Potential Impact of Choline Alphoscerate on Depressive Symptoms in Association with Insulin Resistance in Elderly Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Clinical Assessments
2.4. Insulin Resistance Measurement
2.5. Dropout
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Changes in Depressive Symptoms and Glucometabolic Parameters at 6 Months
3.3. Choline Alphoscerate Treatment as a Predictive Factor for Favorable Insulin Resistance-Related Parameters
3.4. Safety
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. Idf diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Choi, S.H. Depression and mortality in type 2 diabetes mellitus. Diabetes Metab. J. 2017, 41, 263–264. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.; Lloyd, C.E. Epidemiology of depression and diabetes: A systematic review. J. Affect. Disord. 2012, 142, S8–S21. [Google Scholar] [CrossRef]
- Katon, W.J.; Lin, E.H.; Russo, J.; Von Korff, M.; Ciechanowski, P.; Simon, G.; Ludman, E.; Bush, T.; Young, B. Cardiac risk factors in patients with diabetes mellitus and major depression. J. Gen. Intern. Med. 2004, 19, 1192–1199. [Google Scholar] [CrossRef]
- Hennings, J.M.; Schaaf, L.; Fulda, S. Glucose metabolism and antidepressant medication. Curr. Pharm. Des. 2012, 18, 5900–5919. [Google Scholar] [CrossRef]
- Fernandes, B.S.; Salagre, E.; Enduru, N.; Grande, I.; Vieta, E.; Zhao, Z. Insulin resistance in depression: A large meta-analysis of metabolic parameters and variation. Neurosci. Biobehav. Rev. 2022, 139, 104758. [Google Scholar] [CrossRef]
- He, Y.; Tong, L.; Guo, F.; Zhao, S.; Zhang, J.; Guo, X.; Tao, Y.; Lin, X.; Jin, L. Depression status and insulin resistance in adults with obesity: A cross-sectional study. J. Psychosom. Res. 2022, 163, 111049. [Google Scholar] [CrossRef]
- de Groot, M.; Anderson, R.; Freedland, K.E.; Clouse, R.E.; Lustman, P.J. Association of depression and diabetes complications: A meta-analysis. Psychosom. Med. 2001, 63, 619–630. [Google Scholar] [CrossRef]
- Zhang, X.; Norris, S.L.; Gregg, E.W.; Cheng, Y.J.; Beckles, G.; Kahn, H.S. Depressive symptoms and mortality among persons with and without diabetes. Am. J. Epidemiol. 2005, 161, 652–660. [Google Scholar] [CrossRef]
- Katon, W.J.; Rutter, C.; Simon, G.; Lin, E.H.; Ludman, E.; Ciechanowski, P.; Kinder, L.; Young, B.; Von Korff, M. The association of comorbid depression with mortality in patients with type 2 diabetes. Diabetes Care 2005, 28, 2668–2672. [Google Scholar] [CrossRef]
- Park, H.; Hong, Y.; Lee, H.; Ha, E.; Sung, Y. Individuals with type 2 diabetes and depressive symptoms exhibited lower adherence with self-care. J. Clin. Epidemiol. 2004, 57, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Musselman, D.L.; Betan, E.; Larsen, H.; Phillips, L.S. Relationship of depression to diabetes types 1 and 2: Epidemiology, biology, and treatment. Biol. Psychiatry 2003, 54, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Huang, C.; Deng, H.; Wang, H. Diabetes as a risk factor for dementia and mild cognitive impairment: A meta-analysis of longitudinal studies. Intern. Med. J. 2012, 42, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.; Gobartt, A.L.; Balañá, M. Behavioural symptoms in patients with alzheimer’s disease and their association with cognitive impairment. BMC Neurol. 2010, 10, 87. [Google Scholar] [CrossRef]
- Perry, E.K.; Tomlinson, B.E.; Blessed, G.; Bergmann, K.; Gibson, P.H.; Perry, R.H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. 1978, 2, 1457–1459. [Google Scholar] [CrossRef]
- Hong, S.T.; Choi, C.B.; Park, C.; Moon, H.Y.; Hong, K.S.; Cheong, C.; Chae, J.H.; Choe, B.Y. Specific hippocampal choline decrease in an animal model of depression. Br. J. Radiol. 2009, 82, 549–553. [Google Scholar] [CrossRef]
- Traini, E.; Bramanti, V.; Amenta, F. Choline alphoscerate (alpha-glyceryl-phosphoryl-choline) an old choline- containing phospholipid with a still interesting profile as cognition enhancing agent. Curr. Alzheimer Res. 2013, 10, 1070–1079. [Google Scholar] [CrossRef]
- Riley, C.A.; Renshaw, P.F. Brain choline in major depression: A review of the literature. Psychiatry Res. Neuroimaging 2018, 271, 142–153. [Google Scholar] [CrossRef]
- Henigsberg, N.; Savić, A.; Radoš, M.; Radoš, M.; Šarac, H.; Šečić, A.; Bajs Janović, M.; Foro, T.; Ozretić, D.; Erdeljić Turk, V.; et al. Choline elevation in amygdala region at recovery indicates longer survival without depressive episode: A magnetic resonance spectroscopy study. Psychopharmacology 2021, 238, 1303–1314. [Google Scholar] [CrossRef]
- Carotenuto, A.; Rea, R.; Traini, E.; Fasanaro, A.M.; Ricci, G.; Manzo, V.; Amenta, F. The effect of the association between donepezil and choline alphoscerate on behavioral disturbances in alzheimer’s disease: Interim results of the ascomalva trial. J. Alzheimers Dis. 2017, 56, 805–815. [Google Scholar] [CrossRef]
- De Jesus Moreno Moreno, M. Cognitive improvement in mild to moderate alzheimer’s dementia after treatment with the acetylcholine precursor choline alfoscerate: A multicenter, double-blind, randomized, placebo-controlled trial. Clin. Ther. 2003, 25, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Kan, C.; Silva, N.; Golden, S.H.; Rajala, U.; Timonen, M.; Stahl, D.; Ismail, K. A systematic review and meta-analysis of the association between depression and insulin resistance. Diabetes Care 2013, 36, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Y.; Ye, X.; Guo, X.; Zhang, T.; He, J. Overview of phase iv clinical trials for postmarket drug safety surveillance: A status report from the clinicaltrials.Gov registry. BMJ Open 2016, 6, e010643. [Google Scholar] [CrossRef]
- Suvarna, V. Phase iv of drug development. Perspect. Clin. Res. 2010, 1, 57–60. [Google Scholar] [CrossRef]
- Trivedi, M.H.; Rush, A.J.; Wisniewski, S.R.; Nierenberg, A.A.; Warden, D.; Ritz, L.; Norquist, G.; Howland, R.H.; Lebowitz, B.; McGrath, P.J.; et al. Evaluation of outcomes with citalopram for depression using measurement-based care in star*d: Implications for clinical practice. Am. J. Psychiatry 2006, 163, 28–40. [Google Scholar] [CrossRef]
- Jackson-Koku, G. Beck depression inventory. Occup. Med. 2016, 66, 174–175. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Lai, W.; Long, E.; Zhang, X.; Li, W.; Zhu, Y.; Chen, C.; Zhong, X.; Liu, Z.; et al. Prevalence of depression and depressive symptoms among outpatients: A systematic review and meta-analysis. BMJ Open 2017, 7, e017173. [Google Scholar] [CrossRef]
- Sharp, R. The hamilton rating scale for depression. Occup. Med. 2015, 65, 340. [Google Scholar] [CrossRef]
- Zimmerman, M.; Martinez, J.H.; Young, D.; Chelminski, I.; Dalrymple, K. Severity classification on the hamilton depression rating scale. J. Affect. Disord. 2013, 150, 384–388. [Google Scholar] [CrossRef]
- Tombaugh, T.N.; McIntyre, N.J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc. 1992, 40, 922–935. [Google Scholar] [CrossRef]
- Tucker, L.A. Insulin resistance and biological aging: The role of body mass, waist circumference, and inflammation. BioMed Res. Int. 2022, 2022, 2146596. [Google Scholar] [CrossRef]
- Ramdas Nayak, V.K.; Satheesh, P.; Shenoy, M.T.; Kalra, S. Triglyceride glucose (tyg) index: A surrogate biomarker of insulin resistance. J. Pak. Med. Assoc. 2022, 72, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Shi, S.; Ren, X.; Han, T.; Li, Y.; Chen, Y.; Liu, W.; Hou, P.C.; Hu, Y. Triglyceride glucose-waist circumference, a novel and effective predictor of diabetes in first-degree relatives of type 2 diabetes patients: Cross-sectional and prospective cohort study. J. Transl. Med. 2016, 14, 260. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wei, M.; Chen, L.; Liang, S.; Gao, F.; Cheng, X.; Jiang, H. Low-density lipoprotein cholesterol: High-density lipoprotein cholesterol ratio is associated with incident diabetes in chinese adults: A retrospective cohort study. J. Diabetes Investig. 2021, 12, 91–98. [Google Scholar] [CrossRef]
- Zhao, L.; Cheng, J.; Chen, Y.; Li, Q.; Han, B.; Chen, Y.; Xia, F.; Chen, C.; Lin, D.; Yu, X.; et al. Serum alanine aminotransferase/aspartate aminotransferase ratio is one of the best markers of insulin resistance in the chinese population. Nutr. Metab. 2017, 14, 64. [Google Scholar] [CrossRef]
- Baek, J.H.; Kim, H.; Kim, K.Y.; Jung, J. Insulin resistance and the risk of diabetes and dysglycemia in korean general adult population. Diabetes Metab. J. 2018, 42, 296–307. [Google Scholar] [CrossRef]
- Guo, X.; Asthana, P.; Gurung, S.; Zhang, S.; Wong, S.K.K.; Fallah, S.; Chow, C.F.W.; Che, S.; Zhai, L.; Wang, Z.; et al. Regulation of age-associated insulin resistance by mt1-mmp-mediated cleavage of insulin receptor. Nat. Commun. 2022, 13, 3749. [Google Scholar] [CrossRef]
- Gado, M.; Tsaousidou, E.; Bornstein, S.R.; Perakakis, N. Sex-based differences in insulin resistance. J. Endocrinol. 2024, 261, e230245. [Google Scholar] [CrossRef]
- Chung, J.O.; Cho, D.H.; Chung, D.J.; Chung, M.Y. Associations among body mass index, insulin resistance, and pancreatic β-cell function in korean patients with new-onset type 2 diabetes. Korean J. Intern. Med. 2012, 27, 66–71. [Google Scholar] [CrossRef]
- Szymkowicz, S.M.; Gerlach, A.R.; Homiack, D.; Taylor, W.D. Biological factors influencing depression in later life: Role of aging processes and treatment implications. Transl. Psychiatry 2023, 13, 160. [Google Scholar] [CrossRef]
- Li, S.; Zhang, X.; Cai, Y.; Zheng, L.; Pang, H.; Lou, L. Sex difference in incidence of major depressive disorder: An analysis from the global burden of disease study 2019. Ann. Gen. Psychiatry 2023, 22, 53. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Park, Y.; Yoo, K.H.; Kim, K.T.; Kim, E.S.; Kim, J.W.; Kim, S.W.; Shin, I.S.; Yoon, J.S.; Kim, J.H.; et al. Sex differences in the genetic architecture of depression. Sci. Rep. 2020, 10, 9927. [Google Scholar] [CrossRef] [PubMed]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.; Zitman, F.G. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Mansournia, M.A.; Geroldinger, A.; Greenland, S.; Heinze, G. Separation in logistic regression: Causes, consequences, and control. Am. J. Epidemiol. 2018, 187, 864–870. [Google Scholar] [CrossRef]
- Kirsch, I.; Deacon, B.J.; Huedo-Medina, T.B.; Scoboria, A.; Moore, T.J.; Johnson, B.T. Initial severity and antidepressant benefits: A meta-analysis of data submitted to the food and drug administration. PLoS Med. 2008, 5, e45. [Google Scholar] [CrossRef]
- Kirsch, I. Antidepressants and the placebo effect. Z. Psychol. 2014, 222, 128–134. [Google Scholar] [CrossRef]
- Kelley, J.M.; Kaptchuk, T.J.; Cusin, C.; Lipkin, S.; Fava, M. Open-label placebo for major depressive disorder: A pilot randomized controlled trial. Psychother. Psychosom. 2012, 81, 312–314. [Google Scholar] [CrossRef]
- Shi, Q.; Zhou, F.; Mei, J.; Yang, H.; Li, H. The effect of type 2 diabetes mellitus on neuropsychological symptoms in chinese early alzheimer’s disease population. Neuropsychiatr. Dis. Treat. 2020, 16, 829–836. [Google Scholar] [CrossRef]
- de la Monte, S.M. Brain insulin resistance and deficiency as therapeutic targets in alzheimer’s disease. Curr. Alzheimer Res. 2012, 9, 35–66. [Google Scholar] [CrossRef]
- Cohen, B.M.; Renshaw, P.F.; Stoll, A.L.; Wurtman, R.J.; Yurgelun-Todd, D.; Babb, S.M. Decreased brain choline uptake in older adults. An in vivo proton magnetic resonance spectroscopy study. JAMA 1995, 274, 902–907. [Google Scholar] [CrossRef]
- Stordal, E.; Mykletun, A.; Dahl, A.A. The association between age and depression in the general population: A multivariate examination. Acta Psychiatr. Scand. 2003, 107, 132–141. [Google Scholar] [CrossRef]
- Growdon, J.H.; Hirsch, M.J.; Wurtman, R.J.; Wiener, W. Oral choline administration to patients with tardive dyskinesia. N. Engl. J. Med. 1977, 297, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Casey, D.E. Mood alterations during deanol therapy. Psychopharmacology 1979, 62, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Pearson, S.; Schmidt, M.; Patton, G.; Dwyer, T.; Blizzard, L.; Otahal, P.; Venn, A. Depression and insulin resistance: Cross-sectional associations in young adults. Diabetes Care 2010, 33, 1128–1133. [Google Scholar] [CrossRef]
- Björntorp, P. Do stress reactions cause abdominal obesity and comorbidities? Obes. Rev. 2001, 2, 73–86. [Google Scholar] [CrossRef]
- Sun, X.; Feng, M.; Lu, L.; Zhao, Z.; Bao, X.; Deng, K.; Yao, Y.; Zhu, H.; Wang, R. Lipid abnormalities in patients with cushing’s disease and its relationship with impaired glucose metabolism. Front. Endocrinol. 2020, 11, 600323. [Google Scholar] [CrossRef]
- Chang, E.H.; Chavan, S.S.; Pavlov, V.A. Cholinergic control of inflammation, metabolic dysfunction, and cognitive impairment in obesity-associated disorders: Mechanisms and novel therapeutic opportunities. Front. Neurosci. 2019, 13, 263. [Google Scholar] [CrossRef]
- Kamal, M.A.; Priyamvada, S.; Anbazhagan, A.N.; Jabir, N.R.; Tabrez, S.; Greig, N.H. Linking alzheimer’s disease and type 2 diabetes mellitus via aberrant insulin signaling and inflammation. CNS Neurol. Disord. Drug Targets 2014, 13, 338–346. [Google Scholar] [CrossRef]
- Consolim-Colombo, F.M.; Sangaleti, C.T.; Costa, F.O.; Morais, T.L.; Lopes, H.F.; Motta, J.M.; Irigoyen, M.C.; Bortoloto, L.A.; Rochitte, C.E.; Harris, Y.T.; et al. Galantamine alleviates inflammation and insulin resistance in patients with metabolic syndrome in a randomized trial. JCI Insight 2017, 2, e93340. [Google Scholar] [CrossRef]
- Satapathy, S.K.; Ochani, M.; Dancho, M.; Hudson, L.K.; Rosas-Ballina, M.; Valdes-Ferrer, S.I.; Olofsson, P.S.; Harris, Y.T.; Roth, J.; Chavan, S.; et al. Galantamine alleviates inflammation and other obesity-associated complications in high-fat diet-fed mice. Mol. Med. 2011, 17, 599–606. [Google Scholar] [CrossRef]
- Hackshaw, A. Small studies: Strengths and limitations. Eur. Respir. J. 2008, 32, 1141–1143. [Google Scholar] [CrossRef] [PubMed]
- In, J. Introduction of a pilot study. Korean J. Anesthesiol. 2017, 70, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.M.; Aaronson, S.T.; Alvarez, O.; Arden, P.C.; Baker, A.; Bennett, J.C.; Bird, C.; Blom, R.E.; Brennan, C.; Brusch, D.; et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N. Engl. J. Med. 2022, 387, 1637–1648. [Google Scholar] [CrossRef]
- Marchesi, C.; De Panfilis, C.; Tonna, M.; Ossola, P. Is placebo useful in the treatment of major depression in clinical practice? Neuropsychiatr. Dis. Treat. 2013, 9, 915–920. [Google Scholar] [CrossRef]
- Nam, G.E.; Kim, Y.H.; Han, K.; Jung, J.H.; Park, Y.G.; Lee, K.W.; Rhee, E.J.; Son, J.W.; Lee, S.S.; Kwon, H.S.; et al. Obesity fact sheet in korea, 2018: Data focusing on waist circumference and obesity-related comorbidities. J. Obes. Metab. Syndr. 2019, 28, 236–245. [Google Scholar] [CrossRef]
Total (n = 49) | Placebo Group (n = 16) | Choline Alphoscerate Group (n = 33) | p Value | |
---|---|---|---|---|
HDRS | 15.8 (5.9) | 15.4 (4.7) | 15.9 (6.5) | 0.758 |
K-MMSE | 30 (29, 30) | 30 (29, 30) | 30 (29, 30) | 0.999 |
Age (years) | 68.5 (7.8) | 68.8 (8.5) | 68.4 (7.5) | 0.862 |
Sex (male, n, %) | 15 (30.6) | 5 (31.2) | 10 (30.3) | 0.999 |
DM duration (years) | 19.1 (10.7) | 15.4 (9.7) | 20.9 (10.8) | 0.087 |
Height (cm) | 157.8 (9.9) | 158.3 (9.3) | 157.6 (10.3) | 0.812 |
Weight (kg) | 61.9 (11.2) | 63.9 (11.2) | 60.9 (11.2) | 0.394 |
BMI (kg/m2) | 23.6 (22.5, 26.9) | 25.7 (22.8, 27.4) | 23.5 (22.4, 25.4) | 0.228 |
Waist circumference (cm) | 89.3 (8.6) | 89.8 (8.9) | 89.0 (8.6) | 0.748 |
Hypertension (n, %) | 30 (61.2) | 7 (43.8) | 23 (69.7) | 0.151 |
Cardiovascular disease (n, %) | 29 (59.2) | 9 (56.2) | 20 (60.6) | 0.999 |
Cerebrovascular disease (n, %) | 4 (8.2) | 3 (18.8) | 1 (3.0) | 0.184 |
Dyslipidemia (n, %) | 44 (89.8) | 13 (81.2) | 31 (93.9) | 0.383 |
Psychiatric disorder (n, %) | 12 (24.5) | 3 (18.8) | 9 (27.3) | 0.726 |
SBP (mmHg) | 125.1 (11.1) | 124.8 (13.7) | 125.2 (9.9) | 0.893 |
DBP (mmHg) | 72.6 (7.8) | 75.7 (9.2) | 71.1 (6.7) | 0.055 |
HbA1c (%) | 7.1 (0.9) | 6.8 (0.9) | 7.3 (0.9) | 0.082 |
Glycoalbumin (%) | 18.7 (3.3) | 18.2 (3.5) | 19.1 (3.3) | 0.579 |
Fasting glucose (mg/dL) | 132.0 (110.0, 152.0) | 122.5 (106.2, 153.5) | 133 (113.0, 142.0) | 0.468 |
Postprandial 2 h glucose (mg/dL) | 212.0 (168.0, 251.5) | 205.0 (149.0, 219.5) | 224.0 (178.5, 263.8) | 0.247 |
Fasting insulin (μIU/mL) | 8.3 (5.1, 16.7) | 10.4 (7.2, 13.5) | 6.6 (5.0, 17.9) | 0.316 |
HOMA-IR (mg/dL·μIU/mL) in all subjects | 3.0 (1.6, 5.4) | 3.2 (2.4, 4.7) | 2.9 (1.5, 5.4) | 0.633 |
HOMA-IR (mg/dL·μIU/mL) in insulin non-users (n = 31) | 2.8 (1.6, 4.9) | 3.1 (2.6, 5.0) | 2.0 (1.6, 3.8) | 0.227 |
TyG index | 8.9 (0.6) | 8.9 (0.7) | 8.9 (0.6) | 0.977 |
TyG index × waist circumference (cm) | 795.0 (93.0) | 799.0 (88.9) | 793.0 (96.2) | 0.837 |
Triglyceride (mg/dL) | 126.5 (59.1) | 137.8 (63.0) | 121.1 (57.3) | 0.360 |
HDL cholesterol (mg/dL) | 50.7 (10.0) | 46.9 (8.6) | 52.6 (10.2) | 0.061 |
LDL cholesterol (mg/dL) | 84.5 (28.3) | 90.3 (36.3) | 81.7 (23.6) | 0.322 |
LDL/HDL ratio | 1.7 (0.7) | 2.0 (0.9) | 1.6 (0.6) | 0.089 |
eGFR (CKD-EPI, mL/min/1.73 m2) | 88.0 (72.0, 96.0) | 89.0 (78.8, 95.0) | 86.0 (69.0, 96.0) | 0.654 |
AST (IU/L) | 20.0 (18.0, 24.0) | 23.0 (18.8, 26.8) | 19.0 (17.0, 23.0) | 0.080 |
ALT (IU/L) | 18.0 (13.0, 25.0) | 19.0 (13.0, 26.2) | 18.0 (0.7, 1.1) | 0.717 |
ALT/AST ratio | 0.8 (0.7, 1.1) | 0.8 (0.6, 1.1) | 0.9 (0.7, 1.1) | 0.488 |
Antidiabetic medication use at baseline | ||||
Insulin (n, %) | 18 (36.7) | 5 (31.2) | 13 (39.4) | 0.811 |
Biguanides (n, %) | 42 (85.7) | 14 (87.5) | 28 (84.8) | 0.999 |
Sulfonylureas (n, %) | 21 (42.9) | 6 (37.5) | 15 (45.5) | 0.826 |
DPP-4i (n, %) | 24 (49.0) | 9 (56.2) | 15 (45.5) | 0.686 |
TZD (n, %) | 10 (20.4) | 1 (6.2) | 9 (27.3) | 0.182 |
SGLT2i (n, %) | 4 (8.2) | 1 (6.2) | 3 (9.1) | 0.999 |
αGI (n, %) | 3 (6.1) | 1 (6.2) | 2 (6.1) | 0.999 |
Placebo Group (n = 16) | Choline Alphoscerate Group (n = 33) | Intergroup Difference for Post-Pre Values | p Value for Intergroup Difference in Post-Pre Values | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pre 0 M | Post 6 M | Post-Pre (6 M-0 M) | p Value | Pre | Post 6 M | Post-Pre (6 M-0 M) | p Value | |||
HDRS | 15.4 (4.7) | 10.2 (3.9) | −5.2 (6.1) | 0.004 | 15.9 (6.5) | 12.6 (5.8) | −3.4 (5.5) | 0.001 | 1.8 (−1.7, 5.3) | 0.297 |
K-MMSE | 30 (29, 30) | 30 (29, 30) | 0.0 (0.0, 0.0) | 0.999 | 30 (29, 30) | 30 (29, 30) | 0.0 (0.0, 0.0) | 0.355 | 0.1 (−0.3, 0.6) | 0.576 |
BMI (kg/m2) | 25.7 (22.6, 27.1) | 25.9 (22.6, 27.1) | 0.0 (−0.2, 0.5) | 0.562 | 23.5 (22.4, 25.4) | 23.2 (22.1, 25.2) | −0.1 (−0.5, 0.3) | 0.287 | −0.2 (−0.5, 0.1) | 0.247 |
WC (cm) | 89.8 (8.9) | 90.5 (9.1) | 0.6 (0.9) | 0.016 | 89.0 (8.6) | 88.5 (8.9) | −0.4 (1.4) | 0.083 | −1.1 (−1.8, −0.3) | 0.009 |
SBP (mmHg) | 124.8 (13.7) | 125.1 (10.9) | 0.4 (11.8) | 0.901 | 125.2 (9.9) | 123.1 (10.3) | −2.2 (11.8) | 0.303 | −2.5 (−9.8, 4.7) | 0.486 |
DBP (mmHg) | 75.7 (9.2) | 75.8 (9.1) | 0.1 (10.7) | 0.964 | 71.1 (6.7) | 71.4 (8.0) | 0.3 (9.1) | 0.864 | 0.1 (−5.8, 6.1) | 0.960 |
HbA1c (%) | 6.8 (0.9) | 6.9 (0.8) | 0.1 (0.4) | 0.276 | 7.3 (0.9) | 7.5 (1.3) | 0.2 (0.8) | 0.164 | 0.1 (−0.4, 0.5) | 0.667 |
Glycoalbumin (%) | 18.2 (3.5) | 19.1 (3.9) | 0.4 (2.6) | 0.751 | 19.1 (3.3) | 22.1 (5.4) | 1.5 (4.2) | 0.381 | 1.1 (−3.7, 5.9) | 0.618 |
FBG (mg/dL) | 122.5 (106.2, 153.5) | 123.5 (107.5–171.2) | 2.5 (−4.0, 33.0) | 0.232 | 133.0 (113.0–142.0) | 133.0 (114.0–147.0) | −1.0 (−12.0, 7.0) | 0.575 | −17.9 (−40.2, 4.5) | 0.114 |
PPG-2h (mg/dL) | 205.0 (149.0–219.5) | 194.0 (126.0, 214.0) | 1.5 (−27.2, 36.5) | 0.909 | 224.0 (178.5, 263.8) | 215.5 (181.5, 295.5) | −5.5 (−28.5, 40.0) | 0.733 | 9.9 (−41.6, 61.4) | 0.698 |
Fasting insulin (μIU/mL) | 10.4 (7.2, 13.5) | 7.5 (3.9, 13.0) | −2.7 (−8.5, 1.7) | 0.144 | 6.6 (5.0, 17.9) | 5.1 (3.3, 7.2) | −1.7 (−10.5, 0.2) | 0.001 | −3.3 (−11.5, −4.8) | 0.417 |
HOMA-IR (mg/dL·μIU/mL) (total subjects) | 3.2 (2.4–4.7) | 2.4 (0.9, 4.1) | −0.5 (−2.8, 0.5) | 0.212 | 2.9 (1.5–5.4) | 1.6 (0.9–2.4) | −0.6 (−3.5, 0.2) | 0.002 | −1.8 (−4.8, 1.3) | 0.249 |
HOMA-IR (mg/dL·μIU/mL) (insulin non-users only, n = 31) | 3.1 (2.6, 5.0) | 2.4 (2.1, 3.9) | −0.5 (−2.4, 0.7) | 0.278 | 2.0 (1.6, 3.8) | 1.5 (1.1, 2.3) | −0.5 (−1.8, 0.3) | 0.043 | −1.1 (−5.2, 3.0) | 0.595 |
TyG index | 8.9 (0.7) | 9.1 (0.5) | 0.2 (0.6) | 0.302 | 8.9 (0.6) | 8.9 (0.6) | 0.0 (0.5) | 0.665 | −0.1 (−0.5, 0.2) | 0.425 |
TyG index × WC (cm) | 799.0 (88.9) | 820.6 (83.6) | 21.7 (55.3) | 0.137 | 793.0 (96.2) | 792.4 (98.2) | −0.7 (51.8) | 0.940 | −22.3 (−54.8, 10.1) | 0.173 |
Triglyceride (mg/dL) | 137.8 (63.0) | 139.3 (40.9) | 1.6 (71.7) | 0.931 | 121.1 (57.3) | 138.5 (101.9) | 17.4 (90.3) | 0.277 | 15.8 (−36.2, 67.8) | 0.544 |
HDL-C (mg/dL) | 46.9 (8.6) | 45.2 (10.0) | −1.6 (5.4) | 0.244 | 52.6 (10.2) | 49.6 (12.1) | −3.0 (9.1) | 0.071 | −10.8 (−24.3, 2.6) | 0.590 |
LDL-C (mg/dL) | 90.3 (36.3) | 98.7 (40.5) | 8.5 (19.6) | 0.104 | 81.7 (23.6) | 78.6 (26.0) | −2.4 (22.7) | 0.563 | −1.3 (−6.3, 3.6) | 0.111 |
LDL/HDL ratio | 2.0 (0.9) | 2.2 (0.9) | 0.3 (0.4) | 0.014 | 1.6 (0.6) | 1.6 (0.6) | 0.0 (0.5) | 0.623 | −0.2 (−0.5, 0.0) | 0.092 |
ALT/AST ratio | 0.8 (0.6, 1.1) | 0.8 (0.7, 1.1) | 0.0 (−0.2, 0.1) | 0.979 | 0.9 (0.7, 1.1) | 0.9 (0.7, 1.1) | 0.0 (−0.1, 0.1) | 0.817 | 0.2 (−0.1, 0.5) | 0.240 |
n = 49 | Improvement in WC # | High LDL/HDL Ratio * at 6 Months | ||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age (years) | 0.89 (0.79–0.99) | 0.033 | 1.03 (0.93–1.15) | 0.568 |
Sex (female vs. male) | 2.68 (0.52–17.87) | 0.264 | 11.14 (1.54–178.48) | 0.041 |
BMI (≥25 vs. <25 kg/m2) | 1.12 (0.20–6.50) | 0.897 | 0.81 (0.15–4.08) | 0.798 |
Changes in depression scores expressed by HDRS change § | 1.00 (0.87–1.16) | 0.981 | 0.88 (0.75–1.02) | 0.106 |
Insulin use | 0.27 (0.03–1.65) | 0.190 | 4.95 (0.85–38.92) | 0.094 |
Choline alphoscerate vs. placebo | 18.28 (2.27–461.35) | 0.022 | 0.16 (0.03–0.76) | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, I.; Lee, M.; Yu, M.H.; Han, E.; Lee, Y.-h.; Lee, B.-W.; Kang, E.S.; Cha, B.-S. Potential Impact of Choline Alphoscerate on Depressive Symptoms in Association with Insulin Resistance in Elderly Patients with Type 2 Diabetes. J. Clin. Med. 2025, 14, 1664. https://doi.org/10.3390/jcm14051664
Lee I, Lee M, Yu MH, Han E, Lee Y-h, Lee B-W, Kang ES, Cha B-S. Potential Impact of Choline Alphoscerate on Depressive Symptoms in Association with Insulin Resistance in Elderly Patients with Type 2 Diabetes. Journal of Clinical Medicine. 2025; 14(5):1664. https://doi.org/10.3390/jcm14051664
Chicago/Turabian StyleLee, Inkuk, Minyoung Lee, Min Heui Yu, Eugene Han, Yong-ho Lee, Byung-Wan Lee, Eun Seok Kang, and Bong-Soo Cha. 2025. "Potential Impact of Choline Alphoscerate on Depressive Symptoms in Association with Insulin Resistance in Elderly Patients with Type 2 Diabetes" Journal of Clinical Medicine 14, no. 5: 1664. https://doi.org/10.3390/jcm14051664
APA StyleLee, I., Lee, M., Yu, M. H., Han, E., Lee, Y.-h., Lee, B.-W., Kang, E. S., & Cha, B.-S. (2025). Potential Impact of Choline Alphoscerate on Depressive Symptoms in Association with Insulin Resistance in Elderly Patients with Type 2 Diabetes. Journal of Clinical Medicine, 14(5), 1664. https://doi.org/10.3390/jcm14051664