Precision Medicine in Rheumatology: The Role of Biomarkers in Diagnosis and Treatment Optimization
Abstract
:1. Introduction
2. Key Biomarkers in Common Rheumatic Diseases
2.1. Rheumatoid Arthritis
2.1.1. Inflammatory Biomarkers
2.1.2. Autoantibodies as Biomarkers
2.1.3. Anti-Citrullinated Protein Antibodies
2.1.4. Rheumatoid Factor (RF)
2.1.5. Other Antibody Biomarkers
2.1.6. Anti-Mitochondrial Antibodies
2.1.7. The Multi-Biomarker Disease Activity (MBDA)
2.1.8. Genetic Markers
2.1.9. TNF Inhibitors: Biomarkers Predicting Response to Therapy in RA
2.1.10. Biomarkers of Joint Damage and Remodeling
2.2. Systemic Lupus Erythematosus
2.2.1. Biomarkers in SLE
2.2.2. Autoantibodies
2.2.3. Reduced Complement
2.2.4. CRP and ESR
2.2.5. Cytokines and Chemokines
2.3. Psoriatic Arthritis (PsA)
Biomarkers in PsA
2.4. Systemic Sclerosis
2.4.1. Antibodies Biomarkers
2.4.2. Fibrotic and Extracellular Matrix Biomarkers
2.4.3. Cytokines
2.4.4. Chemokines
2.4.5. Vascular and Endothelial Markers
2.4.6. Adhesion Molecules
2.4.7. Micro RNA Biomarkers
2.4.8. CRP and ESR
2.5. Biomarkers in Antineutrophil Cytoplasmic Antibody (ANCA)-Associated Vasculitis (AAV)
3. Biomarkers as Potential Tools in Prevention
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alevizos, I.; Illei, G.G. MicroRNAs as biomarkers in rheumatic diseases. Nat. Rev. Rheumatol. 2010, 6, 391–398. [Google Scholar] [CrossRef]
- Kang, E.H.; Ha, Y.-J.; Lee, Y.J. Autoantibody Biomarkers in Rheumatic Diseases. Int. J. Mol. Sci. 2020, 21, 1382. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef] [PubMed]
- Biomarkers Definitions Working Group; Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Spilker, B.A.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Godfrey, A.; Vandendriessche, B.; Bakker, J.P.; Fitzer-Attas, C.; Gujar, N.; Hobbs, M.; Liu, Q.; Northcott, C.A.; Parks, V.; Wood, W.A.; et al. Fit-for-Purpose Biometric Monitoring Technologies: Leveraging the Laboratory Biomarker Experience. Clin. Transl. Sci. 2021, 14, 62–74. [Google Scholar] [CrossRef]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Lin, C.M.A.; Cooles, F.A.H.; Isaacs, J.D. Precision medicine: The precision gap in rheumatic disease. Nat. Rev. Rheumatol. 2022, 18, 725–733. [Google Scholar] [CrossRef]
- Mohan, C.; Assassi, S. Biomarkers in rheumatic diseases: How can they facilitate diagnosis and assessment of disease activity? BMJ 2015, 351, h5079. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef]
- Smolen, J.S.; Aletaha, D.; McInnes, I.B. Rheumatoid arthritis. Lancet 2016, 388, 2023–2038. [Google Scholar] [CrossRef]
- Silman, A.J.; Pearson, J.E. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 2002, 4 (Suppl. S3), S265–S272. [Google Scholar] [CrossRef] [PubMed]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Caplan, L.; Yazdany, J.; Robbins, M.L.; Neogi, T.; Michaud, K.; Saag, K.G.; O’Dell, J.R.; Kazi, S. Rheumatoid arthritis disease activity measures: American College of Rheumatology recommendations for use in clinical practice. Arthritis Care Res. 2012, 64, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Dixey, J.; Solymossy, C.; Young, A. Is it possible to predict radiological damage in early rheumatoid arthritis (RA)? A report on the occurrence, progression, and prognostic factors of radiological erosions over the first 3 years in 866 patients from the Early RA Study (ERAS). J. Rheumatol. Suppl. 2004, 69, 48–54. [Google Scholar]
- Jonsson, M.K.; Sundlisæter, N.P.; Nordal, H.H.; Hammer, H.B.; Aga, A.-B.; Olsen, I.C.; Brokstad, K.A.; van der Heijde, D.; Kvien, T.K.; Fevang, B.-T.S.; et al. Calprotectin as a marker of inflammation in patients with early rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 2031–2037. [Google Scholar] [CrossRef]
- Bae, S.-C.; Lee, Y.H. Calprotectin levels in rheumatoid arthritis and their correlation with disease activity: A meta-analysis. Postgrad. Med. 2017, 129, 531–537. [Google Scholar] [CrossRef]
- Nishimura, K.; Sugiyama, D.; Kogata, Y.; Tsuji, G.; Nakazawa, T.; Kawano, S.; Saigo, K.; Morinobu, A.; Koshiba, M.; Kuntz, K.M.; et al. Meta-analysis: Diagnostic accuracy of anti–cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann. Intern. Med. 2007, 146, 797–808. [Google Scholar] [CrossRef]
- Bizzaro, N.; Bartoloni, E.; Morozzi, G.; Manganelli, S.; Riccieri, V.; Sabatini, P.; Filippini, M.; Tampoia, M.; Afeltra, A.; Sebastiani, G.; et al. Anti-cyclic citrullinated peptide antibody titer predicts time to rheumatoid arthritis onset in patients with undifferentiated arthritis: Results from a 2-year prospective study. Arthritis Res. Ther. 2013, 15, R16. [Google Scholar] [CrossRef]
- Shapiro, S.C. Biomarkers in Rheumatoid Arthritis. Cureus 2021, 13, e15063. [Google Scholar] [CrossRef]
- Nell, V.P.K.; Machold, K.P.; Stamm, T.A.; Eberl, G.; Heinzl, H.; Uffmann, M.; Smolen, J.S.; Steiner, G. Autoantibody profiling as early diagnostic and prognostic tool for rheumatoid arthritis. Ann. Rheum. Dis. 2005, 64, 1731–1736. [Google Scholar] [CrossRef]
- Trouw, L.A.; Rispens, T.; Toes, R.E.M. Beyond citrullination: Other post-translational protein modifications in rheumatoid arthritis. Nat. Rev. Rheumatol. 2017, 13, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Maksymowych, W.P.; Marotta, A. 14-3-3η: A novel biomarker platform for rheumatoid arthritis. Clin. Exp. Rheumatol. 2014, 32 (Suppl. S85), S-35–S-39. [Google Scholar]
- Zeng, T.; Tan, L. 14-3-3η protein: A promising biomarker for rheumatoid arthritis. Biomark. Med. 2018, 12, 917–925. [Google Scholar] [CrossRef]
- Zhu, J.-N.; Nie, L.-Y.; Lu, X.-Y.; Wu, H.-X. Meta-analysis: Compared with anti-CCP and rheumatoid factor, could anti-MCV be the next biomarker in the rheumatoid arthritis classification criteria? Clin. Chem. Lab. Med. 2019, 57, 1668–1679. [Google Scholar] [CrossRef] [PubMed]
- Turesson, C.; Mathsson, L.; Jacobsson, L.T.H.; Sturfelt, G.; Rönnelid, J. Antibodies to modified citrullinated vimentin are associated with severe extra-articular manifestations in rheumatoid arthritis. Ann. Rheum. Dis. 2013, 72, 2047–2048. [Google Scholar] [CrossRef]
- Innala, L.; Kokkonen, H.; Eriksson, C.; Jidell, E.; Berglin, E.; Dahlqvst, S.R. Antibodies against mutated citrullinated vimentin are a better predictor of disease activity at 24 months in early rheumatoid arthritis than antibodies against cyclic citrullinated peptides. J. Rheumatol. 2008, 35, 1002–1008. [Google Scholar]
- Lindenberg, L.; Spengler, L.; Bang, H.; Dorner, T.; Maslyanskiy, A.L.; Lapin, S.V.; Ilivanova, E.I.; Martinez-Gamboa, L.; Bastian, H.; Wittenborn, E.; et al. Restrictive IgG antibody response against mutated citrullinated vimentin predicts response to rituximab in patients with rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 206. [Google Scholar] [CrossRef]
- Ren, J.; Sun, L.; Zhao, J. Meta-analysis: Diagnostic accuracy of antibody against peptidylarginine deiminase 4 by ELISA for rheumatoid arthritis. Clin. Rheumatol. 2017, 36, 2431–2438. [Google Scholar] [CrossRef]
- Halvorsen, E.H.; Pollmann, S.; Gilboe, I.-M.; van der Heijde, D.; Landewé, R.; Ødegård, S.; Kvien, T.K.; Molberg, Ø. Serum IgG antibodies to peptidylarginine deiminase 4 in rheumatoid arthritis and associations with disease severity. Ann. Rheum. Dis. 2008, 67, 414–417. [Google Scholar] [CrossRef]
- Gregersen, P.K.; Silver, J.; Winchester, R.J. The shared epitope hypothesis. an approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987, 30, 1205–1213. [Google Scholar] [CrossRef]
- Kaltenhäuser, S.; Wagner, U.; Schuster, E.; Wassmuth, R.; Arnold, S.; Seidel, W.; Tröltzsch, M.; Loeffler, M.; Häntzschel, H. Immunogenetic markers and seropositivity predict radiological progression in early rheumatoid arthritis independent of disease activity. J. Rheumatol. 2001, 28, 735–744. [Google Scholar] [PubMed]
- Wysocki, T.; Olesińska, M.; Paradowska-Gorycka, A. Current Understanding of an Emerging Role of HLA-DRB1 Gene in Rheumatoid Arthritis–From Research to Clinical Practice. Cells 2020, 9, 1127. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.S.; Moots, R.J. Biomarkers for Treatment Response in Rheumatoid Arthritis: Where are they? Rheumatol. Immunol. Res. 2020, 1, 1–3. [Google Scholar] [CrossRef]
- Rigby, W.; Buckner, J.H.; Bridges, S.L.; Nys, M.; Gao, S.; Polinsky, M.; Ray, N.; Bykerk, V. HLA-DRB1 risk alleles for RA are associated with differential clinical responsiveness to abatacept and adalimumab: Data from a head-to-head, randomized, single-blind study in autoantibody-positive early RA. Arthritis Res. Ther. 2021, 23, 245. [Google Scholar] [CrossRef] [PubMed]
- Bakker, M.F.; Cavet, G.; Jacobs, J.W.; Bijlsma, J.W.J.; Haney, D.J.; Shen, Y.; Hesterberg, L.K.; Smith, D.R.; Centola, M.; Roon, J.A.G.v.; et al. Performance of a multi-biomarker score measuring rheumatoid arthritis disease activity in the CAMERA tight control study. Ann. Rheum. Dis. 2012, 71, 1692–1697. [Google Scholar] [CrossRef]
- Brahe, C.; Østergaard, M.; Johansen, J.; Defranoux, N.; Wang, X.; Bolce, R.; Sasso, E.; Ørnbjerg, L.; Hørslev-Petersen, K.; Stengaard-Pedersen, K.; et al. Predictive value of a multi-biomarker disease activity score for clinical remission and radiographic progression in patients with early rheumatoid arthritis: A post-hoc study of the OPERA trial. Scand. J. Rheumatol. 2019, 48, 9–16. [Google Scholar] [CrossRef]
- Hambardzumyan, K.; Bolce, R.; Saevarsdottir, S.; Cruickshank, S.E.; Sasso, E.H.; Chernoff, D.; Forslind, K.; Petersson, I.F.; Geborek, P.; van Vollenhoven, R.F. Pretreatment multi-biomarker disease activity score and radiographic progression in early RA: Results from the SWEFOT trial. Ann. Rheum. Dis. 2015, 74, 1102–1109. [Google Scholar] [CrossRef]
- Rech, J.; Hueber, A.J.; Finzel, S.; Englbrecht, M.; Haschka, J.; Manger, B.; Kleyer, A.; Reiser, M.; Cobra, J.F.; Figueiredo, C.; et al. Prediction of disease relapses by multibiomarker disease activity and autoantibody status in patients with rheumatoid arthritis on tapering DMARD treatment. Ann. Rheum. Dis. 2016, 75, 1637–1644. [Google Scholar] [CrossRef]
- Ribbens, C.; Andre, B.; Jaspar, J.M.; Kaye, O.; Kaiser, M.J.; De Groote, D.; Malaise, M.G. Matrix metalloproteinase-3 serum levels are correlated with disease activity and predict clinical response in rheumatoid arthritis. J. Rheumatol. 2000, 27, 888–893. [Google Scholar]
- Green, M.J.; Gough, A.K.S.; Devlin, J.; Smith, J.; Astin, P.; Taylor, D.; Emery, P. Serum MMP-3 and MMP-1 and progression of joint damage in early rheumatoid arthritis. Rheumatology 2003, 42, 83–88. [Google Scholar] [CrossRef]
- Lerner, A.; Neidhöfer, S.; Reuter, S.; Matthias, T. MMP3 is a reliable marker for disease activity, radiological monitoring, disease outcome predictability, and therapeutic response in rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2019, 32, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.L.E.; Svensson, B.; Petersson, I.F.; Hafström, I.; Albertsson, K.; Forslind, K.; Heinegård, D.; Saxne, T. Early increase in serum-COMP is associated with joint damage progression over the first five years in patients with rheumatoid arthritis. BMC Musculoskelet. Disord. 2013, 14, 229. [Google Scholar] [CrossRef] [PubMed]
- Ben Achour, W.; Bouaziz, M.; Mechri, M.; Zouari, B.; Bahlous, A.; Abdelmoula, L.; Laadhar, L.; Sellami, M.; Sahli, H.; Cheour, E. A cross sectional study of bone and cartilage biomarkers: Correlation with structural damage in rheumatoid arthritis. Libyan J. Med. 2018, 13, 1512330. [Google Scholar] [CrossRef] [PubMed]
- Morozzi, G.; Fabbroni, M.; Bellisai, F.; Cucini, S.; Simpatico, A.; Galeazzi, M. Low serum level of COMP, a cartilage turnover marker, predicts rapid and high ACR70 response to adalimumab therapy in rheumatoid arthritis. Clin. Rheumatol. 2007, 26, 1335–1338. [Google Scholar] [CrossRef]
- Hage, F.G.; Szalai, A.J. C-reactive protein gene polymorphisms, C-reactive protein blood levels, and cardiovascular disease risk. J. Am. Coll. Cardiol. 2007, 50, 1115–1122. [Google Scholar] [CrossRef]
- Emery, P.; Gabay, C.; Kraan, M.; Gomez-Reino, J. Evidence-based review of biologic markers as indicators of disease progression and remission in rheumatoid arthritis. Rheumatol. Int. 2007, 27, 793–806. [Google Scholar] [CrossRef]
- Jansen, L.M.A.; van der Horst-Bruinsma, I.E.; van Schaardenburg, D.; Bezemer, P.D.; Dijkmans, B.A.C. Predictors of radiographic joint damage in patients with early rheumatoid arthritis. Ann. Rheum. Dis. 2001, 60, 924–927. [Google Scholar] [CrossRef]
- Smolen, J.S.; Van Der Heijde, D.M.F.M.; Clair, E.W.S.; Emery, P.; Bathon, J.M.; Keystone, E.; Maini, R.N.; Kalden, J.R.; Schiff, M.; Baker, D.; et al. Predictors of joint damage in patients with early rheumatoid arthritis treated with high-dose methotrexate with or without concomitant infliximab: Results from the ASPIRE trial. Arthritis Rheum. 2006, 54, 702–710. [Google Scholar] [CrossRef]
- Sokka, T.; Pincus, T. Erythrocyte Sedimentation Rate, C-Reactive Protein, or Rheumatoid Factor Are Normal at Presentation in 35%–45% of Patients with Rheumatoid Arthritis Seen Between 1980 and 2004: Analyses from Finland and the United States. J. Rheumatol. 2009, 36, 1387–1390. [Google Scholar] [CrossRef]
- Wolfe, F.; Pincus, T. The level of inflammation in rheumatoid arthritis is determined early and remains stable over the longterm course of the illness. J. Rheumatol. 2001, 28, 1817–1824. [Google Scholar]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Steiner, G.; Toes, R.E. Autoantibodies in rheumatoid arthritis—Rheumatoid factor, anticitrullinated protein antibodies and beyond. Curr. Opin. Rheumatol. 2024, 36, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Van Delft, M.A.; Huizinga, T.W. An overview of autoantibodies in rheumatoid arthritis. J. Autoimmun. 2020, 110, 102392. [Google Scholar] [CrossRef] [PubMed]
- Valesini, G.; Gerardi, M.C.; Iannuccelli, C.; Pacucci, V.A.; Pendolino, M.; Shoenfeld, Y. Citrullination and autoimmunity. Autoimmun. Rev. 2015, 14, 490–497. [Google Scholar] [CrossRef]
- Van Venrooij, W.J.; Zendman, A.J.W. Anti-CCP2 antibodies: An overview and perspective of the diagnostic abilities of this serological marker for early rheumatoid arthritis. Clin. Rev. Allergy Immunol. 2008, 34, 36–39. [Google Scholar] [CrossRef]
- Bukhari, M.; Thomson, W.; Naseem, H.; Bunn, D.; Silman, A.; Symmons, D.; Barton, A. The performance of anti–cyclic citrullinated peptide antibodies in predicting the severity of radiologic damage in inflammatory polyarthritis: Results from the Norfolk Arthritis Register. Arthritis Rheum. 2007, 56, 2929–2935. [Google Scholar] [CrossRef]
- Rönnelid, J.; Wick, M.C.; Lampa, J.; Lindblad, S.; Nordmark, B.; Klareskog, L.; van Vollenhoven, R.F. Longitudinal analysis of citrullinated protein/peptide antibodies (anti-CP) during 5 year follow up in early rheumatoid arthritis: Anti-CP status predicts worse disease activity and greater radiological progression. Ann. Rheum. Dis. 2005, 64, 1744–1749. [Google Scholar] [CrossRef]
- Gerli, R.; Bocci, E.B.; Sherer, Y.; Vaudo, G.; Moscatelli, S.; Shoenfeld, Y. Association of anti-cyclic citrullinated peptide antibodies with subclinical atherosclerosis in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2008, 67, 724–725. [Google Scholar] [CrossRef]
- Rantapää-Dahlqvist, S.; de Jong, B.A.W.; Berglin, E.; Hallmans, G.; Wadell, G.; Stenlund, H.; Sundin, U.; van Venrooij, W.J. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 2003, 48, 2741–2749. [Google Scholar] [CrossRef]
- Nielen, M.M.J.; van Schaardenburg, D.; Reesink, H.W.; van de Stadt, R.J.; van der Horst-Bruinsma, I.E.; de Koning, M.H.M.T.; Habibuw, M.R.; Vandenbroucke, J.P.; Dijkmans, B.A.C. Specific autoantibodies precede the symptoms of rheumatoid arthritis: A study of serial measurements in blood donors. Arthritis Rheum. 2004, 50, 380–386. [Google Scholar] [CrossRef]
- Van Venrooij, W.J.; van Beers, J.J.B.C.; Pruijn, G.J.M. Anti-CCP antibodies: The past, the present and the future. Nat. Rev. Rheumatol. 2011, 7, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Gardette, A.; Ottaviani, S.; Tubach, F.; Roy, C.; Nicaise-Roland, P.; Palazzo, E.; Gill, G.; Meyer, O.; Dieudé, P. High anti-CCP antibody titres predict good response to rituximab in patients with active rheumatoid arthritis. Jt. Bone Spine 2014, 81, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Couderc, M.; Mathieu, S.; Pereira, B.; Glace, B.; Soubrier, M. Predictive factors of rituximab response in rheumatoid arthritis: Results from a French university hospital. Arthritis Care Res. 2013, 65, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Gottenberg, J.E.; Ravaud, P.; Cantagrel, A.; Combe, B.; Flipo, R.M.; Schaeverbeke, T.; Houvenagel, E.; Gaudin, P.; Loeuille, D.; Rist, S.; et al. Positivity for anti-cyclic citrullinated peptide is associated with a better response to abatacept: Data from the ‘Orencia and Rheumatoid Arthritis’ registry. Ann. Rheum. Dis. 2012, 71, 1815–1819. [Google Scholar] [CrossRef]
- Van Gaalen, F.A.; Linn-Rasker, S.P.; van Venrooij, W.J.; de Jong, B.A.; Breedveld, F.C.; Verweij, C.L.; Toes, R.E.M.; Huizinga, T.W.J. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: A prospective cohort study. Arthritis Rheum. 2004, 50, 709–715. [Google Scholar] [CrossRef]
- Van der Linden, M.P.M.; van der Woude, D.; Ioan-Facsinay, A.; Levarht, E.W.N.; Stoeken-Rijsbergen, G.; Huizinga, T.W.J.; Toes, R.E.M.; Mil, A.H.M.v.d.H. Value of anti–modified citrullinated vimentin and third-generation anti–cyclic citrullinated peptide compared with second-generation anti–cyclic citrullinated peptide and rheumatoid factor in predicting disease outcome in undifferentiated arthritis and rheumatoid arthritis. Arthritis Rheum. 2009, 60, 2232–2241. [Google Scholar] [CrossRef]
- Westwood, O.M.R.; Nelson, P.N.; Hay, F.C. Rheumatoid factors: What’s new? Rheumatology 2006, 45, 379–385. [Google Scholar] [CrossRef]
- Shi, J.; Knevel, R.; Suwannalai, P.; van der Linden, M.P.A.; Janssen, G.M.C.; van Veelen, P.; Levarht, N.E.W.; van der Helm-van Mil, A.H.; Cerami, A.; Huizinga, T.W.J.; et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc. Natl. Acad. Sci. USA 2011, 108, 17372–17377. [Google Scholar] [CrossRef]
- Shi, J.; Van Steenbergen, H.W.; Van Nies, J.A.B.; Levarht, E.W.N.; Huizinga, T.W.J.; van der Helm-van Mil, A.H.; Toes, R.E.M.; Trouw, L.A. The specificity of anti-carbamylated protein antibodies for rheumatoid arthritis in a setting of early arthritis. Arthritis Res. Ther. 2015, 17, 339. [Google Scholar] [CrossRef]
- Verheul, M.K.; Böhringer, S.; van Delft, M.A.M.; Jones, J.D.; Rigby, W.F.C.; Gan, R.W.; Holers, V.M.; Edison, J.D.; Deane, K.D.; Janssen, K.M.J.; et al. Triple Positivity for Anti–Citrullinated Protein Autoantibodies, Rheumatoid Factor, and Anti–Carbamylated Protein Antibodies Conferring High Specificity for Rheumatoid Arthritis: Implications for Very Early Identification of At-Risk Individuals. Arthritis Rheumatol. 2018, 70, 1721–1731. [Google Scholar] [CrossRef]
- Moore, R.E.; Wang, T.; Duvvuri, B.; Feser, M.L.; Deane, K.D.; Solomon, J.J.; Nelson, J.L.; Demoruelle, M.K.; Lood, C. Prediction of Erosive Disease Development by Antimitochondrial Antibodies in Rheumatoid Arthritis. Arthritis Rheumatol. 2023, 75, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.R.; van der Helm-Van Mil, A.H.; Knevel, R.; Huizinga, T.W.; Haney, D.J.; Shen, Y.; Ramanujan, S.; Cavet, G.; Centola, M.; Hesterberg, L.K.; et al. Validation of a novel multibiomarker test to assess rheumatoid arthritis disease activity. Arthritis Care Res. 2012, 64, 1794–1803. [Google Scholar] [CrossRef] [PubMed]
- Inoue, M.; Nagafuchi, Y.; Ota, M.; Tsuchiya, H.; Tateishi, S.; Kanda, H.; Fujio, K. Carriers of HLA-DRB1*04:05 have a better clinical response to abatacept in rheumatoid arthritis. Sci. Rep. 2023, 13, 15250. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Kuroda, T.; Kobayashi, D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. Int. J. Mol. Sci. 2021, 22, 10922. [Google Scholar] [CrossRef]
- Shephard, J.L.V.; Robles, E.J.A.; Hijón, C.C.; Breijo, B.H.; Novella-Navarro, M.; Schay, P.B.; de la Cámara, R.C.; Criado, A.B.; Granados, E.L.; Rodríguez, C.P. Predicting anti-TNF treatment response in rheumatoid arthritis: An artificial intelligence-driven model using cytokine profile and routine clinical practice parameters. Heliyon 2024, 10, e22925. [Google Scholar] [CrossRef]
- Van Vollenhoven, R. Treat-to-target in rheumatoid arthritis—Are we there yet? Nat. Rev. Rheumatol. 2019, 15, 180–186. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef]
- Buch, M.H.; Seto, Y.; Bingham, S.J.; Bejarano, V.; Bryer, D.; White, J.; Emery, P. C-reactive protein as a predictor of infliximab treatment outcome in patients with rheumatoid arthritis: Defining subtypes of nonresponse and subsequent response to etanercept. Arthritis Rheum. 2005, 52, 42–48. [Google Scholar] [CrossRef]
- Hyrich, K.L.; Watson, K.D.; Silman, A.J.; Symmons, D.P.M.; Register, T.B.B. Predictors of response to anti-TNF-alpha therapy among patients with rheumatoid arthritis: Results from the British Society for Rheumatology Biologics Register. Rheumatology 2006, 45, 1558–1565. [Google Scholar] [CrossRef]
- Wolbink, G.J.; Voskuyl, A.E.; Lems, W.F.; de Groot, E.; Nurmohamed, M.T.; Tak, P.P.; Dijkmans, B.A.C.; Aarden, L. Relationship between serum trough infliximab levels, pretreatment C reactive protein levels, and clinical response to infliximab treatment in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2005, 64, 704–707. [Google Scholar] [CrossRef]
- Tetlow, L.C.; Lees, M.; Ogata, Y.; Nagase, H.; Woolley, D.E. Differential expression of gelatinase B (MMP-9) and stromelysin-1 (MMP-3) by rheumatoid synovial cells in vitro and in vivo. Rheumatol. Int. 1993, 13, 53–59. [Google Scholar] [CrossRef]
- Okada, Y.; Takeuchi, N.; Tomita, K.; Nakanishi, I.; Nagase, H. Immunolocalization of matrix metalloproteinase 3 (stromelysin) in rheumatoid synovioblasts (B cells): Correlation with rheumatoid arthritis. Ann. Rheum. Dis. 1989, 48, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Ainola, M.M.; Mandelin, J.A.; Liljeström, M.P.; Li, T.F.; Hukkanen, M.V.J.; Konttinen, Y.T. Pannus invasion and cartilage degradation in rheumatoid arthritis: Involvement of MMP-3 and interleukin-1beta. Clin. Exp. Rheumatol. 2005, 23, 644–650. [Google Scholar] [PubMed]
- Ito, A.; Nagase, H. Evidence that human rheumatoid synovial matrix metalloproteinase 3 is an endogenous activator of procollagenase. Arch. Biochem. Biophys. 1988, 267, 211–216. [Google Scholar] [CrossRef]
- Mahmoud, R.K.; El-Ansary, A.K.; El-Eishi, H.H.; Kamal, H.M.; El-Saeed, N.H. Matrix metalloproteinases MMP-3 and MMP-1 levels in sera and synovial fluids in patients with rheumatoid arthritis and osteoarthritis. Ital. J. Biochem. 2005, 54, 248–257. [Google Scholar] [PubMed]
- Shovman, O.; Gilburd, B.; Zandman-Goddard, G.; Sherer, Y.; Orbach, H.; Gerli, R.; Shoenfeld, Y. The diagnostic utility of anti-cyclic citrullinated peptide antibodies, matrix metalloproteinase-3, rheumatoid factor, erythrocyte sedimentation rate, and c-reactive protein in patients with erosive and non-erosive rheumatoid arthritis. Clin. Dev. Immunol. 2005, 12, 197–202. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, J. Cartilage Oligomeric Matrix Protein, Diseases, and Therapeutic Opportunities. Int. J. Mol. Sci. 2022, 23, 9253. [Google Scholar] [CrossRef]
- Kiriakidou, M.; Ching, C.L. Systemic Lupus Erythematosus. Ann. Intern. Med. 2020, 172, ITC81–ITC96. [Google Scholar] [CrossRef]
- Tsokos, G.C. Systemic Lupus Erythematosus. N. Engl. J. Med. 2011, 365, 2110–2121. [Google Scholar] [CrossRef]
- Pons-Estel, G.J.; Alarcón, G.S.; Scofield, L.; Reinlib, L.; Cooper, G.S. Understanding the Epidemiology and Progression of Systemic Lupus Erythematosus. Semin. Arthritis Rheum. 2010, 39, 257–268. [Google Scholar] [CrossRef]
- Barber, M.R.W.; Drenkard, C.; Falasinnu, T.; Hoi, A.; Mak, A.; Kow, N.Y.; Svenungsson, E.; Peterson, J.; Clarke, A.E.; Ramsey-Goldman, R. Global epidemiology of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2021, 17, 515–532. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-C.; Kao, A.H.; Manzi, S.; Ahearn, J.M. Biomarkers in systemic lupus erythematosus: Challenges and prospects for the future. Ther. Adv. Musculoskelet. Dis. 2013, 5, 210–233. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zeng, J.; Yin, J.; Peng, Q.; Zhao, M.; Lu, Q. Organ-specific biomarkers in lupus. Autoimmun. Rev. 2017, 16, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.M.; Cohen, A.S.; Fries, J.F.; Masi, A.T.; Mcshane, D.J.; Rothfield, N.F.; Schaller, J.G.; Talal, N.; Winchester, R.J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982, 25, 1271–1277. [Google Scholar] [CrossRef]
- Petri, M.; Orbai, A.; Alarcón, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 2019, 78, 1151–1159. [Google Scholar] [CrossRef]
- Yu, H.; Nagafuchi, Y.; Fujio, K. Clinical and Immunological Biomarkers for Systemic Lupus Erythematosus. Biomolecules 2021, 11, 928. [Google Scholar] [CrossRef]
- Tan, G.; Baby, B.; Zhou, Y.; Wu, T. Emerging Molecular Markers Towards Potential Diagnostic Panels for Lupus. Front. Immunol. 2022, 12, 808839. [Google Scholar] [CrossRef]
- Capecchi, R.; Puxeddu, I.; Pratesi, F.; Migliorini, P. New biomarkers in SLE: From bench to bedside. Rheumatology 2020, 59 (Suppl. S5), v12–v18. [Google Scholar] [CrossRef]
- Fenton, K.A.; Pedersen, H.L. Advanced methods and novel biomarkers in autoimmune diseases—A review of the recent years progress in systemic lupus erythematosus. Front. Med. 2023, 10, 1183535. [Google Scholar] [CrossRef]
- Pisetsky, D.S.; Lipsky, P.E. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 2020, 16, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Tsokos, G.C.; Lo, M.S.; Reis, P.C.; Sullivan, K.E. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef] [PubMed]
- Kaul, A.; Gordon, C.; Crow, M.K.; Touma, Z.; Urowitz, M.B.; van Vollenhoven, R.; Ruiz-Irastorza, G.; Hughes, G. Systemic lupus erythematosus. Nat. Rev. Dis. Prim. 2016, 2, 16039. [Google Scholar] [CrossRef] [PubMed]
- Agmon-Levin, N.; Damoiseaux, J.; Kallenberg, C.; Sack, U.; Witte, T.; Herold, M.; Bossuyt, X.; Musset, L.; Cervera, R.; Plaza-Lopez, A.; et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann. Rheum. Dis. 2014, 73, 17–23. [Google Scholar] [CrossRef]
- Pisetsky, D.S. Antinuclear antibody testing—Misunderstood or misbegotten? Nat. Rev. Rheumatol. 2017, 13, 495–502. [Google Scholar] [CrossRef]
- Damoiseaux, J.; Andrade, L.E.C.; Carballo, O.G.; Conrad, K.; Francescantonio, P.L.C.; Fritzler, M.J.; de la Torre, I.G.; Herold, M.; Klotz, W.; Cruvinel, W.d.M.; et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns: The International Consensus on ANA patterns (ICAP) perspective. Ann. Rheum. Dis. 2019, 78, 879–889. [Google Scholar] [CrossRef]
- Wu, F.-L.; Lai, D.-Y.; Ding, H.-H.; Tang, Y.-J.; Xu, Z.-W.; Ma, M.-L.; Guo, S.-J.; Wang, J.-F.; Shen, N.; Zhao, X.-D.; et al. Identification of Serum Biomarkers for Systemic Lupus Erythematosus Using a Library of Phage Displayed Random Peptides and Deep Sequencing. Mol. Cell. Proteom. 2019, 18, 1851–1863. [Google Scholar] [CrossRef]
- Rangnekar, A.; Shenoy, M.S.; Mahabala, C.; Balanthimogru, P. Impact of baseline fluorescent antinuclear antibody positivity on the clinical outcome of patients with primary autoimmune hemolytic anemia. Hematol. Transfus. Cell Ther. 2023, 45, 204–210. [Google Scholar] [CrossRef]
- Okano, Y. Antinuclear Antibody in Systemic Sclerosis (Scleroderma). Rheum. Dis. Clin. N. Am. 1996, 22, 709–735. [Google Scholar] [CrossRef]
- Grygiel-Górniak, B.; Rogacka, N.; Puszczewicz, M. Antinuclear antibodies in healthy people and non-rheumatic diseases—Diagnostic and clinical implications. Rheumatologia 2018, 56, 243–248. [Google Scholar] [CrossRef]
- Ho, A.; Barr, S.G.; Magder, L.S.; Petri, M. A decrease in complement is associated with increased renal and hematologic activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2001, 44, 2350–2357. [Google Scholar] [CrossRef] [PubMed]
- Moroni, G.; Radice, A.; Giammarresi, G.; Quaglini, S.; Gallelli, B.; Leoni, A.; Vecchi, M.L.; Messa, P.; Sinico, R.A. Are laboratory tests useful for monitoring the activity of lupus nephritis? A 6-year prospective study in a cohort of 228 patients with lupus nephritis. Ann. Rheum. Dis. 2009, 68, 234–237. [Google Scholar] [CrossRef]
- Petri, M.A.; Vollenhoven, R.F.; Buyon, J.; Levy, R.A.; Navarra, S.V.; Cervera, R.; Zhong, Z.J.; Freimuth, W.W. baseline predictors of systemic lupus erythematosus flares: Data from the combined placebo groups in the phase III belimumab trials. Arthritis Rheum. 2013, 65, 2143–2153. [Google Scholar] [CrossRef] [PubMed]
- Birmingham, D.; Irshaid, F.; Nagaraja, H.; Zou, X.; Tsao, B.; Wu, H.; Yu, C.; Hebert, L.; Rovin, B. The complex nature of serum C3 and C4 as biomarkers of lupus renal flare. Lupus 2010, 19, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Furie, R.; Latinis, K.; Looney, R.J.; Fervenza, F.C.; Sanchez-Guerrero, J.; Maciuca, R.; Zhang, D.; Garg, J.P.; Brunetta, P.; et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: The Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012, 64, 1215–1226. [Google Scholar] [CrossRef]
- Stohl, W.; Hiepe, F.; Latinis, K.M.; Thomas, M.; Scheinberg, M.A.; Clarke, A.; Aranow, C.; Wellborne, F.R.; Abud-Mendoza, C.; Hough, D.R.; et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2328–2337. [Google Scholar] [CrossRef]
- Keenan, R.T.; Swearingen, C.J.; Yazici, Y. Erythrocyte sedimentation rate and C-reactive protein levels are poorly correlated with clinical measures of disease activity in rheumatoid arthritis, systemic lupus erythematosus and osteoarthritis patients. Clin. Exp. Rheumatol. 2008, 26, 814–819. [Google Scholar]
- Becker, G.; Waldburger, M.; Hughes, G.; Pepys, M. Value of serum C-reactive protein measurement in the investigation of fever in systemic lupus erythematosus. Ann. Rheum. Dis. 1980, 39, 50–52. [Google Scholar] [CrossRef]
- Vilá, L.M.; Alarcón, G.S.; McGwin, G.; Bastian, H.M.; Fessler, B.J.; Reveille, J.D.; LUMINA Study Group. Systemic lupus erythematosus in a multiethnic cohort (LUMINA): XXIX. Elevation of erythrocyte sedimentation rate is associated with disease activity and damage accrual. J. Rheumatol. 2005, 32, 2150–2155. [Google Scholar]
- Bertouch, J.; Roberts-Thompson, P.; Feng, P.; Bradley, J. C-reactive protein and serological indices of disease activity in systemic lupus erythematosus. Ann. Rheum. Dis. 1983, 42, 655–658. [Google Scholar] [CrossRef]
- Littlejohn, E.; Marder, W.; Lewis, E.; Francis, S.; Jackish, J.; McCune, W.J.; Somers, E.C. The ratio of erythrocyte sedimentation rate to C-reactive protein is useful in distinguishing infection from flare in systemic lupus erythematosus patients presenting with fever. Lupus 2018, 27, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Aringer, M. Inflammatory markers in systemic lupus erythematosus. J. Autoimmun. 2020, 110, 102374. [Google Scholar] [CrossRef] [PubMed]
- Aringer, M.; Stummvoll, G.H.; Steiner, G.; Köller, M.; Steiner, C.W.; Höfler, E.; Hiesberger, H.; Smolen, J.S.; Graninger, W.B. Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatology 2001, 40, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Idborg, H.; Eketjäll, S.; Pettersson, S.; Gustafsson, J.T.; Zickert, A.; Kvarnström, M.; Oke, V.; Jakobsson, P.-J.; Gunnarsson, I.; Svenungsson, E. TNF-α and plasma albumin as biomarkers of disease activity in systemic lupus erythematosus. Lupus Sci. Med. 2018, 5, e000260. [Google Scholar] [CrossRef]
- Sirobhushanam, S.; Lazar, S.; Kahlenberg, J.M. Interferons in Systemic Lupus Erythematosus. Rheum. Dis. Clin. N. Am. 2021, 47, 297–315. [Google Scholar] [CrossRef]
- Favilli, F.; Anzilotti, C.; Martinelli, L.; Quattroni, P.; De Martino, S.; Pratesi, F.; Neumann, D.; Beermann, S.; Novick, D.; Dinarello, C.A.; et al. IL-18 activity in systemic lupus erythematosus. Ann. N. Y. Acad. Sci. 2009, 1173, 301–309. [Google Scholar] [CrossRef]
- Wong, C.K.; Li, E.K.; Ho, C.Y.; Lam, C.W.K. Elevation of plasma interleukin-18 concentration is correlated with disease activity in systemic lupus erythematosus. Rheumatology 2000, 39, 1078–1081. [Google Scholar] [CrossRef]
- Collins, C.E.; Gavin, A.L.; Migone, T.-S.; Hilbert, D.M.; Nemazee, D.; Stohl, W. B lymphocyte stimulator (BLyS) isoforms in systemic lupus erythematosus: Disease activity correlates better with blood leukocyte BLyS mRNA levels than with plasma BLyS protein levels. Arthritis Res. Ther. 2005, 8, R6. [Google Scholar] [CrossRef]
- Hua, J.; Kirou, K.; Lee, C.; Crow, M.K. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti–RNA binding protein autoantibodies. Arthritis Rheum. 2006, 54, 1906–1916. [Google Scholar] [CrossRef]
- Kirou, K.A.; Lee, C.; George, S.; Louca, K.; Peterson, M.G.E.; Crow, M.K. Activation of the interferon-α pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 2005, 52, 1491–1503. [Google Scholar] [CrossRef]
- Ytterberg, S.R.; Schnitzer, T.J. Serum interferon levels in patients with systemic lupus erythematosus. Arthritis Rheum. 1982, 25, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Postal, M.; Vivaldo, J.F.; Fernandez-Ruiz, R.; Paredes, J.L.; Appenzeller, S.; Niewold, T.B. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr. Opin. Immunol. 2020, 67, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Park, M.C.; Lee, S.K.; Park, Y.B. Elevated interleukin-18 levels correlated with disease activity in systemic lupus erythematosus. Clin. Rheumatol. 2004, 23, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Novick, D.; Elbirt, D.; Miller, G.; Dinarello, C.A.; Rubinstein, M.; Sthoeger, Z.M. High circulating levels of free interleukin-18 in patients with active SLE in the presence of elevated levels of interleukin-18 binding protein. J. Autoimmun. 2009, 34, 121–126. [Google Scholar] [CrossRef]
- Patel, M.; Oni, L.; Midgley, A.; Smith, E.; Tullus, K.; Marks, S.D.; Jones, C.A.; Pilkington, C.; Beresford, M.W. Increased concentration of plasma TNFR1 and TNFR2 in paediatric lupus nephritis. Lupus 2016, 25, 1040–1044. [Google Scholar] [CrossRef]
- Koenig, K.F.; Groeschl, I.; Pesickova, S.S.; Tesar, V.; Eisenberger, U.; Trendelenburg, M. Serum cytokine profile in patients with active lupus nephritis. Cytokine 2012, 60, 410–416. [Google Scholar] [CrossRef]
- Lit, L.C.W.; Wong, C.K.; Tam, L.S.; Li, E.K.M.; Lam, C.W.K. Raised plasma concentration and ex vivo production of inflammatory chemokines in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2006, 65, 209–215. [Google Scholar] [CrossRef]
- Kong, K.; Tan, A.W.; Thong, B.Y.H.; Lian, T.Y.; Cheng, Y.K.; Teh, C.L.; Koh, E.T.; Chng, H.H.; Law, W.G.; Lau, T.C.; et al. Enhanced expression of interferon-inducible protein-10 correlates with disease activity and clinical manifestations in systemic lupus erythematosus. Clin. Exp. Immunol. 2009, 156, 134–140. [Google Scholar] [CrossRef]
- Petrackova, A.; Smrzova, A.; Gajdos, P.; Schubertova, M.; Schneiderova, P.; Kromer, P.; Snasel, V.; Skacelova, M.; Mrazek, F.; Zadrazil, J.; et al. Serum protein pattern associated with organ damage and lupus nephritis in systemic lupus erythematosus revealed by PEA immunoassay. Clin. Proteom. 2017, 14, 32. [Google Scholar] [CrossRef]
- Wen, S.; He, F.; Zhu, X.; Yuan, S.; Liu, H.; Sun, L. IFN-γ, CXCL16, uPAR: Potential biomarkers for systemic lupus erythematosus. Clin. Exp. Rheumatol. 2018, 36, 36–43. [Google Scholar]
- FitzGerald, O.; Ogdie, A.; Chandran, V.; Coates, L.C.; Kavanaugh, A.; Tillett, W.; Leung, Y.Y.; Dewit, M.; Scher, J.U.; Mease, P.J. Psoriatic arthritis. Nat. Rev. Dis. Prim. 2021, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Scotti, L.; Franchi, M.; Marchesoni, A.; Corrao, G. Prevalence and incidence of psoriatic arthritis: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2018, 48, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.J. Impact of psoriatic arthritis on the patient: Through the lens of the WHO International Classification of Functioning, Health, and Disability. Curr. Rheumatol. Rep. 2012, 14, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Ritchlin, C.T.; Colbert, R.A.; Gladman, D.D. Psoriatic Arthritis. N. Engl. J. Med. 2017, 376, 957–970. [Google Scholar] [CrossRef]
- Wirth, T.; Balandraud, N.; Boyer, L.; Lafforgue, P.; Pham, T. Biomarkers in psoriatic arthritis: A meta-analysis and systematic review. Front. Immunol. 2022, 13, 1054539. [Google Scholar] [CrossRef]
- Eder, L.; Gladman, D.D. Psoriatic arthritis: Phenotypic variance and nosology. Curr. Rheumatol. Rep. 2013, 15, 316. [Google Scholar] [CrossRef]
- Henkemans, S.V.J.S.; de Jong, P.H.P.; Luime, J.J.; Kok, M.R.; Tchetverikov, I.; Korswagen, L.-A.; van der Kooij, S.M.; van Oosterhout, M.; Baudoin, P.; Bijsterbosch, J.; et al. Window of opportunity in psoriatic arthritis: The earlier the better? RMD Open 2024, 10, e004062. [Google Scholar] [CrossRef]
- Wong, A.; Ye, J.Y.; Cook, R.J.; Gladman, D.D.; Chandran, V. Depression and Anxiety Reduce the Probability of Achieving a State of Sustained Minimal Disease Activity in Patients With Psoriatic Arthritis. Arthritis Care Res. 2022, 74, 1430–1434. [Google Scholar] [CrossRef]
- Michelsen, B.; Kristianslund, E.K.; Sexton, J.; Hammer, H.B.; Fagerli, K.M.; Lie, E.; Wierød, A.; Kalstad, S.; Rødevand, E.; Krøll, F.; et al. Do depression and anxiety reduce the likelihood of remission in rheumatoid arthritis and psoriatic arthritis? Data from the prospective multicentre NOR-DMARD study. Ann. Rheum. Dis. 2017, 76, 1906–1910. [Google Scholar] [CrossRef]
- Brikman, S.; Furer, V.; Wollman, J.; Borok, S.; Matz, H.; Polachek, A.; Elalouf, O.; Sharabi, A.; Kaufman, I.; Paran, D.; et al. The Effect of the Presence of Fibromyalgia on Common Clinical Disease Activity Indices in Patients with Psoriatic Arthritis: A Cross-sectional Study. J. Rheumatol. 2016, 43, 1749–1754. [Google Scholar] [CrossRef]
- Tarannum, S.; Leung, Y.-Y.; Johnson, S.R.; Widdifield, J.; Strand, V.; Rochon, P.; Eder, L. Sex- and gender-related differences in psoriatic arthritis. Nat. Rev. Rheumatol. 2022, 18, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Qiu, J.; Lin, Z.; Li, W.; Haley, C.; Mui, U.N.; Ning, J.; Tyring, S.K.; Wu, T. Identification of Novel Autoantibodies Associated With Psoriatic Arthritis. Arthritis Rheumatol. 2019, 71, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Frasca, L.; Palazzo, R.; Chimenti, M.S.; Alivernini, S.; Tolusso, B.; Bui, L.; Botti, E.; Giunta, A.; Bianchi, L.; Petricca, L.; et al. Anti-LL37 Antibodies Are Present in Psoriatic Arthritis (PsA) Patients: New Biomarkers in PsA. Front. Immunol. 2018, 9, 1936. [Google Scholar] [CrossRef] [PubMed]
- De Andrea, M.; De Santis, M.; Caneparo, V.; Generali, E.; Sirotti, S.; Isailovic, N.; Guidelli, G.M.; Ceribelli, A.; Fabbroni, M.; Simpatico, A.; et al. Serum IFI16 and anti-IFI16 antibodies in psoriatic arthritis. Clin. Exp. Immunol. 2020, 199, 88–96. [Google Scholar] [CrossRef]
- Chimenti, M.S.; Triggianese, P.; Nuccetelli, M.; Terracciano, C.; Crisanti, A.; Guarino, M.D.; Bernardini, S.; Perricone, R. Auto-reactions, autoimmunity and psoriatic arthritis. Autoimmun. Rev. 2015, 14, 1142–1146. [Google Scholar] [CrossRef]
- Gao, W.; Wang, Z.; Li, W.; Li, Y.; Liu, M. Biomarkers and biologics related with psoriasis and psoriatic arthritis. Int. Immunopharmacol. 2023, 122, 110646. [Google Scholar] [CrossRef]
- Makos, A.; Kuiper, J.H.; Kehoe, O.; Amarasena, R. Psoriatic arthritis: Review of potential biomarkers predicting response to TNF inhibitors. Inflammopharmacology 2023, 31, 77–87. [Google Scholar] [CrossRef]
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef]
- Cavazzana, I.; Vojinovic, T.; Airo’, P.; Fredi, M.; Ceribelli, A.; Pedretti, E.; Lazzaroni, M.G.; Garrafa, E.; Franceschini, F. Systemic Sclerosis-Specific Antibodies: Novel and Classical Biomarkers. Clin. Rev. Allergy Immunol. 2023, 64, 412–430. [Google Scholar] [CrossRef]
- Johnson, S.R.; Van den Hoogen, F.H.J.; Domsic, R.T. Classification and Disease Subsets in Clinical Practice. In Scleroderma: From Pathogenesis to Comprehensive Management; Allanore, Y., Varga, J., Denton, C.P., Kuwana, M., Chung, L., Shah, A.A., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 53–70. [Google Scholar] [CrossRef]
- Elhai, M.; Meune, C.; Boubaya, M.; Avouac, J.; Hachulla, E.; Balbir-Gurman, A.; Riemekasten, G.; Airò, P.; Joven, B.; Vettori, S.; et al. Mapping and predicting mortality from systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 1897–1905. [Google Scholar] [CrossRef]
- Steen, V.D.; A Medsger, T. Changes in causes of death in systemic sclerosis, 1972–2002. Ann. Rheum. Dis. 2007, 66, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Rosendahl, A.; Schönborn, K.; Krieg, T. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung J. Med. Sci. 2022, 38, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Santiago, T.; Alcacer-Pitarch, B.; Salvador, M.J.; Del Galdo, F.; Redmond, A.C.; Da Silva, J.A.P. A preliminary study using virtual touch imaging and quantification for the assessment of skin stiffness in systemic sclerosis. Clin. Exp. Rheumatol. 2016, 34 (Suppl. S100), 137–141. [Google Scholar] [PubMed]
- Merkel, P.A.; Silliman, N.P.; Denton, C.P.; Furst, D.E.; Khanna, D.; Emery, P.; Hsu, V.M.; Streisand, J.B.; Polisson, R.P.; Åkesson, A.; et al. Validity, Reliability, and Feasibility of Durometer Measurements of Scleroderma Skin Disease in a Multicenter Treatment Trial. Arthritis Care Res. 2008, 59, 699–705. [Google Scholar] [CrossRef]
- Di Maggio, G.; Confalonieri, P.; Salton, F.; Trotta, L.; Ruggero, L.; Kodric, M.; Geri, P.; Hughes, M.; Bellan, M.; Gilio, M.; et al. Biomarkers in Systemic Sclerosis: An Overview. Curr. Issues Mol. Biol. 2023, 45, 7775–7802. [Google Scholar] [CrossRef]
- Bredemeier, M.; Xavier, R.M.; Capobianco, K.G.; Restelli, V.G.; Rohde, L.E.P.; Pinotti, A.F.F.; Pitrez, E.H.; Vieira, M.V.; Fontoura, M.A.; Ludwig, D.H.D.C.; et al. Nailfold capillary microscopy can suggest pulmonary disease activity in systemic sclerosis. J. Rheumatol. 2004, 31, 286–294. [Google Scholar]
- Hofstee, H.M.A.; Noordegraaf, A.V.; Voskuyl, A.E.; Dijkmans, B.A.C.; Postmus, P.E.; Smulders, Y.M.; Serné, E.H. Nailfold capillary density is associated with the presence and severity of pulmonary arterial hypertension in systemic sclerosis. Ann. Rheum. Dis. 2009, 68, 191–195. [Google Scholar] [CrossRef]
- Graßhoff, H.; Fourlakis, K.; Comdühr, S.; Riemekasten, G. Autoantibodies as Biomarker and Therapeutic Target in Systemic Sclerosis. Biomedicines 2022, 10, 2150. [Google Scholar] [CrossRef]
- Mehra, S.; Walker, J.; Patterson, K.; Fritzler, M.J. Autoantibodies in systemic sclerosis. Autoimmun. Rev. 2013, 12, 340–354. [Google Scholar] [CrossRef]
- Burbelo, P.D.; Gordon, S.M.; Waldman, M.; Edison, J.D.; Little, D.J.; Stitt, R.S.; Bailey, W.T.; Hughes, J.B.; Olson, S.W. Autoantibodies are present before the clinical diagnosis of systemic sclerosis. PLoS ONE 2019, 14, e0214202. [Google Scholar] [CrossRef]
- Raschi, E.; Privitera, D.; Bodio, C.; Lonati, P.A.; Borghi, M.O.; Ingegnoli, F.; Meroni, P.L.; Chighizola, C.B. Scleroderma-specific autoantibodies embedded in immune complexes mediate endothelial damage: An early event in the pathogenesis of systemic sclerosis. Arthritis Res. Ther. 2020, 22, 265. [Google Scholar] [CrossRef] [PubMed]
- Dantas, A.T.; Gonçalves, S.M.C.; de Almeida, A.R.; Gonçalves, R.S.G.; Sampaio, M.C.P.D.; Vilar, K.d.M.; Pereira, M.C.; Rêgo, M.J.B.d.M.; Pitta, I.d.R.; Marques, C.D.L.; et al. Reassessing the Role of the Active TGF-β1 as a Biomarker in Systemic Sclerosis: Association of Serum Levels with Clinical Manifestations. Dis. Markers 2016, 2016, 6064830. [Google Scholar] [CrossRef] [PubMed]
- Snowden, N.; Coupes, B.; Herrick, A.; Illingworth, K.; Jayson, M.; Brenchley, P. Plasma TGF beta in systemic sclerosis: A cross-sectional study. Ann. Rheum. Dis. 1994, 53, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Dziadzio, M.; Smith, R.E.; Abraham, D.J.; Black, C.M.; Denton, C.P. Circulating levels of active transforming growth factor β1 are reduced in diffuse cutaneous systemic sclerosis and correlate inversely with the modified Rodnan skin score. Rheumatology 2005, 44, 1518–1524. [Google Scholar] [CrossRef]
- Ayub, S.; Shafi, T.; Rasool, R.; Dangroo, M.A.; Bindroo, M.A.; Gull, A.; Al-Keridis, L.A.; Alshammari, N.; Saeed, M.; Shah, Z.A. Evaluating the role of active TGF-β1 as inflammatory biomarker in Kashmiri (North-Indian) patients with systemic sclerosis: A case-control study. Hortic. Bras. 2024, 64, 91. [Google Scholar] [CrossRef]
- Utsunomiya, A.; Oyama, N.; Hasegawa, M. Potential Biomarkers in Systemic Sclerosis: A Literature Review and Update. J. Clin. Med. 2020, 9, 3388. [Google Scholar] [CrossRef]
- Trojanowska, M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology 2008, 47 (Suppl. S5), v2–v4. [Google Scholar] [CrossRef]
- Abraham, D. Connective tissue growth factor: Growth factor, matricellular organizer, fibrotic biomarker or molecular target for anti-fibrotic therapy in SSc? Rheumatology 2008, 47 (Suppl. S5), v8–v9. [Google Scholar] [CrossRef]
- Sato, S.; Nagaoka, T.; Hasegawa, M.; Tamatani, T.; Nakanishi, T.; Takigawa, M.; Takehara, K. Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: Association with extent of skin sclerosis and severity of pulmonary fibrosis. J. Rheumatol. 2000, 27, 149–154. [Google Scholar]
- Rice, L.M.; Ziemek, J.; Stratton, E.A.; McLaughlin, S.R.; Padilla, C.M.; Mathes, A.L.; Christmann, R.B.; Stifano, G.; Browning, J.L.; Whitfield, M.L.; et al. A Longitudinal Biomarker for the Extent of Skin Disease in Patients with Diffuse Cutaneous Systemic Sclerosis. Arthritis Rheumatol. 2015, 67, 3004–3015. [Google Scholar] [CrossRef]
- Silva, I.; Almeida, J.; Vasconcelos, C. A PRISMA-driven systematic review for predictive risk factors of digital ulcers in systemic sclerosis patients. Autoimmun. Rev. 2015, 14, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, M.; Hasegawa, M.; Hamaguchi, Y.; Komura, K.; Matsushita, T.; Yanaba, K.; Kodera, M.; Takehara, K.; Sato, S. A Clue for Telangiectasis in Systemic Sclerosis: Elevated Serum Soluble Endoglin Levels in Patients with the Limited Cutaneous Form of the Disease. Dermatology 2006, 213, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Coral-Alvarado, P.X.; Garces, M.F.; Caminos, J.E.; Iglesias-Gamarra, A.; Restrepo, J.F.; Quintana, G. Serum Endoglin Levels in Patients Suffering from Systemic Sclerosis and Elevated Systolic Pulmonary Arterial Pressure. Int. J. Rheumatol. 2010, 2010, 969383. [Google Scholar] [CrossRef] [PubMed]
- Wipff, J.; Avouac, J.; Borderie, D.; Zerkak, D.; Lemarechal, H.; Kahan, A.; Boileau, C.; Allanore, Y. Disturbed angiogenesis in systemic sclerosis: High levels of soluble endoglin. Rheumatology 2008, 47, 972–975. [Google Scholar] [CrossRef]
- Farouk, H.M.; Hamza, S.H.; El Bakry, S.A.; Youssef, S.S.; Aly, I.M.; Moustafa, A.A.; Assaf, N.Y.; El Dakrony, A.H.M. Dysregulation of angiogenic homeostasis in systemic sclerosis. Int. J. Rheum. Dis. 2013, 16, 448–454. [Google Scholar] [CrossRef]
- Hebbar, M.; Peyrat, J.-P.; Hornez, L.; Hatron, P.-Y.; Hachulla, E.; Devulder, B. Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis. Arthritis Rheum. 2000, 43, 889–893. [Google Scholar] [CrossRef]
- Muangchan, C.; Harding, S.; Khimdas, S.; Bonner, A.; Baron, M.; Pope, J.; Canadian Scleroderma Research Group. Association of C-reactive protein with high disease activity in systemic sclerosis: Results from the Canadian Scleroderma Research Group. Arthritis Care Res. 2012, 64, 1405–1414. [Google Scholar] [CrossRef]
- Ross, L.; Stevens, W.; Rabusa, C.; Wilson, M.; Ferdowsi, N.; Walker, J.; Sahhar, J.; Ngian, G.-S.; Zochling, J.; Roddy, J.; et al. The role of inflammatory markers in assessment of disease activity in systemic sclerosis. Clin. Exp. Rheumatol. 2018, 36 (Suppl. S113), 126–134. [Google Scholar]
- Didriksen, H.; Molberg, Ø.; Mehta, A.; Jordan, S.; Palchevskiy, V.; Fretheim, H.; Gude, E.; Ueland, T.; Brunborg, C.; Garen, T.; et al. Target organ expression and biomarker characterization of chemokine CCL21 in systemic sclerosis associated pulmonary arterial hypertension. Front. Immunol. 2022, 13, 991743. [Google Scholar] [CrossRef]
- Elhai, M.; Hoffmann-Vold, A.M.; Avouac, J.; Pezet, S.; Cauvet, A.; Leblond, A.; Fretheim, H.; Garen, T.; Kuwana, M.; Molberg, Ø.; et al. Performance of Candidate Serum Biomarkers for Systemic Sclerosis–Associated Interstitial Lung Disease. Arthritis Rheumatol. 2019, 71, 972–982. [Google Scholar] [CrossRef]
- Bayati, P.; Kalantari, M.; Assarehzadegan, M.-A.; Poormoghim, H.; Mojtabavi, N. MiR-27a as a diagnostic biomarker and potential therapeutic target in systemic sclerosis. Sci. Rep. 2022, 12, 18932. [Google Scholar] [CrossRef] [PubMed]
- Van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative. Ann. Rheum. Dis. 2013, 72, 1747–1755. [Google Scholar] [CrossRef]
- Kuwana, M. Circulating Anti-Nuclear Antibodies in Systemic Sclerosis: Utility in Diagnosis and Disease Subsetting. J. Nippon Med. Sch. 2017, 84, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K.A.; Roberts-Thomson, P.J.; Lester, S.; Tan, J.A.; Hakendorf, P.; Rischmueller, M.; Zochling, J.; Sahhar, J.; Nash, P.; Roddy, J.; et al. Interpretation of an Extended Autoantibody Profile in a Well-Characterized Australian Systemic Sclerosis (Scleroderma) Cohort Using Principal Components Analysis. Arthritis Rheumatol. 2015, 67, 3234–3244. [Google Scholar] [CrossRef] [PubMed]
- Lafyatis, R. Transforming growth factor β—At the centre of systemic sclerosis. Nat. Rev. Rheumatol. 2014, 10, 706–719. [Google Scholar] [CrossRef]
- Distler, O.; Distler, J.H.W.; Scheid, A.; Acker, T.; Hirth, A.; Rethage, J.; Michel, B.A.; Gay, R.E.; Müller-Ladner, U.; Matucci-Cerinic, M.; et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ. Res. 2004, 95, 109–116. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Zinellu, A. Circulating cell adhesion molecules in systemic sclerosis: A systematic review and meta-analysis. Front. Immunol. 2024, 15, 1438302. [Google Scholar] [CrossRef]
- Gamal, S.M.; Elgengehy, F.T.; Kamal, A.; El Bakry, S.A.; Shabaan, E.; Elgendy, A.; Bassyouni, I.H. Growth Differentiation Factor-15 (GDF-15) Level and Relation to Clinical Manifestations in Egyptian Systemic Sclerosis patients: Preliminary Data. Immunol. Investig. 2017, 46, 703–713. [Google Scholar] [CrossRef]
- Yanaba, K.; Asano, Y.; Tada, Y.; Sugaya, M.; Kadono, T.; Sato, S. Clinical significance of serum growth differentiation factor-15 levels in systemic sclerosis: Association with disease severity. Mod. Rheumatol. 2012, 22, 668–675. [Google Scholar] [CrossRef]
- Meadows, C.A.; Risbano, M.G.; Zhang, L.; Geraci, M.W.; Tuder, R.M.; Collier, D.H.; Bull, T.M. Increased Expression of Growth Differentiation Factor-15 in Systemic Sclerosis-Associated Pulmonary Arterial Hypertension. Chest 2011, 139, 994–1002. [Google Scholar] [CrossRef]
- Khanna, D.; Lin, C.J.F.; Furst, D.E.; Goldin, J.; Kim, G.; Kuwana, M.; Allanore, Y.; Matucci-Cerinic, M.; Distler, O.; Shima, Y.; et al. Tocilizumab in systemic sclerosis: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2020, 8, 963–974. [Google Scholar] [CrossRef]
- Matsushita, T.; Fujimoto, M.; Hasegawa, M.; Tanaka, C.; Kumada, S.; Ogawa, F.; Takehara, K.; Sato, S. Elevated serum APRIL levels in patients with systemic sclerosis: Distinct profiles of systemic sclerosis categorized by APRIL and BAFF. J. Rheumatol. 2007, 34, 2056–2062. [Google Scholar] [PubMed]
- Matsushita, T.; Kobayashi, T.; Mizumaki, K.; Kano, M.; Sawada, T.; Tennichi, M.; Okamura, A.; Hamaguchi, Y.; Iwakura, Y.; Hasegawa, M.; et al. BAFF inhibition attenuates fibrosis in scleroderma by modulating the regulatory and effector B cell balance. Sci. Adv. 2018, 4, eaas9944. [Google Scholar] [CrossRef] [PubMed]
- Fioretto, B.S.; Rosa, I.; Matucci-Cerinic, M.; Romano, E.; Manetti, M. Current Trends in Vascular Biomarkers for Systemic Sclerosis: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 4097. [Google Scholar] [CrossRef]
- Cole, A.; Ong, V.H.; Denton, C.P. Renal Disease and Systemic Sclerosis: An Update on Scleroderma Renal Crisis. Clin. Rev. Allergy Immunol. 2023, 64, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Gigante, A.; Leodori, G.; Pellicano, C.; Villa, A.; Rosato, E. Assessment of kidney involvement in systemic sclerosis: From scleroderma renal crisis to subclinical renal vasculopathy. Am. J. Med. Sci. 2022, 364, 529–537. [Google Scholar] [CrossRef]
- Folkman, J. Antiangiogenesis in cancer therapy—Endostatin and its mechanisms of action. Exp. Cell Res. 2006, 312, 594–607. [Google Scholar] [CrossRef]
- Schoonderwoerd, M.J.A.; Goumans, M.-J.T.H.; Hawinkels, L.J.A.C. Endoglin: Beyond the Endothelium. Biomolecules 2020, 10, 289. [Google Scholar] [CrossRef]
- Roumm, A.D.; Whiteside, T.L.; Medsger, T.A.; Rodnan, G.P. Lymphocytes in the skin of patients with progressive systemic sclerosis. Quantification, subtyping, and clinical correlations. Arthritis Rheum. 1984, 27, 645–653. [Google Scholar] [CrossRef]
- Wajda, A.; Walczyk, M.; Dudek, E.; Stypińska, B.; Lewandowska, A.; Romanowska-Próchnicka, K.; Chojnowski, M.; Olesińska, M.; Paradowska-Gorycka, A. Serum microRNAs in Systemic Sclerosis, Associations with Digital Vasculopathy and Lung Involvement. Int. J. Mol. Sci. 2022, 23, 10731. [Google Scholar] [CrossRef]
- Ugarte-Gil, M.F.; Espinoza, L.R. Genetics of ANCA-associated Vasculitides. Curr. Rheumatol. Rep. 2014, 16, 428. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Huang, H.; Cai, M.; Yuan, T.; Sheng, Y. Antineutrophil Cytoplasmic Antibody-Associated Vasculitis Update: Genetic Pathogenesis. Front. Immunol. 2021, 12, 624848. [Google Scholar] [CrossRef] [PubMed]
- Kitching, A.R.; Anders, H.-J.; Basu, N.; Brouwer, E.; Gordon, J.; Jayne, D.R.; Kullman, J.; Lyons, P.A.; Merkel, P.A.; Savage, C.O.S.; et al. ANCA-associated vasculitis. Nat. Rev. Dis. Prim. 2020, 6, 71. [Google Scholar] [CrossRef]
- Tedesco, M.; Gallieni, M.; Pellegata, F.; Cozzolino, M.; Alberici, F. Update on ANCA-associated vasculitis: From biomarkers to therapy. J. Nephrol. 2019, 32, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Tomasson, G.; Grayson, P.C.; Mahr, A.D.; LaValley, M.; Merkel, P.A. Value of ANCA measurements during remission to predict a relapse of ANCA-associated vasculitis—A meta-analysis. Rheumatology 2012, 51, 100–109. [Google Scholar] [CrossRef]
- Charles, P.; Terrier, B.; Perrodeau, É.; Cohen, P.; Faguer, S.; Huart, A.; Hamidou, M.; Agard, C.; Bonnotte, B.; Samson, M.; et al. Comparison of individually tailored versus fixed-schedule rituximab regimen to maintain ANCA-associated vasculitis remission: Results of a multicentre, randomised controlled, phase III trial (MAINRITSAN2). Ann. Rheum. Dis. 2018, 77, 1143–1149. [Google Scholar] [CrossRef]
- Moran, S.M.; Scott, J.; Clarkson, M.R.; Conlon, N.; Dunne, J.; Griffin, M.D.; Griffin, T.P.; Groarke, E.; Holian, J.; Judge, C.; et al. The Clinical Application of Urine Soluble CD163 in ANCA-Associated Vasculitis. J. Am. Soc. Nephrol. 2021, 32, 2920–2932. [Google Scholar] [CrossRef]
- Deane, K.D.; O’Donnell, C.I.; Hueber, W.; Majka, D.S.; Lazar, A.A.; Derber, L.A.; Gilliland, W.R.; Edison, J.D.; Norris, J.M.; Robinson, W.H.; et al. The number of elevated cytokines and chemokines in preclinical seropositive rheumatoid arthritis predicts time to diagnosis in an age-dependent manner. Arthritis Rheum. 2010, 62, 3161–3172. [Google Scholar] [CrossRef]
- Al-Laith, M.; Jasenecova, M.; Abraham, S.; Bosworth, A.; Bruce, I.N.; Buckley, C.D.; Ciurtin, C.; D’agostino, M.-A.; Emery, P.; Gaston, H.; et al. Arthritis prevention in the pre-clinical phase of RA with abatacept (the APIPPRA study): A multi-centre, randomised, double-blind, parallel-group, placebo-controlled clinical trial protocol. Trials 2019, 20, 429. [Google Scholar] [CrossRef]
- Bos, W.H.; Dijkmans, B.A.C.; Boers, M.; van de Stadt, R.J.; van Schaardenburg, D. Effect of dexamethasone on autoantibody levels and arthritis development in patients with arthralgia: A randomised trial. Ann. Rheum. Dis. 2010, 69, 571–574. [Google Scholar] [CrossRef]
- Gerlag, D.M.; Safy, M.; I Maijer, K.; Tang, M.W.; Tas, S.W.; Starmans-Kool, M.J.F.; van Tubergen, A.; Janssen, M.; de Hair, M.; Hansson, M.; et al. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: The PRAIRI study. Ann. Rheum. Dis. 2019, 78, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Van Boheemen, L.; Turk, S.; van Beers-Tas, M.; Bos, W.; Marsman, D.; Griep, E.N.; Starmans-Kool, M.; Popa, C.D.; van Sijl, A.; Boers, M.; et al. Atorvastatin is unlikely to prevent rheumatoid arthritis in high risk individuals: Results from the prematurely stopped STAtins to Prevent Rheumatoid Arthritis (STAPRA) trial. RMD Open 2021, 7, e001591. [Google Scholar] [CrossRef]
- Niemantsverdriet, E.; Dakkak, Y.J.; Burgers, L.E.; Bonte-Mineur, F.; Steup-Beekman, G.M.; van der Kooij, S.M.; Boom, H.D.; Allaart, C.F.; de Jong, P.H.P.; Mil, A.H.M.v.d.H.-V. TREAT Early Arthralgia to Reverse or Limit Impending Exacerbation to Rheumatoid arthritis (TREAT EARLIER): A randomized, double-blind, placebo-controlled clinical trial protocol. Trials 2020, 21, 862. [Google Scholar] [CrossRef] [PubMed]
- Del Puente, A.; Knowler, W.C.; Pettitt, D.J.; Bennett, P.H. The incidence of rheumatoid arthritis is predicted by rheumatoid factor titer in a longitudinal population study. Arthritis Rheum. 1988, 31, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Kokkonen, H.; Söderström, I.; Rocklöv, J.; Hallmans, G.; Lejon, K.; Dahlqvist, S.R. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 2010, 62, 383–391. [Google Scholar] [CrossRef]
- Gan, R.W.; Trouw, L.A.; Shi, J.; Toes, R.E.; Huizinga, T.W.; Demoruelle, M.K.; Kolfenbach, J.R.; Zerbe, G.O.; Deane, K.D.; Edison, J.D.; et al. Anti-carbamylated protein antibodies are present prior to rheumatoid arthritis and are associated with its future diagnosis. J. Rheumatol. 2015, 42, 572–579. [Google Scholar] [CrossRef]
- Sokolove, J.; Bromberg, R.; Deane, K.D.; Lahey, L.J.; Derber, L.A.; Chandra, P.E.; Edison, J.D.; Gilliland, W.R.; Tibshirani, R.J.; Norris, J.M.; et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS ONE 2012, 7, e35296. [Google Scholar] [CrossRef]
- Hafkenscheid, L.; de Moel, E.; Smolik, I.; Tanner, S.; Meng, X.; Jansen, B.C.; Bondt, A.; Wuhrer, M.; Huizinga, T.W.J.; Toes, R.E.M.; et al. N-Linked Glycans in the Variable Domain of IgG Anti–Citrullinated Protein Antibodies Predict the Development of Rheumatoid Arthritis. Arthritis Rheumatol. 2019, 71, 1626–1633. [Google Scholar] [CrossRef]
- Hunt, L.; Hensor, E.M.; Nam, J.; Burska, A.N.; Parmar, R.; Emery, P.; Ponchel, F. T cell subsets: An immunological biomarker to predict progression to clinical arthritis in ACPA-positive individuals. Ann. Rheum. Dis. 2016, 75, 1884–1889. [Google Scholar] [CrossRef]
- Deane, K.D.; Holers, V.M. Rheumatoid Arthritis Pathogenesis, Prediction, and Prevention: An Emerging Paradigm Shift. Arthritis Rheumatol. 2021, 73, 181–193. [Google Scholar] [CrossRef]
- Burgers, L.E.; Allaart, C.F.; Huizinga, T.W.J.; Mil, A.H.M.v.d.H. Brief Report: Clinical Trials Aiming to Prevent Rheumatoid Arthritis Cannot Detect Prevention Without Adequate Risk Stratification: A Trial of Methotrexate Versus Placebo in Undifferentiated Arthritis as an Example. Arthritis Rheumatol. 2017, 69, 926–931. [Google Scholar] [CrossRef]
- Dumoulin, Q.A.; Krijbolder, D.I.; Visser, K.; Lard, L.R.; Mil, A.H.M.v.d.H.-V. Development of rheumatoid arthritis after methotrexate in anticitrullinated protein antibody-negative people with clinically suspect arthralgia at risk of rheumatoid arthritis: 4-year data from the TREAT EARLIER trial. Lancet Rheumatol. 2024, 6, e827–e836. [Google Scholar] [CrossRef] [PubMed]
- Scher, J.U.; Ogdie, A.; Merola, J.F.; Ritchlin, C. Preventing psoriatic arthritis: Focusing on patients with psoriasis at increased risk of transition. Nat. Rev. Rheumatol. 2019, 15, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Van Steenbergen, H.W.; da Silva, J.A.P.; Huizinga, T.W.J.; Mil, A.H.M.v.d.H.-V. Preventing progression from arthralgia to arthritis: Targeting the right patients. Nat. Rev. Rheumatol. 2018, 14, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Galozzi, P.; Basso, D.; Plebani, M.; Padoan, A. Artificial intelligence and laboratory data in rheumatic diseases. Clin. Chim. Acta 2023, 546, 117388. [Google Scholar] [CrossRef]
- Bodaghi, A.; Fattahi, N.; Ramazani, A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of COVID-19 and other diseases. Heliyon 2023, 9, e13323. [Google Scholar] [CrossRef]
- Sturgeon, C.; Hill, R.; Hortin, G.L.; Thompson, D. Taking a new biomarker into routine use—A perspective from the routine clinical biochemistry laboratory. Proteom.–Clin. Appl. 2010, 4, 892–903. [Google Scholar] [CrossRef]
- Consolaro, A.; Varnier, G.C.; Martini, A.; Ravelli, A. Advances in biomarkers for paediatric rheumatic diseases. Nat. Rev. Rheumatol. 2015, 11, 265–275. [Google Scholar] [CrossRef]
- Kondo, T. Inconvenient truth: Cancer biomarker development by using proteomics. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2014, 1844, 861–865. [Google Scholar] [CrossRef]
References | Predictive | Monitoring | Prognostic | Diagnostic | Category of Biomarkers |
---|---|---|---|---|---|
Inflammatory | |||||
[12,13,14] | ✓ | ✓ | ✓ | ESR | |
✓ | ✓ | ✓ | CRP | ||
[15,16] | ✓ | ✓ | Calprotectin | ||
Antibody Biomarkers | |||||
[17,18] | Rituximab, Abatacept | ✓ | ✓ | ACPA | |
[19,20] | ✓ | ✓ | ✓ | RF | |
[21] | ✓ | ✓ | Anti-CarP | ||
✓ | ✓ | Anti-MAA | |||
✓ | ✓ | AAPA | |||
[22,23] | ✓ | ✓ | Serum-14-3-3η | ||
[24,25,26,27] | Rituximab | ✓ | ✓ | ✓ | Anti-MCV |
[28,29] | ✓ | ✓ | Anti-PAD4 | ||
Genetic Biomarkers | |||||
[30,31,32,33,34] | Abatacept | ✓ | ✓ | ✓ | HLA-DRB1 (Shared Epitope) |
Multi-Biomarker Panel | |||||
[35,36,37,38] | DMARD | ✓ | ✓ | MBDA Score | |
Joint Damage Biomarkers | |||||
[39,40,41] | ✓ | ✓ | MMP-3 | ||
[42,43,44] | Adlimumab | ✓ | ✓ | COMP |
References | Predictive | Monitoring | Prognostic | Diagnostic | Category |
---|---|---|---|---|---|
Autoantibodies | |||||
[159,169,170,171,172] | ✓ | ✓ | ✓ | Anti-Topo I | |
✓ | ✓ | ACA | |||
✓ | Anti-RNAP3 | ||||
Fibrotic | |||||
[173,174,175,176] | Anti-fibrotic therapy | ✓ | ✓ | TGF-β1 | |
[177,178] | ✓ | PDGF | |||
[179,180,181] | ✓ | ✓ | CTGF | ||
Vascular | |||||
[182] | Vascular therapies | ✓ | ✓ | ✓ | VEGF |
[183,184,185] | ✓ | ✓ | ✓ | Endoglin (sEng) | |
[186,187] | ✓ | Endostatin | |||
Inflammatory | |||||
[188,189] | ✓ | ✓ | ✓ | CRP | |
✓ | ESR | ||||
Chemokines | |||||
[190,191] | ✓ | ✓ | ✓ | CXCL4 | |
✓ | CCL18 | ||||
Cytokines | |||||
[188] | Anti-IL-6 therapy | ✓ | ✓ | ✓ | IL-6 |
MicroRNA | |||||
[188,192] | ✓ | ✓ | miR-138 | ||
✓ | miR-27a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colina, M.; Campana, G. Precision Medicine in Rheumatology: The Role of Biomarkers in Diagnosis and Treatment Optimization. J. Clin. Med. 2025, 14, 1735. https://doi.org/10.3390/jcm14051735
Colina M, Campana G. Precision Medicine in Rheumatology: The Role of Biomarkers in Diagnosis and Treatment Optimization. Journal of Clinical Medicine. 2025; 14(5):1735. https://doi.org/10.3390/jcm14051735
Chicago/Turabian StyleColina, Matteo, and Gabriele Campana. 2025. "Precision Medicine in Rheumatology: The Role of Biomarkers in Diagnosis and Treatment Optimization" Journal of Clinical Medicine 14, no. 5: 1735. https://doi.org/10.3390/jcm14051735
APA StyleColina, M., & Campana, G. (2025). Precision Medicine in Rheumatology: The Role of Biomarkers in Diagnosis and Treatment Optimization. Journal of Clinical Medicine, 14(5), 1735. https://doi.org/10.3390/jcm14051735