Denosumab in the Management of Glucocorticoid-Induced Osteoporosis: Long-Term Efficacy and Secondary Fracture Outcomes
Abstract
:1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kok, C.; Sambrook, P.N. Secondary osteoporosis in patients with an osteoporotic fracture. Best Pract. Res. Clin. Rheumatol. 2009, 23, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Van Staa, T.P.; Leufkens, H.G.M.; Cooper, C. The epidemiology of corticosteroid-induced osteoporosis: A meta-analysis. Osteoporos. Int. 2002, 13, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Compston, J. Glucocorticoid-induced osteoporosis: An update. Endocrine 2018, 61, 7–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wallach, S.; Cohen, S.; Reid, D.M.; Hughes, R.A.; Hosking, D.J.; Laan, R.F.; Doherty, S.M.; Maricic, M.; Rosen, C.; Brown, J.; et al. Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif. Tissue Int. 2000, 67, 277–285. [Google Scholar] [CrossRef]
- Reid, D.M.; Devogelaer, J.P.; Saag, K.; Roux, C.; Lau, C.S.; Reginster, J.Y.; Papanastasiou, P.; Ferreira, A.; Hartl, F.; Fashola, T.; et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): A multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 2009, 373, 1253–1263. [Google Scholar] [CrossRef]
- Thomas, T.; Horlait, S.; Ringe, J.D.; Abelson, A.; Gold, D.T.; Atlan, P.; Lange, J.L. Oral bisphosphonates reduce the risk of clinical fractures in glucocorticoid-induced osteoporosis in clinical practice. Osteoporos. Int. 2013, 24, 263–269. [Google Scholar] [CrossRef]
- Oxlund, H.; Ortoft, G.; Thomsen, J.S.; Danielsen, C.C.; Ejersted, C.; Andreassen, T.T. The anabolic effect of PTH on bone is attenuated by simultaneous glucocorticoid treatment. Bone 2006, 39, 244–252. [Google Scholar] [CrossRef]
- Jilka, R.L.; Weinstein, R.S.; Bellido, T.; Roberson, P.; Parfitt, A.M.; Manolagas, S.C. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Investig. 1999, 104, 439–446. [Google Scholar] [CrossRef]
- Saag, K.G.; Zanchetta, J.R.; Devogelaer, J.P.; Adler, R.A.; Eastell, R.; See, K.; Krege, J.H.; Krohn, K.; Warner, M.R. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: Thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum. 2009, 60, 3346–3355. [Google Scholar] [CrossRef]
- Overman, R.A.; Gourlay, M.L.; Deal, C.L.; Farley, J.F.; Brookhart, M.A.; Layton, J.B. Fracture rate associated with quality metric-based anti-osteoporosis treatment in glucocorticoid-induced osteoporosis. Osteoporos. Int. 2015, 26, 1515–1524. [Google Scholar] [CrossRef]
- Yanbeiy, Z.A.; Hansen, K.E. Denosumab in the treatment of glucocorticoid-induced osteoporosis: A systematic review and meta-analysis. Drug Des. Dev. Ther. 2019, 13, 2843–2852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kendler, D.L.; Roux, C.; Benhamou, C.L.; Brown, J.P.; Lillestol, M.; Siddhanti, S.; Man, H.S.; Martin, J.S.; Bone, H.G. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J. Bone Miner. Res. 2010, 25, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Hans, D.; McDermott, M.; Huang, S.; Kim, M.; Shevroja, E.; McClung, M. Long-term effect of denosumab on bone microarchitecture as assessed by tissue thickness-adjusted trabecular bone score in postmenopausal women with osteoporosis: Results from FREEDOM and its open-label extension. Osteoporos. Int. 2023, 34, 1075–1084. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiba, K.; Iwamoto, N.; Watanabe, K.; Shiraishi, K.; Saito, K.; Okubo, N.; Kawakami, A.; Osaki, M. Denosumab improves bone mineral density microarchitecture in rheumatoid arthritis: Randomized controlled trial byHR-pQCT. J. Bone Miner. Metab. 2023, 41, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Papapoulos, S.; Chapurlat, R.; Libanati, C.; Brandi, M.L.; Brown, J.P.; Czerwiński, E.; Krieg, M.-A.; Man, Z.; Mellström, D.; Radominski, S.C.; et al. Five years of denosumab exposure in women with postmenopausal osteoporosis: Results from the first two years of the FREEDOM extension. J. Bone Miner. Res. 2012, 27, 694–701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simon, J.A.; Recknor, C.; Moffett, A.H., Jr.; Adachi, J.D.; Franek, E.; Lewiecki, E.M.; McClung, M.R.; Mautalen, C.A.; Ragi-Eis, S.; Nicholson, G.C.; et al. Impact of denosumab on the peripheral skeleton of postmenopausal women with osteoporosis: Bone density, mass, and strength of the radius, and wrist fracture. Menopause 2013, 20, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Roux, C.; Hofbauer, L.C.; Ho, P.R.; Wark, J.D.; Zillikens, M.C.; Fahrleitner-Pammer, A.; Hawkins, F.; Micaelo, M.; Minisola, S.; Papaioannou, N.; et al. Denosumab compared with risedronate in postmenopausal women suboptimally adherent to alendronate therapy: Efficacy and safety results from a randomized open-label study. Bone 2014, 58, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Suresh, E.; Abrahamsen, B. Denosumab: A novel antiresorptive drug for osteoporosis. Cleve Clin. J. Med. 2015, 82, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Chavassieux, P.; Portero-Muzy, N.; Roux, J.P.; Horlait, S.; Dempster, D.W.; Wang, A.; Wagman, R.B.; Chapurlat, R. Reduction of cortical bone turnover and erosion depth after 2 and 3 years of denosumab: Iliac bone histomorphometry in the FREEDOM Trial. J. Bone Miner. Res. 2019, 34, 626–631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bilezikian, J.P.; Lin, C.J.F.; Brown, J.P.; Wang, A.T.; Yin, X.; Ebeling, P.R.; Fahrleitner-Pammer, A.; Franek, E.; Gilchrist, N.; Miller, P.D.; et al. Long-term denosumab treatment restores cortical bone loss and reduces fracture risk at the forearm and humerus: Analyses from the FREEDOM Extension cross-over group. Osteoporos. Int. 2019, 30, 1855–1864. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kobza, A.O.; Herman, D.; Papaioannou, A.; Lau, A.N.; Adachi, J.D. Understanding and managing corticosteroid-induced osteoporosis. Open Access Rheumatol. 2021, 13, 177–190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Heckmann, B.L.; Yang, X.; Long, H. Osteoblast autophagy in glucocorticoid-induced osteoporosis. J. Cell Physiol. 2019, 234, 3207–3215. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Liu, M.; Ono, N.; Bringhurst, F.R.; Kronenberg, H.M.; Guo, J. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J. Bone Miner. Res. 2012, 27, 2344–2358. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weinstein, R.S. Glucocorticoids, osteocytes, and skeletal fragility: The role of bone vascularity. Bone 2010, 46, 564–570. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wijenayaka, A.R.; Kogawa, M.; Lim, H.P.; Bonewald, L.F.; Findlay, D.M.; Atkins, G.J. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS ONE 2011, 6, e25900. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jia, D.; O’Brien, C.A.; Stewart, S.A.; Manolagas, S.C.; Weinstein, R.S. Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology 2006, 147, 5592–5599. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, H.J. New understanding of glucocorticoid action in bone cells. BMB Rep. 2010, 43, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Erratum to: Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos. Int. 2015, 26, 2045–2047. [Google Scholar] [CrossRef]
- Buckley, L.; Guyatt, G.; Fink, H.A.; Cannon, M.; Grossman, J.; Hansen, K.E.; Humphrey, M.B.; Lane, N.E.; Magrey, M.; Miller, M.; et al. American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Rheumatol. 2017, 69, 1521–1537. [Google Scholar] [CrossRef]
- Mok, C.C.; Ho, L.Y.; Ma, K.M. Switching of oral bisphosphonates to denosumab in chronic glucocorticoid users: A 12-month randomized controlled trial. Bone 2015, 75, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Krakowski, P.; Rejniak, A.; Sobczyk, J.; Karpiński, R. Cartilage Integrity: A Review of Mechanical and Frictional Properties and Repair Approaches in Osteoarthritis. Healthcare 2024, 12, 1648. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Woitge, H.W.; Seibel, M.J. Markers of Bone and Cartilage Turnover. Exp. Clin. Endocrinol. Diabetes 2017, 125, 454–469. [Google Scholar] [CrossRef] [PubMed]
- Iseri, K.; Iyoda, M.; Watanabe, M.; Matsumoto, K.; Sanada, D.; Inoue, T.; Tachibana, S.; Shibata, T. The effects of denosumab and alendronate on glucocorticoid-induced osteoporosis in patients with glomerular disease: A randomized, controlled trial. PLoS ONE 2018, 13, e0193846. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saag, K.G.; Wagman, R.B.; Geusens, P.; Adachi, J.D.; Messina, O.D.; Emkey, R.; Chapurlat, R.; Wang, A.; Pannacciulli, N.; Lems, W.F.; et al. Denosumab versus risedronate in glucocorticoid-induced osteoporosis: A multicentre, randomised, double-blind, active-controlled, double-dummy, non-inferiority study. Lancet Diabetes Endocrinol. 2018, 6, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Q.; Yan, G.; Jin, X. Denosumab compared to bisphosphonates to treat postmenopausal osteoporosis: A meta-analysis. J. Orthop. Surg. Res. 2018, 13, 194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, L.; Dong, J.; Wei, J.; Liu, L. Comparison of denosumab and oral bisphosphonates for the treatment of glucocorticoid-induced osteoporosis: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2022, 23, 1027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taylor, A.D.; Saag, K.G. Anabolics in the management of glucocorticoid-induced osteoporosis: An evidence-based review of long-term safety, efficacy and place in therapy. Core Evid. 2019, 14, 41–50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chiodini, I.; Merlotti, D.; Falchetti, A.; Gennari, L. Treatment options for glucocorticoid-induced osteoporosis. Expert. Opin. Pharmacother. 2020, 21, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Popp, A.W.; Zysset, P.K.; Lippuner, K. Rebound-associated vertebral fractures after discontinuation of denosumab-from clinic and biomechanics. Osteoporos. Int. 2016, 27, 1917–1921. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.K.; Sung, Y.K. Update on glucocorticoid induced osteoporosis. Endocrinol. Metab. 2021, 36, 536–543. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beaudoin, C.; Jean, S.; Bessette, L.; Ste-Marie, L.G.; Moore, L.; Brown, J.P. Denosumab compared to other treatments to prevent or treat osteoporosis in individuals at risk of fracture: A systematic review and meta-analysis. Osteoporos. Int. 2016, 27, 2835–2844. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.K.; Chuang, A.T.M.; Liao, T.C.; Shao, S.C.; Liu, P.P.S.; Tu, Y.K.; Lai, E.C.C. Denosumab and the risk of diabetes in patients treated for osteoporosis. JAMA Netw. Open 2024, 7, e2354734. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Himič, V.; Syrmos, N.; Ligarotti, G.K.I.; Kato, S.; Fehlings, M.G.; Ganau, M. The role of genetic and epigenetic factors in determining the risk of spinal fragility fractures: New insights in the management of spinal osteoporosis. Quant. Imaging Med. Surg. 2023, 13, 7632–7645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Without Glucocorticoid (n = 268) | With Glucocorticoid (n = 122) | p Value | |||
---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | ||
Age | 70.5 | ±10.3 | 67.2 | ±10.6 | 0.006 ** |
Sex, n (%) | 0.329 | ||||
Female | 226 | (84.3%) | 98 | (80.3%) | |
Male | 42 | (15.7%) | 24 | (19.7%) | |
Albumin | 4.1 | ±0.5 | 4.0 | ±0.5 | 0.044 |
ALP | 110.3 | ±72.0 | 124.6 | ±140.7 | 0.731 |
Serum Calcium | 9.0 | ±0.6 | 9.0 | ±0.6 | 0.920 |
Serum Creatinine | 1.2 | ±1.7 | 1.5 | ±2.3 | 0.003 ** |
Serum iPTH | 201.1 | ±578.0 | 340.0 | ±735.9 | 0.131 |
Serum Phosphate | 3.8 | ±0.8 | 4.0 | ±1.2 | 0.580 |
Baseline BMD and TBS | |||||
BMD, L spine | 0.85 | ±0.15 | 0.88 | ±0.15 | 0.009 ** |
BMD, left femoral neck | 0.67 | ±0.11 | 0.68 | ±0.10 | 0.229 |
BMD, right femoral neck | 0.67 | ±0.09 | 0.66 | ±0.10 | 0.831 |
T-score, L spine | −2.36 | ±1.25 | −2.02 | ±1.17 | 0.003 ** |
T-score, left femoral neck | −2.38 | ±0.80 | −2.30 | ±0.81 | 0.254 |
T-score, right femoral neck | −2.37 | ±0.84 | −2.43 | ±0.81 | 0.650 |
TBS BMD | 1.24 | ±0.10 | 1.26 | ±0.10 | 0.489 |
TBS T-score | −2.34 | ±1.17 | −2.23 | ±1.10 | 0.832 |
Without Glucocorticoid (n = 107) | With Glucocorticoid (n = 107) | p Value | |||
---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | ||
Age | 68.6 | ±8.3 | 68.6 | ±8.3 | 0.997 |
Sex, n (%) | 0.579 | ||||
Female | 91 | (85.0%) | 88 | (82.2%) | |
Male | 16 | (15.0%) | 19 | (17.8%) | |
Albumin | 4.1 | ±0.4 | 4.0 | ±0.5 | 0.207 |
ALP | 112.0 | ±71.1 | 109.9 | ±87.9 | 0.559 |
Serum Calcium | 9.1 | ±0.6 | 9.0 | ±0.6 | 0.449 |
Serum Creatinine | 1.3 | ±2.1 | 1.4 | ±2.2 | 0.039 * |
Serum iPTH | 181.6 | ±361.6 | 296.3 | ±694.9 | 0.314 |
Serum Phosphate | 3.9 | ±0.6 | 4.0 | ±1.2 | 0.429 |
Baseline BMD and TBS | |||||
BMD, L spine | 0.83 | ±0.15 | 0.87 | ±0.15 | 0.015 * |
BMD, left femoral neck | 0.66 | ±0.11 | 0.67 | ±0.10 | 0.610 |
BMD, right femoral neck | 0.67 | ±0.09 | 0.65 | ±0.10 | 0.093 |
T-score, L spine | −2.52 | ±1.25 | −2.05 | ±1.20 | 0.005 * |
T-score, left femoral neck | −2.34 | ±0.74 | −2.34 | ±0.79 | 0.662 |
T-score, right femoral neck | −2.33 | ±0.76 | −2.48 | ±0.80 | 0.117 |
TBS BMD | 1.22 | ±0.10 | 1.25 | ±0.10 | 0.366 |
TBS T-score | −2.47 | ±1.09 | −2.34 | ±1.05 | 0.609 |
Without Glucocorticoid (n = 107) | With Glucocorticoid (n = 107) | p Value | |||
---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | ||
Follow-up BMD and TBS | |||||
BMD, L spine | 0.86 | ±0.14 | 0.91 | ±0.16 | 0.048 * |
BMD, left femoral neck | 0.69 | ±0.09 | 0.68 | ±0.10 | 0.903 |
BMD, right femoral neck | 0.68 | ±0.09 | 0.66 | ±0.09 | 0.378 |
T-score, L spine | −2.35 | ±1.18 | −1.94 | ±1.33 | 0.055 |
T-score, left femoral neck | −2.31 | ±0.70 | −2.34 | ±0.81 | 0.878 |
T-score, right femoral neck | −2.38 | ±0.73 | −2.47 | ±0.74 | 0.403 |
TBS BMD | 1.24 | ±0.09 | 1.25 | ±0.10 | 0.601 |
TBS T-score | −2.44 | ±1.05 | −2.19 | ±1.46 | 0.584 |
Without Glucocorticoid | With Glucocorticoid | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | p Value | Before | After | p Value | |||||
Mean | ±SD | Mean | ±SD | Mean | ±SD | Mean | ±SD | |||
BMD | ||||||||||
L spine | 0.82 | ±0.14 | 0.86 | ±0.14 | <0.001 ** | 0.87 | ±0.14 | 0.90 | ±0.15 | <0.001 ** |
Left femoral neck | 0.67 | ±0.09 | 0.69 | ±0.09 | <0.001 ** | 0.68 | ±0.09 | 0.68 | ±0.10 | 0.972 |
Right femoral neck | 0.67 | ±0.09 | 0.68 | ±0.09 | 0.161 | 0.66 | ±0.10 | 0.67 | ±0.09 | 0.010 * |
T-score | ||||||||||
L spine | −2.6 | ±1.2 | −2.4 | ±1.2 | 0.003 ** | −2.1 | ±1.2 | −2.0 | ±1.3 | 0.002 ** |
Left femoral neck | −2.3 | ±0.7 | −2.3 | ±0.7 | 0.118 | −2.3 | ±0.7 | −2.3 | ±0.8 | 0.039 * |
Right femoral neck | −2.3 | ±0.8 | −2.4 | ±0.7 | 0.540 | −2.4 | ±0.8 | −2.5 | ±0.7 | 0.804 |
TBS | ||||||||||
BMD | 1.22 | ±0.11 | 1.22 | ±0.09 | 0.991 | 1.25 | ±0.10 | 1.27 | ±0.11 | 0.086 |
T-score | −2.5 | ±1.1 | −2.5 | ±0.9 | 0.809 | −2.3 | ±1.1 | −1.9 | ±1.6 | 0.085 |
Without Glucocorticoid (n = 107) | With Glucocorticoid (n = 107) | p Value | |||
---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | ||
Re-fracture, n (%) | |||||
Total | 35 | (32.7%) | 59 | (55.1%) | <0.001 ** |
Femur | 16 | (45.7%) | 30 | (50.8%) | 0.630 |
Radius | 3 | (8.6%) | 1 | (1.7%) | 0.144 |
Spine | 17 | (48.6%) | 29 | (49.2%) | 0.957 |
Non-Fracture (n = 120) | Fracture (n = 94) | p Value | |||
---|---|---|---|---|---|
Mean | ±SD | Mean | ±SD | ||
Patients receive glucocorticoid, n (%) | 48 | (40.0%) | 59 | (62.8%) | 0.001 ** |
Age | 66.7 | ±8.1 | 71.2 | ±7.8 | <0.001 ** |
Sex, n (%) | 0.816 | ||||
Female | 101 | (84.2%) | 78 | (83.0%) | |
Male | 19 | (15.8%) | 16 | (17.0%) | |
Albumin | 4.1 | ±0.4 | 3.9 | ±0.5 | 0.002 ** |
ALP | 112.8 | ±77.9 | 108.1 | ±85.2 | 0.357 |
CALCIUM | 9.1 | ±0.6 | 8.9 | ±0.6 | 0.236 |
Creatinine | 1.5 | ±2.3 | 1.2 | ±1.8 | 0.808 |
iPTH | 228.2 | ±391.7 | 272.1 | ±809.5 | 0.644 |
Phosphate | 3.9 | ±0.8 | 4.1 | ±1.3 | 0.534 |
Baseline | |||||
BMD, L spine | 0.8 | ±0.2 | 0.9 | ±0.1 | 0.751 |
BMD, left femoral neck | 0.7 | ±0.1 | 0.7 | ±0.1 | 0.229 |
BMD, right femoral neck | 0.7 | ±0.1 | 0.6 | ±0.1 | 0.037 * |
T-score, L spine | −2.3 | ±1.3 | −2.2 | ±1.2 | 0.203 |
T-score, left femoral neck | −2.3 | ±0.7 | −2.4 | ±0.8 | 0.847 |
T-score, right femoral neck | −2.4 | ±0.7 | −2.5 | ±0.9 | 0.476 |
TBS BMD | 1.2 | ±0.1 | 1.3 | ±0.1 | 0.310 |
TBS T-score | −2.5 | ±1.0 | −2.1 | ±1.3 | 0.362 |
After | |||||
BMD, L spine | 0.9 | ±0.1 | 0.9 | ±0.2 | 0.872 |
BMD, left femoral neck | 0.7 | ±0.1 | 0.7 | ±0.1 | 0.605 |
BMD, right femoral neck | 0.7 | ±0.1 | 0.7 | ±0.1 | 0.028 * |
T-score, L spine | −2.2 | ±1.2 | −2.1 | ±1.3 | 0.329 |
T-score, left femoral neck | −2.3 | ±0.7 | −2.3 | ±0.8 | 0.374 |
T-score, right femoral neck | −2.4 | ±0.7 | −2.5 | ±0.8 | 0.344 |
TBS BMD | 1.2 | ±0.1 | 1.3 | ±0.1 | 0.626 |
TBS T-score | −2.4 | ±1.1 | −2.0 | ±1.7 | 0.399 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, S.-S.; Deng, Y.-L.; Hsu, C.-Y.; Lee, H.-T.; Li, C.-R.; Yang, C.-C. Denosumab in the Management of Glucocorticoid-Induced Osteoporosis: Long-Term Efficacy and Secondary Fracture Outcomes. J. Clin. Med. 2025, 14, 1633. https://doi.org/10.3390/jcm14051633
Liao S-S, Deng Y-L, Hsu C-Y, Lee H-T, Li C-R, Yang C-C. Denosumab in the Management of Glucocorticoid-Induced Osteoporosis: Long-Term Efficacy and Secondary Fracture Outcomes. Journal of Clinical Medicine. 2025; 14(5):1633. https://doi.org/10.3390/jcm14051633
Chicago/Turabian StyleLiao, Sian-Siang, Ya-Lian Deng, Chiann-Yi Hsu, Hsu-Tung Lee, Chi-Ruei Li, and Chi-Chan Yang. 2025. "Denosumab in the Management of Glucocorticoid-Induced Osteoporosis: Long-Term Efficacy and Secondary Fracture Outcomes" Journal of Clinical Medicine 14, no. 5: 1633. https://doi.org/10.3390/jcm14051633
APA StyleLiao, S.-S., Deng, Y.-L., Hsu, C.-Y., Lee, H.-T., Li, C.-R., & Yang, C.-C. (2025). Denosumab in the Management of Glucocorticoid-Induced Osteoporosis: Long-Term Efficacy and Secondary Fracture Outcomes. Journal of Clinical Medicine, 14(5), 1633. https://doi.org/10.3390/jcm14051633