 12, 989231. [Google Scholar] [CrossRef]
- Blondeel, P.N.; Demuynck, M.; Mete, D.; Monstrey, S.J.; Van Landuyt, K.; Matton, G.; Vanderstraeten, G.G. Sensory nerve repair in perforator flaps for autologous breast reconstruction: Sensational or senseless? Br. J. Plast. Surg. 1999, 52, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, A.J.; Menn, Z.K.; Eldor, L.; Kaufman, Y.; Dellon, A.L. Breast Reinnervation: DIEP Neurotization Using the Third Anterior Intercostal Nerve. Plast. Reconstr. Surg. Glob. Open 2013, 1, e72. [Google Scholar] [CrossRef] [PubMed]
- Weissler, J.M.; Koltz, P.F.; Carney, M.J.; Serletti, J.M.; Wu, L.C. Sifting through the Evidence: A Comprehensive Review and Analysis of Neurotization in Breast Reconstruction. Plast. Reconstr. Surg. 2018, 141, 550–565. [Google Scholar] [CrossRef] [PubMed]
- Beugels, J.; Cornelissen, A.J.M.; Spiegel, A.J.; Heuts, E.M.; Piatkowski, A.; van der Hulst, R.; Tuinder, S. Sensory recovery of the breast after innervated and non-innervated autologous breast reconstructions: A systematic review. J. Plast. Reconstr. Aesthet. Surg. 2017, 70, 1229–1241. [Google Scholar] [CrossRef]
- Beugels, J.; Cornelissen, A.J.M.; van Kuijk, S.M.J.; Lataster, A.; Heuts, E.M.; Piatkowski, A.; Spiegel, A.J.; van der Hulst, R.R.W.J.; Tuinder, S.M.H. Sensory Recovery of the Breast following Innervated and Noninnervated DIEP Flap Breast Reconstruction. Plast. Reconstr. Surg. 2019, 144, 178e–188e. [Google Scholar] [CrossRef]
- Beugels, J.; Bijkerk, E.; Lataster, A.; Heuts, E.M.; van der Hulst, R.; Tuinder, S.M.H. Nerve Coaptation Improves the Sensory Recovery of the Breast in DIEP Flap Breast Reconstruction. Plast. Reconstr. Surg. 2021, 148, 273–284. [Google Scholar] [CrossRef]
- Shiah, E.; Laikhter, E.; Comer, C.D.; Manstein, S.M.; Bustos, V.P.; Bain, P.A.; Lee, B.T.; Lin, S.J. Neurotization in Innervated Breast Reconstruction: A Systematic Review of Techniques and Outcomes. J. Plast. Reconstr. Aesthet. Surg. 2022, 75, 2890–2913. [Google Scholar] [CrossRef]
- Pacifico, M.D.; See, M.S.; Cavale, N.; Collyer, J.; Francis, I.; Jones, M.E.; Hazari, A.; Boorman, J.; Smith, R. Preoperative planning for DIEP breast reconstruction: Early experience of the use of computerised tomography angiography with VoNavix 3D software for perforator navigation. J. Plast. Reconstr. Aesthet. Surg. 2009, 62, 1464–1469. [Google Scholar] [CrossRef]
- Acosta, R.; Enajat, M.; Rozen, W.M.; Smit, J.M.; Wagstaff, M.J.; Whitaker, I.S.; Audolfsson, T. Performing two DIEP flaps in a working day: An achievable and reproducible practice. J. Plast. Reconstr. Aesthet. Surg. 2010, 63, 648–654. [Google Scholar] [CrossRef]
- Cho, M.J.; Haddock, N.T.; Teotia, S.S. Clinical Decision Making Using CTA in Conjoined, Bipedicled DIEP and SIEA for Unilateral Breast Reconstruction. J. Reconstr. Microsurg. 2020, 36, 241–246. [Google Scholar] [CrossRef]
- Mohan, A.T.; Zhu, L.; Wang, Z.; Vijayasekaran, A.; Saint-Cyr, M. Techniques and Perforator Selection in Single, Dominant DIEP Flap Breast Reconstruction: Algorithmic Approach to Maximize Efficiency and Safety. Plast. Reconstr. Surg. 2016, 138, 790e–803e. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Mun, G.H. Volumetric Planning Using Computed Tomographic Angiography Improves Clinical Outcomes in DIEP Flap Breast Reconstruction. Plast. Reconstr. Surg. 2016, 137, 771e–780e. [Google Scholar] [CrossRef] [PubMed]
- Selber, J.C.; Samra, F.; Bristol, M.; Sonnad, S.S.; Vega, S.; Wu, L.; Serletti, J.M. A head-to-head comparison between the muscle-sparing free TRAM and the SIEA flaps: Is the rate of flap loss worth the gain in abdominal wall function? Plast. Reconstr. Surg. 2008, 122, 348–355. [Google Scholar] [CrossRef]
- Arnez, Z.M.; Khan, U.; Pogorelec, D.; Planinsek, F. Breast reconstruction using the free superficial inferior epigastric artery (SIEA) flap. Br. J. Plast. Surg. 1999, 52, 276–279. [Google Scholar] [CrossRef]
- Holm, C.; Mayr, M.; Höfter, E.; Raab, N.; Ninkovic, M. Interindividual variability of the SIEA Angiosome: Effects on operative strategies in breast reconstruction. Plast. Reconstr. Surg. 2008, 122, 1612–1620. [Google Scholar] [CrossRef]
- Coroneos, C.J.; Heller, A.M.; Voineskos, S.H.; Avram, R. SIEA versus DIEP Arterial Complications: A Cohort Study. Plast. Reconstr. Surg. 2015, 135, 802e–807e. [Google Scholar] [CrossRef]
- Spiegel, A.J.; Khan, F.N. An Intraoperative algorithm for use of the SIEA flap for breast reconstruction. Plast. Reconstr. Surg. 2007, 120, 1450–1459. [Google Scholar] [CrossRef]
- Dorafshar, A.H.; Januszyk, M.; Song, D.H. Anatomical and technical tips for use of the superficial inferior epigastric artery (SIEA) flap in breast reconstructive surgery. J. Reconstr. Microsurg. 2010, 26, 381–389. [Google Scholar] [CrossRef]
- Piorkowski, J.R.; DeRosier, L.C.; Nickerson, P.; Fix, R.J. Preoperative computed tomography angiogram to predict patients with favorable anatomy for superficial inferior epigastric artery flap breast reconstruction. Ann. Plast. Surg. 2011, 66, 534–536. [Google Scholar] [CrossRef]
- Cho, M.J.; Teotia, S.S.; Haddock, N.T. Classification and Management of Donor-Site Wound Complications in the Profunda Artery Perforator Flap for Breast Reconstruction. J. Reconstr. Microsurg. 2020, 36, 110–115. [Google Scholar] [CrossRef]
- Yano, T.; Yoshimatsu, H.; Karakawa, R.; Fuse, Y.; Kuramoto, Y.; Shibata, T.; Suesada, N.; Miyashita, H. Use of a combined SIEA and SCIP based double pedicled abdominal flap for breast reconstruction. Microsurgery 2021, 41, 319–326. [Google Scholar] [CrossRef]
- Hembd, A.; Liu, Y.; Haddock, N.T.; Teotia, S.S. Abandoning the SIEA Flap for the Dual-Plane DIEP Reduces Fat Necrosis and Flap Failure. Plast. Reconstr. Surg. 2023, 151, 958–968. [Google Scholar] [CrossRef]
- Opsomer, D.; Stillaert, F.; Blondeel, P.; Van Landuyt, K. The Lumbar Artery Perforator Flap in Autologous Breast Reconstruction: Initial Experience with 100 Cases. Plast. Reconstr. Surg. 2018, 142, 1e–8e. [Google Scholar] [CrossRef] [PubMed]
- Haddock, N.T.; Lakatta, A.C.; Steppe, C.; Teotia, S.S. DIEP Flap vs PAP Flap vs LAP Flap: A Propensity Matched Analysis of Aesthetic Outcomes, Complications, and Satisfaction. Plast. Reconstr. Surg. 2024, 12, 49. [Google Scholar]
- Teotia, S.S.; Henn, D.; Lakatta, A.; Steppe, C.; Haddock, N.T. Breast Reconstruction With Simultaneous Bilateral Lumbar Artery Perforator Flaps Improves Waistline Definition and Buttock Projection. Aesthet. Surg. J. 2024, 44, 165–171. [Google Scholar] [CrossRef]
- Opsomer, D.; Vyncke, T.; Ryx, M.; Van Landuyt, K.; Blondeel, P.; Stillaert, F. Donor Site Morbidity after Lumbar Artery Perforator Flap Breast Reconstruction. J. Reconstr. Microsurg. 2022, 38, 129–136. [Google Scholar] [CrossRef]
- Haddock, N.T.; Teotia, S.S. Lumbar Artery Perforator Flap: Initial Experience with Simultaneous Bilateral Flaps for Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2800. [Google Scholar] [CrossRef]
- Martineau, J.; Kalbermatten, D.F.; Oranges, C.M. Safety and Efficacy of the Superior Gluteal Artery Perforator (SGAP) Flap in Autologous Breast Reconstruction: Systematic Review and Meta-Analysis. Cancers 2022, 14, 4420. [Google Scholar] [CrossRef]
- Martineau, J.; Scampa, M.; Viscardi, J.A.; Giordano, S.; Kalbermatten, D.F.; Oranges, C.M. Inferior gluteal artery perforator (IGAP) flap in autologous breast reconstruction: A proportional meta-analysis of surgical outcomes. J. Plast. Reconstr. Aesthet. Surg. 2023, 84, 147–156. [Google Scholar] [CrossRef]
- Guerra, A.B.; Metzinger, S.E.; Bidros, R.S.; Gill, P.S.; Dupin, C.L.; Allen, R.J. Breast reconstruction with gluteal artery perforator (GAP) flaps: A critical analysis of 142 cases. Ann. Plast. Surg. 2004, 52, 118–125. [Google Scholar] [CrossRef]
- Guerra, A.B.; Soueid, N.; Metzinger, S.E.; Levine, J.; Bidros, R.S.; Erhard, H.; Allen, R.J. Simultaneous bilateral breast reconstruction with superior gluteal artery perforator (SGAP) flaps. Ann. Plast. Surg. 2004, 53, 305–310. [Google Scholar] [CrossRef]
- Granzow, J.W.; Levine, J.L.; Chiu, E.S.; Allen, R.J. Breast reconstruction with gluteal artery perforator flaps. J. Plast. Reconstr. Aesthet. Surg. 2006, 59, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, S.; Werdin, F.; Peek, A. The sGAP flap: Rare exception or second choice in autologous breast reconstruction? J. Reconstr. Microsurg. 2010, 26, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Mirzabeigi, M.N.; Au, A.; Jandali, S.; Natoli, N.; Sbitany, H.; Serletti, J.M. Trials and tribulations with the inferior gluteal artery perforator flap in autologous breast reconstruction. Plast. Reconstr. Surg. 2011, 128, 614e–624e. [Google Scholar] [CrossRef]
- Satake, T.; Muto, M.; Ogawa, M.; Shibuya, M.; Yasumura, K.; Kobayashi, S.; Ishikawa, T.; Maegawa, J. Unilateral breast reconstruction using bilateral inferior gluteal artery perforator flaps. Plast. Reconstr. Surg. Glob. Open 2015, 3, e314. [Google Scholar] [CrossRef]
- Levine, J.L.; Miller, Q.; Vasile, J.; Khoobehi, K.; Craigie, J.; Wise, M.W.; Allen, R.J. Simultaneous bilateral breast reconstruction with in-the-crease inferior gluteal artery perforator flaps. Ann. Plast. Surg. 2009, 63, 249–254. [Google Scholar] [CrossRef]
- Fattah, A.; Figus, A.; Mathur, B.; Ramakrishnan, V.V. The transverse myocutaneous gracilis flap: Technical refinements. J. Plast. Reconstr. Aesthet. Surg. 2010, 63, 305–313. [Google Scholar] [CrossRef]
- Saint-Cyr, M.; Wong, C.; Oni, G.; Maia, M.; Trussler, A.; Mojallal, A.; Rohrich, R.J. Modifications to extend the transverse upper gracilis flap in breast reconstruction: Clinical series and results. Plast. Reconstr. Surg. 2012, 129, 24e–36e. [Google Scholar] [CrossRef]
- Sharp, O.; Johal, K.S.; Morgan, M.; Ramakrishnan, V.V. Primary lipofilling as an adjunct in transverse upper gracilis flap breast reconstruction. J. Plast. Reconstr. Aesthet. Surg. 2023, 86, 1–7. [Google Scholar] [CrossRef]
- Lee, Z.H.; Chu, C.K.; Asaad, M.; Liu, J.; Selber, J.C.; Butler, C.E.; Largo, R.D. Comparing Donor Site Morbidity for Autologous Breast Reconstruction: Thigh vs. Abdomen. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4215. [Google Scholar] [CrossRef]
- Dayan, J.H.; Allen, R.J., Jr. Neurotized Diagonal Profunda Artery Perforator Flaps for Breast Reconstruction. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2463. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.K.; Largo, R.D.; Lee, Z.H.; Adelman, D.M.; Egro, F.; Winocour, S.; Reece, E.M.; Selber, J.C.M.; Butler, C.E. Introduction of the L-PAP Flap: Bipedicled, Conjoined, and Stacked Thigh-Based Flaps for Autologous Breast Reconstruction. Plast. Reconstr. Surg. 2023, 152, 1005e–1010e. [Google Scholar] [CrossRef] [PubMed]
- Hunsinger, V.; Lhuaire, M.; Haddad, K.; Wirz, F.S.; Abedalthaqafi, S.; Obadia, D.; Derder, M.; Marchac, A.; Benjoar, M.D.; Hivelin, M.; et al. Medium- and Large-Sized Autologous Breast Reconstruction using a Fleur-de-lys Profunda Femoris Artery Perforator Flap Design: A Report Comparing Results with the Horizontal Profunda Femoris Artery Perforator Flap. J. Reconstr. Microsurg. 2019, 35, 8–14. [Google Scholar] [PubMed]
- Haddock, N.T.; Cho, M.J.; Gassman, A.; Teotia, S.S. Stacked Profunda Artery Perforator Flap for Breast Reconstruction in Failed or Unavailable Deep Inferior Epigastric Perforator Flap. Plast. Reconstr. Surg. 2019, 143, 488e–494e. [Google Scholar] [CrossRef] [PubMed]
- Haddock, N.T.; Suszynski, T.M.; Teotia, S.S. Consecutive Bilateral Breast Reconstruction Using Stacked Abdominally Based and Posterior Thigh Free Flaps. Plast. Reconstr. Surg. 2021, 147, 294–303. [Google Scholar] [CrossRef]
- Greige, N.; Nash, D.; Salibian, A.A.; Sultan, S.M.; Ricci, J.A.; Thanik, V.D.; Weichman, K.E. Estimation of Profunda Artery Perforator Flap Weight Using Preoperative Computed Tomography Angiography. J. Reconstr. Microsurg. 2020, 36, 645–650. [Google Scholar] [CrossRef]
- Chan, S.Y.; Kuo, W.L.; Cheong, D.C.; Chang, F.C.; Huang, J.J. Small flaps in microsurgical breast reconstruction: Selection between the profunda artery perforator and small deep inferior epigastric artery perforator flaps and associated outcomes and complications. Microsurgery 2024, 44, e31046. [Google Scholar] [CrossRef]
- Hunter, J.E.; Lardi, A.M.; Dower, D.R.; Farhadi, J. Evolution from the TUG to PAP flap for breast reconstruction: Comparison and refinements of technique. J. Plast. Reconstr. Aesthet. Surg. 2015, 68, 960–965. [Google Scholar] [CrossRef]
- Hartrampf, C.R.; Scheflan, M.; Black, P.W. Breast reconstruction with a transverse abdominal island flap. Plast. Reconstr. Surg. 1982, 69, 216–225. [Google Scholar] [CrossRef]
- Taylor, G.I.; Corlett, R.J.; Boyd, J.B. The versatile deep inferior epigastric (inferior rectus abdominis) flap. Br. J. Plast. Surg. 1984, 37, 330–350. [Google Scholar] [CrossRef]
- Grotting, J.C.; Urist, M.M.; Maddox, W.A.; Vasconez, L.O. Conventional TRAM flap versus free microsurgical TRAM flap for immediate breast reconstruction. Plast. Reconstr. Surg. 1989, 83, 828–841; discussion 842–844. [Google Scholar] [CrossRef] [PubMed]
- Arnez, Z.M.; Pogorelec, D.; Planinsek, F.; Ahcan, U. Breast reconstruction by the free transverse gracilis (TUG) flap. Br. J. Plast. Surg. 2004, 57, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Siegwart, L.C.; Fischer, S.; Diehm, Y.F.; Heil, J.M.; Hirche, C.; Kneser, U.; Kotsougiani-Fischer, D. The transverse musculocutaneous gracilis flap for autologous breast reconstruction: Focus on donor site morbidity. Breast Cancer 2021, 28, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.J.; Haddock, N.T.; Ahn, C.Y.; Sadeghi, A. Breast reconstruction with the profunda artery perforator flap. Plast. Reconstr. Surg. 2012, 129, 16e–23e. [Google Scholar] [CrossRef]
- Allen, R.J.; Tucker, C., Jr. Superior gluteal artery perforator free flap for breast reconstruction. Plast. Reconstr. Surg. 1995, 95, 1207–1212. [Google Scholar] [CrossRef]
- Allen, R.; Guarda, H.; Wall, F.; Dupin, C.; Glass, C. Free flap breast reconstruction: The LSU experience (1984–1996). J. La. State Med. Soc. 1997, 149, 388–392. [Google Scholar]
- DellaCroce, F.J.; DellaCroce, H.C.; Blum, C.A.; Sullivan, S.K.; Trahan, C.G.; Wise, M.W.; Brates, I.G. Myth-Busting the DIEP Flap and an Introduction to the Abdominal Perforator Exchange (APEX) Breast Reconstruction Technique: A Single-Surgeon Retrospective Review. Plast. Reconstr. Surg. 2019, 143, 992–1008. [Google Scholar] [CrossRef]
- Hivelin, M.; Soprani, A.; Schaffer, N.; Hans, S.; Lantieri, L. Minimally Invasive Laparoscopically Dissected Deep Inferior Epigastric Artery Perforator Flap: An Anatomical Feasibility Study and a First Clinical Case. Plast. Reconstr. Surg. 2018, 141, 33–39. [Google Scholar] [CrossRef]
- Nelson, W.; Murariu, D.; Moreira, A.A. Indocyanine Green-Guided Near-Infrared Fluorescence Enhances Vascular Anatomy in Robot-Assisted DIEP Flap Harvest. Plast. Reconstr. Surg. 2024, 153, 796–798. [Google Scholar]
- Haddock, N.T.; Kelling, J.A.; Teotia, S.S. Simultaneous Circumferential Body Lift and Four-Flap Breast Reconstruction Using Deep Inferior Epigastric Perforator and Lumbar Artery Perforator Flaps. Plast. Reconstr. Surg. 2021, 147, 936e–939e. [Google Scholar] [CrossRef]
- Slezak, S.; McGibbon, B.; Dellon, A.L. The sensational transverse rectus abdominis musculocutaneous (TRAM) flap: Return of sensibility after TRAM breast reconstruction. Ann. Plast. Surg. 1992, 28, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, A.J.; Salazar-Reyes, H.; Izaddoost, S.; Khan, F.N. A novel method for neurotization of deep inferior epigastric perforator and superficial inferior epigastric artery flaps. Plast. Reconstr. Surg. 2009, 123, 29e–30e. [Google Scholar] [CrossRef] [PubMed]
- Escandón, J.M.; Ciudad, P.; Poore, S.O.; Mayer, H.F.; Saha, S.; Morrison, C.S.; Langstein, H.N.; Manrique, O.J.M. Experimental Models and Practical Simulators for Supermicrosurgery: An Updated Systematic Review and Meta-Analysis. Plast. Reconstr. Surg. 2023, 151, 775e–803e. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, A.J.M.; Beugels, J.; van Kuijk, S.M.J.; Heuts, E.M.; Rozen, S.M.; Spiegel, A.J.; van der Hulst, R.R.W.J.; Tuinder, S.M.H. Sensation of the autologous reconstructed breast improves quality of life: A pilot study. Breast Cancer Res. Treat. 2018, 167, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Uroskie, T.W., Jr.; Colen, L.B. History of Breast Reconstruction. Semin. Plast. Surg. 2004, 18, 65–69. [Google Scholar] [CrossRef]
- Granzow, J.W.; Levine, J.L.; Chiu, E.S.; Allen, R.J. Breast reconstruction with the deep inferior epigastric perforator flap: History and an update on current technique. J. Plast. Reconstr. Aesthetic Surg. JPRAS 2006, 59, 571–579. [Google Scholar] [CrossRef]
- Stillaert, F.B.; Opsomer, D.; Blondeel, P.N.; Van Landuyt, K. The Lumbar Artery Perforator Flap in Breast Reconstruction. Plast. Reconstr. Surg. 2023, 151, 41–44. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.M.; Kim, D.E.; Kim, S.; Chung, M.J.; Kim, Z.; Kim, T.; Lee, K.T. Development of an Automated Free Flap Monitoring System Based on Artificial Intelligence. JAMA Netw. Open 2024, 7, e2424299. [Google Scholar] [CrossRef]
- Gorgy, A.; Xu, H.H.; Hawary, H.E.; Nepon, H.; Lee, J.; Vorstenbosch, J. Integrating AI into Breast Reconstruction Surgery: Exploring Opportunities, Applications, and Challenges. Plast. Surg. 2024; 22925503241292349, advance online publication. [Google Scholar]
Flap Type | Indications | Strengths | Weaknesses |
---|---|---|---|
TRAM | Sufficient abdominal tissue and patient desires abdomen as the donor site. | Long pedicle length enables anastomosis to recipient vessel | Requires sacrifice of the rectus abdominis muscle |
DIEP | Sufficient abdominal tissue and patient desires abdomen as the donor site. | Lowest donor site hernia and bulge incidence amongst techniques transgressing the rectus sheath | Requires variable sacrifice of the rectus abdominis muscle |
SIEA | Sufficient abdominal tissue and adequate caliber of the SIEA (typically > 1.5 mm in diameter). | Minimal donor site morbidity due to avoiding violation of the rectus sheath | Use limited by variability of SIEA caliber, unreliable perfusion across midline, and short vascular pedicle |
LAP | Secondary option for those who are unsuitable for abdominally based reconstruction with excess lateral trunk. | Potential for improved waistline/buttock contour | Dissection limited to vertebral transverse processes leads to shorter pedicle length—typically requires interpositional grafts from DIE vessels and has high seroma rate |
S/IGAP | Secondary option for those who are unsuitable for abdominally based reconstruction. May be primary option in those with smaller breasts and excess buttock tissue, have significant functional demands of the abdomen, or who wish to become pregnant in the future. | Muscle-sparing; firmer tissue that is less likely to create ptosis compared to abdominal tissue | Requires intraoperative position change and can lead to buttock asymmetry following unilateral harvest |
TUG | Secondary option for those who are unsuitable for abdominally based reconstruction. May be primary option if patient has adequate thigh tissue or wishes to become pregnant in the future. | Reliable blood supply and has similar tissue pliability to that of breast | Limited to small–moderately sized breast reconstruction and requires muscle sacrifice |
PAP | Secondary option for those who are unsuitable for abdominally based reconstruction. May be primary option if patient has adequate posterior thigh tissue or wishes to become pregnant in the future. | Muscle-sparing, can be used in various configurations, and has similar tissue pliability to that of breast | Limited to small–moderately sized breast reconstruction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, M.-J.; Schroeder, M.; Flores Garcia, J.; Royfman, A.; Moreira, A. The Current State of the Art in Autologous Breast Reconstruction: A Review and Modern/Future Approaches. J. Clin. Med. 2025, 14, 1543. https://doi.org/10.3390/jcm14051543
Cho M-J, Schroeder M, Flores Garcia J, Royfman A, Moreira A. The Current State of the Art in Autologous Breast Reconstruction: A Review and Modern/Future Approaches. Journal of Clinical Medicine. 2025; 14(5):1543. https://doi.org/10.3390/jcm14051543
Chicago/Turabian StyleCho, Min-Jeong, Michael Schroeder, Jorge Flores Garcia, Abigail Royfman, and Andrea Moreira. 2025. "The Current State of the Art in Autologous Breast Reconstruction: A Review and Modern/Future Approaches" Journal of Clinical Medicine 14, no. 5: 1543. https://doi.org/10.3390/jcm14051543
APA StyleCho, M.-J., Schroeder, M., Flores Garcia, J., Royfman, A., & Moreira, A. (2025). The Current State of the Art in Autologous Breast Reconstruction: A Review and Modern/Future Approaches. Journal of Clinical Medicine, 14(5), 1543. https://doi.org/10.3390/jcm14051543