The Role of the Pulmonary Artery Obstruction Index Ratio in Predicting the Clinical Course of Pulmonary Embolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Radiological Evaluation
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PE | Pulmonary Embolism |
CTOI | Computed Tomography Obstruction Index Ratio |
sPESI | Simplified Pulmonary Embolism Severity Index |
CTPA | Computed Tomography Pulmonary Angiography |
AoD | Aortic Diameter |
LPA | Left Pulmonary Artery |
RPA | Right Pulmonary artery |
VTE | Venous Thromboembolism |
BNP | Brain Natriuretic Peptide |
H-FABP | Heart-Type Fatty-Acid-Binding Protein |
RV | Right Ventricular |
TTE | Transthoracic Echocardiography |
PAD | Pulmonary Artery Diameter |
PAD/AoD | Pulmonary Artery to Aortic Diameter Ratio |
IVSD | Interventricular Septal Deviation |
IVCR | Inferior Vena Cava Reflux |
V/Q | Ventilation–Perfusion Scintigraphy |
MDCT | Multidetector Computed Tomography |
HT | Arterial Hypertension |
COPD | Chronic Obstructive Pulmonary Disease |
BMI | Body Mass Index |
DVT | Deep Vein Thrombosis |
AF | Atrial Fibrillation |
CHF/CAD | Congestive Heart Failure/Coronary Artery Disease |
BA | Bronchial Asthma |
CRF | Chronic Renal Failure |
RA | Rheumatoid Arthritis |
CK-MB | Creatine Kinase MB Isoenzyme |
CRP | C-Reactive Protein |
LDH | Lactate Dehydrogenase |
CK-MB | Creatine Kinase MB Isoenzyme |
ALT | Alanine Aminotransferase |
AST | Aspartate Transferase |
MCHC | Mean Corpuscular Hemoglobin Concentration |
RDW | Red Cell Distribution Width |
WBC | White Blood Count |
AT-3 | Antithrombin III |
References
- Beenen, L.F.; Bossuyt, P.M.; Stoker, J.; Middeldorp, S. Prognostic value of cardiovascular parameters in computed tomography pulmonary angiography in patients with acute pulmonary embolism. Keeping it simple and effective! Eur. Respir. J. 2018, 52, 1702611. [Google Scholar] [CrossRef]
- Agrawal, N.; Ramegowda, R.T.; Patra, S.; Hegde, M.; Agarwal, A.; Kolhari, V.; Gupta, K.; Nanjappa, M.C. Predictors of inhospital prognosis in acute pulmonary embolism. Blood Coagul. Fibrinolysis 2014, 25, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, D.; Aujesky, D.; Moores, L.; Gómez, V.; Lobo, J.L.; Uresandi, F.; Otero, R.; Monreal, M.; Muriel, A.; Yusen, R.D. Simplification of the Pulmonary Embolism Severity Index for Prognostication in Patients with Acute Symptomatic Pulmonary Embolism. Arch. Intern. Med. 2010, 170, 1383–1389. [Google Scholar] [CrossRef]
- Harjola, V.; Mebazaa, A.; Čelutkienė, J.; Bettex, D.; Bueno, H.; Chioncel, O.; Crespo-Leiro, M.G.; Falk, V.; Filippatos, G.; Gibbs, S.; et al. Contemporary management of acute right ventricular failure: A statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur. J. Heart Fail. 2016, 18, 226–241. [Google Scholar] [CrossRef]
- Cozzi, D.; Moroni, C.; Cavigli, E.; Bindi, A.; Caviglioli, C.; Nazerian, P.; Vanni, S.; Miele, V.; Bartolucci, M. Prognostic value of CT pulmonary angiography parameters in acute pulmonary embolism. Radiol. Med. 2021, 126, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Qanadli, S.D.; El Hajjam, M.; Vieillard-Baron, A.; Joseph, T.; Mesurolle, B.; Oliva, V.L.; Barré, O.; Bruckert, F.; Dubourg, O.; Lacombe, P. New CT Index to Quantify Arterial Obstruction in Pulmonary Embolism: Comparison with angiographic index and echocardiography. Am. J. Roentgenol. 2001, 176, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Araoz, P.A.; Gotway, M.B.; Trowbridge, R.L.; Bailey, R.A.; Auerbach, A.D.; Reddy, G.P.; Dawn, S.K.; Webb, W.R.; Higgins, C.B. Helical CT Pulmonary Angiography Predictors of In-Hospital Morbidity and Mortality in Patients with Acute Pulmonary Embolism. J. Thorac. Imaging 2003, 18, 207–216. [Google Scholar] [CrossRef]
- van der Meer, R.W.; Pattynama, P.M.T.; van Strijen, M.J.L.; van den Berg-Huijsmans, A.A.; Hartmann, I.J.C.; Putter, H.; de Roos, A.; Huisman, M.V. Right Ventricular Dysfunction and Pulmonary Obstruction Index at Helical CT: Prediction of Clinical Outcome during 3-month Follow-up in Patients with Acute Pulmonary Embolism. Radiology 2005, 235, 798–803. [Google Scholar] [CrossRef]
- Ayöz, S.; Erol, S.; Kul, M.; Kaya, A.G.; Çoruh, A.G.; Savaş, İ.; Aydın, Ö.; Kaya, A. Using RV/LV ratio and cardiac biomarkers to define the risk of mortality from pulmonary embolism. Tuberk. Toraks 2021, 69, 297–306. [Google Scholar] [CrossRef]
- Aujesky, D.; Roy, P.-M.; Le Manach, C.P.; Verschuren, F.; Meyer, G.; Obrosky, D.S.; Stone, R.A.; Cornuz, J.; Fine, M.J. Validation of a model to predict adverse outcomes in patients with pulmonary embolism. Eur. Heart J. 2005, 27, 476–481. [Google Scholar] [CrossRef]
- Jiménez, D.; Yusen, R.D.; Otero, R.; Uresandi, F.; Nauffal, D.; Laserna, E.; Conget, F.; Oribe, M.; Cabezudo, M.A.; Díaz, G. Prognostic Models for Selecting Patients with Acute Pulmonary Embolism for Initial Outpatient Therapy. Chest 2007, 132, 24–30. [Google Scholar] [CrossRef]
- Donzé, J.; Le Gal, G.; Fine, M.J.; Roy, P.-M.; Sanchez, O.; Verschuren, F.; Cornuz, J.; Meyer, G.; Perrier, A.; Righini, M.; et al. Prospective validation of the Pulmonary Embolism Severity Index: A clinical prognostic model for pulmonary embolism. Thromb. Haemost. 2008, 100, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Lankeit, M.; Gómez, V.; Wagner, C.; Aujesky, D.; Recio, M.; Briongos, S.; Moores, C.L.K.; Yusen, R.D.; Konstantinides, S.; Jiménez, D. A Strategy Combining Imaging and Laboratory Biomarkers in Comparison With a Simplified Clinical Score for Risk Stratification of Patients with Acute Pulmonary Embolism. Chest 2012, 141, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, D.; Diaz, G.; Molina, J.; Marti, D.; Del Rey, J.; Garcia-Rull, S.; Escobar, C.; Vidal, R.; Sueiro, A.; Yusen, R.D. Troponin I and risk stratification of patients with acute nonmassive pulmonary embolism. Eur. Respir. J. 2008, 31, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Korkut, M.; Yavuz, A.; Selvi, F.; Zortuk, Ö.; İnan, E.H.; Güven, H.C. Prognostic performance of the Bova, sPESI, and Qanadli scores in patients with acute pulmonary embolism. Acta Radiol. 2024, 65, 1482–1490. [Google Scholar] [CrossRef]
- Yamashita, Y.; Morimoto, T.; Amano, H.; Takase, T.; Hiramori, S.; Kim, K.; Oi, M.; Akao, M.; Kobayashi, Y.; Toyofuku, M.; et al. Validation of simplified PESI score for identification of low-risk patients with pulmonary embolism: From the COMMAND VTE Registry. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 262–270. [Google Scholar] [CrossRef]
- Pay, L.; Çetin, T.; Keskin, K.; Dereli, Ş.; Tezen, O.; Yumurtaş, A.Ç.; Kolak, Z.; Eren, S.; Şaylık, F.; Çınar, T.; et al. Prognostic value of pulmonary artery diameter/aorta diameter ratio in patients with acute pulmonary embolism. Herz 2024, 49, 464–471. [Google Scholar] [CrossRef]
- Kasper, W.; Konstantinides, S.; Geibel, A.; Olschewski, M.; Heinrich, F.; Grosser, K.D.; Rauber, K.; Iversen, S.; Redecker, M.; Kienast, J. Management Strategies and Determinants of Outcome in Acute Major Pulmonary Embolism: Results of a Multicenter Registry. J. Am. Coll. Cardiol. 1997, 30, 1165–1171. [Google Scholar] [CrossRef]
- Goldhaber, S.Z.; Visani, L.; De Rosa, M. Acute pulmonary embolism: Clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 1999, 353, 1386–1389. [Google Scholar] [CrossRef]
- Shokoohi, H.; Shesser, R.; Smith, J.P.; Hill, M.C.; Hirsch, R. The correlation between elevated cardiac troponin I and pulmonary artery obstruction index in ED patients with pulmonary embolism. Am. J. Emerg. Med. 2009, 27, 449–453. [Google Scholar] [CrossRef]
- Ghuysen, A.; Ghaye, B.; Willems, V.; Lambermont, B.; Gerard, P.; Dondelinger, R.F.; D’orio, V. Computed tomographic pulmonary angiography and prognostic significance in patients with acute pulmonary embolism. Thorax 2005, 60, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Hajsadeghi, S.; Shamsedini, A.; Bahadoran, P.; Amouei, E.; Mirshafiee, S. Comparison of Qanadli score with conventional risk stratifiers in non-massive pulmonary emboli. J. Int. Med. Res. 2024, 52, 03000605241276481. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, B.; Correia, H.; Figueiredo, Â.; Delgado, A.; Moreira, D.; dos Santos, L.F.; Correia, E.; Pipa, J.; Beirão, I.; Santos, O. Clot burden score in the evaluation of right ventricular dysfunction in acute pulmonary embolism: Quantifying the cause and clarifying the consequences. Rev. Port. Cardiol. 2012, 31, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Lerche, M.; Bailis, N.; Akritidou, M.; Meyer, H.J.; Surov, A. Pulmonary Vessel Obstruction Does Not Correlate with Severity of Pulmonary Embolism. J. Clin. Med. 2019, 8, 584. [Google Scholar] [CrossRef]
- Apfaltrer, P.; Henzler, T.; Meyer, M.; Roeger, S.; Haghi, D.; Gruettner, J.; Süselbeck, T.; Wilson, R.; Schoepf, U.; Schoenberg, S.; et al. Correlation of CT angiographic pulmonary artery obstruction scores with right ventricular dysfunction and clinical outcome in patients with acute pulmonary embolism. Eur. J. Radiol. 2012, 81, 2867–2871. [Google Scholar] [CrossRef]
- Furlan, A.; Aghayev, A.; Chang, C.-C.H.; Patil, A.; Jeon, K.N.; Park, B.; Fetzer, D.T.; Saul, M.; Roberts, M.S.; Bae, K.T. Short-term Mortality in Acute Pulmonary Embolism: Clot Burden and Signs of Right Heart Dysfunction at CT Pulmonary Angiography. Radiology 2012, 265, 283–293. [Google Scholar] [CrossRef]
- Bach, A.G.; Nansalmaa, B.; Kranz, J.; Taute, B.-M.; Wienke, A.; Schramm, D.; Surov, A. CT pulmonary angiography findings that predict 30-day mortality in patients with acute pulmonary embolism. Eur. J. Radiol. 2015, 84, 332–337. [Google Scholar] [CrossRef]
- Akhoundi, N.; Sedghian, S.; Siami, A.; Nia, I.Y.; Naseri, Z.; Asli, S.M.G.; Hazara, R. Does Adding the Pulmonary Infarction and Right Ventricle to Left Ventricle Diameter Ratio to the Qanadli Index (A Combined Qanadli Index) More Accurately, Predict Short-Term Mortality in Patients with Pulmonary Embolism? Indian J. Radiol. Imaging 2023, 33, 478–483. [Google Scholar] [CrossRef]
- Kumamaru, K.K.; Saboo, S.S.; Aghayev, A.; Cai, P.; Quesada, C.G.; George, E.; Hussain, Z.; Cai, T.; Rybicki, F.J. CT pulmonary angiography-based scoring system to predict the prognosis of acute pulmonary embolism. J. Cardiovasc. Comput. Tomogr. 2016, 10, 473–479. [Google Scholar] [CrossRef]
- Guo, F.; Zhu, G.; Shen, J.; Ma, Y. Health risk stratification based on computed tomography pulmonary artery obstruction index for acute pulmonary embolism. Sci. Rep. 2018, 8, 17897. [Google Scholar] [CrossRef]
- Rotzinger, D.C.; Knebel, J.-F.; Jouannic, A.-M.; Adler, G.; Qanadli, S.D. CT Pulmonary Angiography for Risk Stratification of Patients with Nonmassive Acute Pulmonary Embolism. Radiol. Cardiothorac. Imaging 2020, 2, e190188. [Google Scholar] [CrossRef] [PubMed]
- Zorlu, S.A. Value of computed tomography pulmonary angiography measurements in predicting 30-day mortality among patients with acute pulmonary embolism. Pol. J. Radiol. 2024, 89, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Chaosuwannakit, N.; Soontrapa, W.; Makarawate, P.; Sawanyawisuth, K. Importance of computed tomography pulmonary angiography for predict 30-day mortality in acute pulmonary embolism patients. Eur. J. Radiol. Open 2021, 8, 100340. [Google Scholar] [CrossRef] [PubMed]
- Collomb, D.; Paramelle, P.J.; Calaque, O.; Bosson, J.L.; Vanzetto, G.; Barnoud, D.; Pison, C.; Coulomb, M.; Ferretti, G. Severity assessment of acute pulmonary embolism: Evaluation using helical CT. Eur. Radiol. 2003, 13, 1508–1514. [Google Scholar] [CrossRef]
- Contractor, S.; Maldjian, P.D.; Sharma, V.K.; Gor, D.M. Role of Helical CT in Detecting Right Ventricular Dysfunction Secondary to Acute Pulmonary Embolism. J. Comput. Assist. Tomogr. 2002, 26, 587–591. [Google Scholar] [CrossRef]
- He, H.; Stein, M.W.; Zalta, B.; Haramati, L.B. Computed Tomography Evaluation of Right Heart Dysfunction in Patients With Acute Pulmonary Embolism. J. Comput. Assist. Tomogr. 2006, 30, 262–266. [Google Scholar] [CrossRef]
- Lim, K.-E.; Chan, C.-Y.; Chu, P.-H.; Hsu, Y.-Y.; Hsu, W.-C. Right ventricular dysfunction secondary to acute massive pulmonary embolism detected by helical computed tomography pulmonary angiography. Clin. Imaging 2004, 29, 16–21. [Google Scholar] [CrossRef]
- Jia, D.; Zhou, X.-M.; Hou, G. Estimation of right ventricular dysfunction by computed tomography pulmonary angiography: A valuable adjunct for evaluating the severity of acute pulmonary embolism. J. Thromb. Thrombolysis 2016, 43, 271–278. [Google Scholar] [CrossRef]
- Araoz, P.A.; Gotway, M.B.; Harrington, J.R.; Harmsen, W.S.; Mandrekar, J.N. Pulmonary Embolism: Prognostic CT Findings. Radiology 2007, 242, 889–897. [Google Scholar] [CrossRef]
- Ghaye, B.; Ghuysen, A.; Willems, V.; Lambermont, B.; Gerard, P.; D’Orio, V.; Gevenois, P.A.; Dondelinger, R.F. Severe Pulmonary Embolism: Pulmonary Artery Clot Load Scores and Cardiovascular Parameters as Predictors of Mortality. Radiology 2006, 239, 884–891. [Google Scholar] [CrossRef]
- Bailis, N.; Lerche, M.; Meyer, H.J.; Wienke, A.; Surov, A. Contrast reflux into the inferior vena cava on computer tomographic pulmonary angiography is a predictor of 24-hour and 30-day mortality in patients with acute pulmonary embolism. Acta Radiol. 2020, 62, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Chintapalli, K.; Thorsen, M.K.; Olson, D.L.; Goodman, L.R.; Gurney, J. Computed Tomography of Pulmonary Thromboembolism and Infarction. J. Comput. Assist. Tomogr. 1988, 12, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Hajiahmadi, S.; Tabesh, F.; Shayganfar, A.; Shirani, F.; Ebrahimian, S. Pulmonary artery obstruction index, pulmonary artery diameter and right ventricle strain as prognostic CT findings in patient with acute pulmonary embolism. Radiología 2022, 65, 200–212. [Google Scholar] [CrossRef]
- Sanal, S.; Aronow, W.S.; Ravipati, G.; Maguire, G.P.; Belkin, R.N.; Lehrman, S.G. Prediction of Moderate or Severe Pulmonary Hypertension by Main Pulmonary Artery Diameter and Main Pulmonary Artery Diameter/Ascending Aorta Diameter in Pulmonary Embolism. Cardiol. Rev. 2006, 14, 213–214. [Google Scholar] [CrossRef] [PubMed]
- Aviram, G.; Rogowski, O.; Gotler, Y.; Bendler, A.; Steinvil, A.; Goldin, Y.; Graif, M.; Berliner, S. Real-time risk stratification of patients with acute pulmonary embolism by grading the reflux of contrast into the inferior vena cava on computerized tomographic pulmonary angiography. J. Thromb. Haemost. 2008, 6, 1488–1493. [Google Scholar] [CrossRef]
- Kasper, W.; Geibel, A.; Tiede, N.; Bassenge, D.; Kauder, E.; Konstantinides, S.; Meinertz, T.; Just, H. Distinguishing between acute and subacute massive pulmonary embolism by conventional and Doppler echocardiography. Heart 1993, 70, 352–356. [Google Scholar] [CrossRef]
- Yuriditsky, E.; Zhang, R.S.; Zhang, P.; Horowitz, J.M.; Bernard, S.; Greco, A.A.; Postelnicu, R.; Mukherjee, V.; Hena, K.; Elbaum, L.; et al. Inferior vena cava contrast reflux grade is associated with a reduced cardiac index in acute pulmonary embolism. Thromb. Res. 2024, 244, 109177. [Google Scholar] [CrossRef]
- Kang, D.K.; Thilo, C.; Schoepf, U.J.; Barraza, J.M.; Nance, J.W.; Bastarrika, G.; Abro, J.A.; Ravenel, J.G.; Costello, P.; Goldhaber, S.Z. CT Signs of Right Ventricular Dysfunction: Prognostic role in acute pulmonary embolism. JACC Cardiovasc. Imaging 2011, 4, 841–849. [Google Scholar] [CrossRef]
- Kang, D.K.; Ramos-Duran, L.; Schoepf, U.J.; Armstrong, A.M.; Abro, J.A.; Ravenel, J.G.; Thilo, C. Reproducibility of CT Signs of Right Ventricular Dysfunction in Acute Pulmonary Embolism. Am. J. Roentgenol. 2010, 194, 1500–1506. [Google Scholar] [CrossRef]
- Quiroz, R.; Kucher, N.; Schoepf, U.J.; Kipfmueller, F.; Solomon, S.D.; Costello, P.; Goldhaber, S.Z. Right ventricular enlargement on chest computed tomography: Prognostic role in acute pulmonary embolism. Circulation 2004, 109, 2401–2404. [Google Scholar] [CrossRef]
sPESI Groups | ||||
---|---|---|---|---|
Low Risk (n = 28) | High Risk (n = 89) | p-Value | ES | |
Age (years), mean ± SD | 52.43 ± 12.79 | 66.71 ± 15.83 | <0.001 1 | 0.94 |
Gender (F/M), n (%) | 14 (50)/14 (50) | 53 (59.6)/36 (40.4) | 0.502 2 | 0.08 |
BMI (kg/m2), mean ± SD | 29.46 ± 3.54 | 27.88 ± 5.12 | 0.073 3 | 0.36 |
Saturation, median (min–max) | 92.5 (90–98) | 90 (76–98) | <0.001 4 | 0.50 |
Comorbidity distributions, n (%) | ||||
Presence of comorbidities | 21 (75) | 81 (91) | 0.047 5 | 0.20 |
Diabetes mellitus | 6 (21.4) | 13 (14.6) | 0.391 5 | 0.08 |
Hypertension | 12 (42.9) | 58 (65.2) | 0.060 2 | 0.19 |
Atrial Fibrillation | 1 (3.6) | 12 (13.6) | 0.184 5 | 0.14 |
CHF/CAD | 0 (0) | 15 (16.9) | 0.020 5 | 0.22 |
Bronchial Asthma | 0 (0) | 19 (21.3) | 0.006 5 | 0.25 |
COPD | 1 (3.6) | 24 (27) | 0.018 2 | 0.24 |
Malignancy | 0 (0) | 28 (31.5) | 0.002 2 | 0.31 |
Chronic Renal Failure | 0 (0) | 2 (2.2) | >0.999 2 | 0.07 |
Rheumatoid Arthritis | 6 (21.4) | 14 (15.7) | 0.566 5 | 0.06 |
Symptom distribution, n (%) | ||||
Dyspnea | 20 (71.4) | 79 (88.8) | 0.037 5 | 0.21 |
Syncope/Presyncope | 4 (14.3) | 14 (15.7) | >0.999 5 | 0.02 |
Hemoptysis | 3 (10.7) | 13 (14.6) | 0.759 5 | 0.05 |
Fatigue | 3 (10.7) | 19 (21.3) | 0.328 2 | 0.12 |
Angina Pectoris | 10 (35.7) | 21 (23.6) | 0.307 2 | 0.12 |
Palpitations | 12 (42.9) | 28 (31.5) | 0.379 2 | 0.10 |
Leg Swelling | 2 (7.1) | 18 (20.2) | 0.152 5 | 0.15 |
Etiologic Factor distributions, n (%) | ||||
Hormone therapy | 0 (0) | 15 (16.9) | 0.020 5 | 0.22 |
Use of oral contraceptive | 0 (0) | 2 (2.2) | >0.999 5 | 0.07 |
Prolonged travel/immobility | 11 (39.3) | 18 (20.2) | 0.074 2 | 0.19 |
Trauma | 0 (0) | 2 (2.2) | >0.999 5 | 0.07 |
Past surgery | 8 (28.6) | 27 (30.3) | >0.999 5 | 0.02 |
Genetics | 5 (17.9) | 11 (12.4) | 0.530 5 | 0.07 |
Obesity | 2 (7.1) | 4 (4.5) | 0.628 5 | 0.05 |
Idiopathic | 6 (21.4) | 18 (20.2) | >0.999 5 | 0.01 |
Deep Vein Thrombosis, n (%) | 5 (17.9) | 21 (24.1) | 0.666 2 | 0.06 |
Relapsing embolism, n (%) | 3 (10.7) | 7 (7.9) | 0.701 5 | 0.04 |
Thrombolytic, n (%) | 1 (3.6) | 5 (5.6) | >0.999 5 | 0.04 |
Mortality | 0 (0) | 13 (14.6) | 0.036 5 | 0.20 |
sPESI Groups | ||||
---|---|---|---|---|
Low Risk (n = 28) | High Risk (n = 89) | p-Value | ES | |
Laboratory Findings | ||||
D-dimer | 2083 (1165.75–4736.5) | 3583 (2055–7904.5) | 0.046 4 | 0.25 |
C-reactive protein | 19.5 (4.5–46.75) | 25 (5–67) | 0.410 4 | 0.10 |
Lactate Dehydrogenase | 296 (209–376) | 274 (225–329.5) | 0.957 4 | 0.01 |
Creatine kinase MB isoenzyme | 1.08 (0.78–1.52) | 1.60 (1.02–2.90) | 0.017 4 | 0.36 |
Troponin | 9.43 (3.77–25.75) | 26.30 (7.92–43.70) | 0.054 4 | 0.29 |
Lymphocytes | 2.31 ± 1.04 | 1.71 ± 0.84 | 0.003 1 | 0.35 |
Lactate | 2.5 (1.4–3.3) | 1.8 (1.5–3) | 0.644 4 | 0.07 |
Alanine aminotransferase | 21.5 (14.75–51) | 22 (12–29) | 0.111 4 | 0.20 |
Aspartate transferase | 24 (16.75–36.25) | 23 (16–34) | 0.643 4 | 0.06 |
Creatine | 0.87 (0.68–0.91) | 0.81 (0.64–1.04) | 0.985 4 | 0.01 |
Urea | 33.5 (26.63–37.25) | 36 (30–49) | 0.021 4 | 0.29 |
Hemoglobin | 12.96 ± 2.11 | 11.72 ± 2.09 | 0.008 1 | 0.33 |
Haematocrit | 38.97 ± 5.87 | 36.10 ± 6.01 | 0.031 1 | 0.48 |
Mean corpuscular hemoglobin concentration | 33.22 ± 1.56 | 32.43 ± 1.34 | 0.012 1 | 0.27 |
Red cell distribution width | 13.60 (13.15–15.25) | 14.90 (14–16.80) | 0.002 4 | 0.39 |
White blood count | 9.40 (6.89–11.65) | 8.81 (6.53–11.50) | 0.493 4 | 0.09 |
Homocysteine | 13.21 ± 6.12 | 14.53 ± 6.05 | 0.374 1 | 0.12 |
Protein-C | 98.97 ± 33.41 | 102.60 ± 32.26 | 0.644 1 | 0.06 |
Protein-S | 85.15 ± 22.39 | 81.25 ± 25.46 | 0.511 1 | 0.08 |
Antithrombin III | 105.32 ± 12.49 | 99.53 ± 20.09 | 0.192 1 | 0.22 |
sPESI Groups | ||||
---|---|---|---|---|
Low Risk (n = 28) | High Risk (n = 89) | p-Value | ES | |
Radiological parameters | ||||
Computed tomography obstruction index | 27.5 (14.38–53.13) | 30 (12.5–50) | 0.674 4 | 0.05 |
Aortic diameter | 31.07 ± 5.07 | 32.63 ± 4.73 | 0.138 1 | 0.32 |
Pulmonary artery diameter | 27.93 ± 3.87 | 28.40 ± 5.05 | 0.648 1 | 0.10 |
Right pulmonary artery | 18.25 ± 3.53 | 18.52 ± 3.79 | 0.742 1 | 0.07 |
Left pulmonary artery | 17.21 ± 2.64 | 18.96 ± 3.86 | 0.0093 | 0.53 |
Interventricular septal deviation | 5 (17.9) | 11 (12.5) | 0.532 5 | 0.07 |
Inferior vena cava reflux | 5 (17.9) | 15 (17) | >0.999 5 | 0.01 |
Infarct | 8 (28.6) | 24 (27.3) | >0.999 2 | 0.01 |
PAD/AoD (>1) | 20 (71.4) | 65 (73) | >0.999 2 | 0.02 |
Mortality | ||||
---|---|---|---|---|
Alive (n = 104) | Died (n = 13) | p-Value | ES | |
Radiological parameters | ||||
Computed tomography obstruction index | 31.25 (12.50–50) | 20 (12.5–27.5) | 0.242 4 | 0.20 |
Aortic diameter | 31.94 ± 4.80 | 34.77 ± 4.49 | 0.046 1 | 0.59 |
Pulmonary artery diameter | 28.33 ± 4.72 | 28.00 ± 5.42 | 0.817 1 | 0.07 |
Right pulmonary artery | 18.38 ± 3.71 | 19.08 ± 3.90 | 0.523 1 | 0.19 |
Left pulmonary artery | 18.30 ± 3.49 | 20.46 ± 4.61 | 0.044 1 | 0.60 |
Interventricular septal deviation | 16 (15.4) | 0 (0) | 0.214 5 | 0.14 |
Inferior vena cava reflux | 19 (18.3) | 1 (8.3) | 0.688 5 | 0.08 |
Infarct | 29 (27.9) | 3 (25) | >0.999 5 | 0.02 |
PAD/AoD (>1) | 73 (70.2) | 12 (92.3) | 0.110 5 | 0.16 |
n | Computed Tomography Obstruction Index | p-Value | ES | ||
---|---|---|---|---|---|
PAD/AoD | <1 | 91 | 25 (12.5–50) | 0.147 | 0.19 |
≥1 | 26 | 37.5 (25–50) | |||
Interventricular septal deviation | No | 100 | 25 (11.88–50) | <0.001 | 0.54 |
Yes | 16 | 56.25 (45.63–75) | |||
Inferior vena cava reflux | No | 96 | 27.5 (12.5–50) | 0.438 | 0.11 |
Yes | 20 | 33.75 (16.25–55) | |||
Infarct | No | 84 | 30 (12.5–50) | 0.818 | 0.03 |
Yes | 32 | 26.25 (12.5–50) | |||
Thrombolytic therapy | Not given | 111 | 27.5 (12.5–50) | 0.013 | 0.60 |
Given | 6 | 56.25 (50–71.88) | |||
Mortality | No | 104 | 31.25 (12.5–50) | 0.242 | 0.20 |
Yes | 13 | 20 (12.5–27.5) | |||
Relapsing Embolism | No | 107 | 27.5 (12.5–50) | 0.556 | 0.11 |
Yes | 10 | 37.5 (15.63–50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atik, S.; Ergün, R.; Ergün, D.; Narin Çopur, E.; Kılınçer, A.; Körez, M.K. The Role of the Pulmonary Artery Obstruction Index Ratio in Predicting the Clinical Course of Pulmonary Embolism. J. Clin. Med. 2025, 14, 1673. https://doi.org/10.3390/jcm14051673
Atik S, Ergün R, Ergün D, Narin Çopur E, Kılınçer A, Körez MK. The Role of the Pulmonary Artery Obstruction Index Ratio in Predicting the Clinical Course of Pulmonary Embolism. Journal of Clinical Medicine. 2025; 14(5):1673. https://doi.org/10.3390/jcm14051673
Chicago/Turabian StyleAtik, Serap, Recai Ergün, Dilek Ergün, Ecem Narin Çopur, Abidin Kılınçer, and Muslu Kazım Körez. 2025. "The Role of the Pulmonary Artery Obstruction Index Ratio in Predicting the Clinical Course of Pulmonary Embolism" Journal of Clinical Medicine 14, no. 5: 1673. https://doi.org/10.3390/jcm14051673
APA StyleAtik, S., Ergün, R., Ergün, D., Narin Çopur, E., Kılınçer, A., & Körez, M. K. (2025). The Role of the Pulmonary Artery Obstruction Index Ratio in Predicting the Clinical Course of Pulmonary Embolism. Journal of Clinical Medicine, 14(5), 1673. https://doi.org/10.3390/jcm14051673