Enhanced Recovery After Surgery (ERAS) Protocols in Cardiac Surgery: Impact on Opioid Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. ERAS Protocols
- Education and empowerment of the patient.
- Optimization of nutrition and glycemic control.
- Optimal treatment of anemia and Patient Blood Management (PBM).
- Infection prevention strategy.
- Reduction of the duration of invasive ventilation and sedation.
- Goal-directed hemodynamic therapy.
- Optimization of pain management with a focus on reducing opioid use.
- Early mobilization with timely removal of equipment.
2.3. Data Collection
2.4. Objectives and Outcomes
2.5. Statistical Analysis
3. Results
3.1. Baseline and Surgical Characteristics
3.2. Outcomes
4. Discussion
4.1. Limitations
4.2. Future Research Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ERAS | Enhanced Recovery After Surgery |
CHUV | Lausanne University Hospital |
UNIL | University of Lausanne |
ICU | Intensive care unit |
ORADEs | Opioid-related adverse drug events |
POD | Postoperative days |
MME | Morphine milligram equivalents |
CER-VD | Commission cantonale d’éthique de la recherche sur l’être humain du Canton de Vaud |
STROBE | STrengthening the Reporting of OBservational Studies in Epidemiology |
REDCap | Research Electronic Data Capture |
PBM | Patient Blood Management |
CPB | Cardiopulmonary bypass |
NSAID | Nonsteroidal anti-inflammatory drug |
VAS | Visual Analog Scale |
IV | Intravenous |
PO | Per os |
PRN | Pro re nata |
PONV | Postoperative nausea and vomiting |
BMI | Body mass index |
ASA | American Society of Anesthesiologists |
LVEF | Left ventricular ejection fraction |
LOS | Length of stay |
IQR | Interquartile range |
OR | Odds ratio |
CI | Confidence interval |
CABG | Coronary artery bypass grafting |
DOAJ | Directory of open access journals |
References
- Lowenstein, E.; Hallowell, P.; Levine, F.H.; Daggett, W.M.; Austen, W.G.; Laver, M.B. Cardiovascular response to large doses of intravenous morphine in man. N. Engl. J. Med. 1969, 281, 1389–1393. [Google Scholar] [CrossRef] [PubMed]
- Kwanten, L.E.; O’Brien, B.; Anwar, S. Opioid-Based Anesthesia and Analgesia for Adult Cardiac Surgery: History and Narrative Review of the Literature. J. Cardiothorac. Vasc. Anesth. 2019, 33, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.; Janda, A.M.; Zhao, X.; Deng, Y.; Bardia, A.; Yanez, N.D.; Burns, M.L.; Aziz, M.F.; Treggiari, M.; Mathis, M.R.; et al. Opioid Dose Variation in Cardiac Surgery: A Multicenter Study of Practice. Anesth. Analg, 2024; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Shafi, S.; Collinsworth, A.W.; Copeland, L.A.; Ogola, G.O.; Qiu, T.; Kouznetsova, M.; Liao, I.C.; Mears, N.; Pham, A.T.; Wan, G.J.; et al. Association of Opioid-Related Adverse Drug Events with Clinical and Cost Outcomes Among Surgical Patients in a Large Integrated Health Care Delivery System. JAMA Surg. 2018, 153, 757–763. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allen, K.B.; Brovman, E.Y.; Chhatriwalla, A.K.; Greco, K.J.; Rao, N.; Kumar, A.; Urman, R.D. Opioid-Related Adverse Events: Incidence and Impact in Patients Undergoing Cardiac Surgery. Semin. Cardiothorac. Vasc. Anesth. 2020, 24, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Urman, R.D.; Seger, D.L.; Fiskio, J.M.; Neville, B.A.; Harry, E.M.; Weiner, S.G.; Lovelace, B.; Fain, R.; Cirillo, J.; Schnipper, J.L. The Burden of Opioid-Related Adverse Drug Events on Hospitalized Previously Opioid-Free Surgical Patients. J. Patient Saf. 2021, 17, e76–e83. [Google Scholar] [CrossRef] [PubMed]
- Guimarães-Pereira, L.; Reis, P.; Abelha, F.; Azevedo, L.F.; Castro-Lopes, J.M. Persistent postoperative pain after cardiac surgery: A systematic review with meta-analysis regarding incidence and pain intensity. Pain 2017, 158, 1869–1885. [Google Scholar] [CrossRef] [PubMed]
- Pagé, M.G.; Ganty, P.; Wong, D.; Rao, V.; Khan, J.; Ladha, K.; Hanlon, J.; Miles, S.; Katznelson, R.; Wijeysundera, D.; et al. A Prospective Cohort Study of Acute Pain and In-Hospital Opioid Consumption After Cardiac Surgery: Associations with Psychological and Medical Factors and Chronic Postsurgical Pain. Anesth. Analg. 2024, 138, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.R.; Chen, Z.; Khurshan, F.; Groeneveld, P.W.; Desai, N.D. Development of Persistent Opioid Use After Cardiac Surgery. JAMA Cardiol. 2020, 5, 889–896. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kurteva, S.; Pook, M.; Fiore, J.F., Jr.; Tamblyn, R. Rates and risk factors for persistent opioid use after cardiothoracic surgery: A cohort study. Surgery 2024, 175, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Stanisic, A.; Stämpfli, D.; Schulthess Lisibach, A.E.; Lutters, M.; Burden, A.M. Inpatient opioid prescribing patterns and their effect on rehospitalisations: A nested case-control study using data from a Swiss public acute hospital. Swiss Med. Wkly. 2024, 154, 3391. [Google Scholar] [CrossRef] [PubMed]
- Larach, D.B.; Waljee, J.F.; Bicket, M.C.; Brummett, C.M.; Bruehl, S. Perioperative opioid prescribing and iatrogenic opioid use disorder and overdose: A state-of-the-art narrative review. Reg. Anesth. Pain Med. 2024, 49, 602–608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harvey, R.E.; Fischer, M.A.; Williams, T.M.; Neelankavil, J. Growing Pains: Opportunity Knocks in the 2022 Center for Disease Control Clinical Practice Guidelines for Prescribing Opioids for Pain. J. Cardiothorac. Vasc. Anesth. 2023, 37, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.C.; Chappell, D.; Gan, T.J.; Manning, M.W.; Miller, T.E.; Brodt, J.L. PeriOperative Quality Initiative (POQI) and the Enhanced Recovery After Surgery (ERAS) Cardiac Society Workgroup. Pain management and opioid stewardship in adult cardiac surgery: Joint consensus report of the PeriOperative Quality Initiative and the Enhanced Recovery After Surgery Cardiac Society. J. Thorac. Cardiovasc. Surg. 2023, 166, 1695–1706.e2. [Google Scholar] [CrossRef] [PubMed]
- Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017, 152, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Engelman, D.T.; Ben Ali, W.; Williams, J.B.; Perrault, L.P.; Reddy, V.S.; Arora, R.C.; Roselli, E.E.; Khoynezhad, A.; Gerdisch, M.; Levy, J.H.; et al. Guidelines for Perioperative Care in Cardiac Surgery: Enhanced Recovery After Surgery Society Recommendations. JAMA Surg. 2019, 154, 755–766. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ltaief, Z.; Verdugo-Marchese, M.; Carel, D.; Gunga, Z.; Nowacka, A.; Melly, V.; Addor, V.; Botteau, C.; Hennemann, M.; Lavanchy, L.; et al. Implementation of cardiac enhanced recovery after surgery at Lausanne University Hospital, our roadbook to certification. Interdiscip. Cardiovasc. Thorac. Surg. 2024, 39, ivae118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pajares, M.A.; Margarit, J.A.; García-Camacho, C.; García-Suarez, J.; Mateo, E.; Castaño, M.; López Forte, C.; López Menéndez, J.; Gómez, M.; Soto, M.J.; et al. Guidelines for enhanced recovery after cardiac surgery. Consensus document of Spanish Societies of Anesthesia (SEDAR), Cardiovascular Surgery (SECCE) and Perfusionists (AEP). Rev. Esp. Anestesiol. Reanim. 2021, 68, 183–231. [Google Scholar] [CrossRef] [PubMed]
- Mertes, P.M.; Kindo, M.; Amour, J.; Baufreton, C.; Camilleri, L.; Caus, T.; Chatel, D.; Cholley, B.; Curtil, A.; Grimaud, J.P.; et al. Guidelines on enhanced recovery after cardiac surgery under cardiopulmonary bypass or off-pump. Anaesth. Crit. Care Pain Med. 2022, 41, 101059. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Degenhardt, L.; Hoban, B.; Gisev, N. A synthesis of oral morphine equivalents (OME) for opioid utilisation studies. Pharmacoepidemiol. Drug Saf. 2016, 25, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Maeßen, T.; Korir, N.; Van de Velde, M.; Kennes, J.; Pogatzki-Zahn, E.; Joshi, G.P.; PROSPECT Working Group of the European Society of Regional Anaesthesia and Pain Therapy. Pain management after cardiac surgery via median sternotomy: A systematic review with procedure-specific postoperative pain management (PROSPECT) recommendations. Eur. J. Anaesthesiol. 2023, 40, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.C.; Isada, T.; Ruzankin, P.; Gottschalk, A.; Whitman, G.; Lawton, J.S.; Dodd-O, J.; Barodka, V. Opioid-Sparing Cardiac Anesthesia: Secondary Analysis of an Enhanced Recovery Program for Cardiac Surgery. Anesth. Analg. 2020, 131, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Rong, L.Q.; Kamel, M.K.; Rahouma, M.; Naik, A.; Mehta, K.; Abouarab, A.A.; Di Franco, A.; Demetres, M.; Mustapich, T.L.; Fitzgerald, M.M.; et al. High-dose versus low-dose opioid anesthesia in adult cardiac surgery: A meta-analysis. J. Clin. Anesth. 2019, 57, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.T.; Lai, V.K.; Chee, Y.E.; Lee, A. Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database Syst. Rev. 2016, 9, CD003587. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pollock, K.M.; Ambroziak, R.; Mullen, C.; King, L.; Barsa, A. Outcomes Related to Cardiac Enhanced Recovery After Surgery Protocol. J. Cardiothorac. Vasc. Anesth. 2023, 37, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Bills, S.; Wills, B.; Boyd, S.; Elbeery, J. Impact of an Enhanced Recovery after Surgery Protocol on Postoperative Outcomes in Cardiac Surgery. J. Pharm. Pract. 2023, 36, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Takata, E.T.; Eschert, J.; Mather, J.; McLaughlin, T.; Hammond, J.; Hashim, S.W.; McKay, R.G.; Sutton, T.S. Enhanced Recovery After Surgery Is Associated with Reduced Hospital Length of Stay after Urgent or Emergency Isolated Coronary Artery Bypass Surgery at an Urban, Tertiary Care Teaching Hospital: An Interrupted Time Series Analysis with Propensity Score Matching. J. Cardiothorac. Vasc. Anesth. 2023, 37, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Dahl, J.J.; Krebs, E.D.; Teman, N.R.; Hulse, M.; Thiele, R.H.; Singh, K.; Yount, K.W.; UVA Cardiac ERAS group. Cardiac Enhanced Recovery Program Implementation and Its Effect on Opioid Administration in Adult Cardiac Surgery. Semin. Thorac. Cardiovasc. Surg. 2023, 35, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Loria, C.M.; Zborek, K.; Millward, J.B.; Anderson, M.P.; Richardson, C.M.; Namburi, N.; Faiza, Z.; Timsina, L.R.; Lee, L.S. Enhanced recovery after cardiac surgery protocol reduces perioperative opioid use. JTCVS Open 2022, 12, 280–296. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sutton, T.S.; McKay, R.G.; Mather, J.; Takata, E.; Eschert, J.; Cox, M.; Douglas, A.; McLaughlin, T.; Loya, D.; Mennett, R.; et al. Enhanced Recovery After Surgery Is Associated with Improved Outcomes and Reduced Racial and Ethnic Disparities After Isolated Coronary Artery Bypass Surgery: A Retrospective Analysis with Propensity-Score Matching. J. Cardiothorac. Vasc. Anesth. 2022, 36, 2418–2431. [Google Scholar] [CrossRef] [PubMed]
- Markham, T.; Wegner, R.; Hernandez, N.; Lee, J.W.; Choi, W.; Eltzschig, H.K.; Zaki, J. Assessment of a multimodal analgesia protocol to allow the implementation of enhanced recovery after cardiac surgery: Retrospective analysis of patient outcomes. J. Clin. Anesth. 2019, 54, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.B.; McConnell, G.; Allender, J.E.; Woltz, P.; Kane, K.; Smith, P.K.; Engelman, D.T.; Bradford, W.T. One-year results from the first US-based enhanced recovery after cardiac surgery (ERAS Cardiac) program. J. Thorac. Cardiovasc. Surg. 2019, 157, 1881–1888. [Google Scholar] [CrossRef] [PubMed]
- Katijjahbe, M.A.; Royse, C.; Granger, C.; Denehy, L.; Md Ali, N.A.; Abdul Rahman, M.R.; King-Shier, K.; Royse, A.; El-Ansary, D. Location and Patterns of Persistent Pain Following Cardiac Surgery. Heart Lung Circ. 2021, 30, 1232–1243. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.N.; Whitney, M.A.; Smith, B.B.; Fah, M.K.; Buckner Petty, S.A.; Durra, O.; Sell-Dottin, K.A.; Portner, E.; Wittwer, E.D.; Milam, A.J. The role of methadone in cardiac surgery for management of postoperative pain. BJA Open 2024, 10, 100270. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goldblatt, J.; Crawford, L.; Ross, J.; Edelman, J.; Pavey, W. The influence of preoperative or intraoperative methadone on postcardiac surgery pain and opioid administration: A systematic review and meta-analysis. Cardiothorac. Surg. 2024, 32, 8. [Google Scholar] [CrossRef]
- Weinberg, L.; Johnston, S.; Fletcher, L.; Caragata, R.; Hazard, R.H.; Le, P.; Karp, J.; Carp, B.; Sean Yip, S.W.; Walpole, D.; et al. Methadone in combination with magnesium, ketamine, lidocaine, and dexmedetomidine improves postoperative outcomes after coronary artery bypass grafting: An observational multicentre study. J. Cardiothorac. Surg. 2024, 19, 375. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cogan, J.; André, M.; Ariano-Lortie, G.; Nozza, A.; Raymond, M.; Rochon, A.; Vargas-Shaffer, G. Injection of Bupivacaine into the Pleural and Mediastinal Drains: A Novel Approach for Decreasing Incident Pain After Cardiac Surgery-Montreal Heart Institute Experience. J. Pain Res. 2020, 13, 3409–3413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guinot, P.G.; Spitz, A.; Berthoud, V.; Ellouze, O.; Missaoui, A.; Constandache, T.; Grosjean, S.; Radhouani, M.; Anciaux, J.B.; Parthiot, J.P.; et al. Effect of opioid-free anaesthesia on post-operative period in cardiac surgery: A retrospective matched case-control study. BMC Anesthesiol. 2019, 19, 136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguerreche, C.; Cadier, G.; Beurton, A.; Imbault, J.; Leuillet, S.; Remy, A.; Zaouter, C.; Ouattara, A. Feasibility and postoperative opioid sparing effect of an opioid-free anaesthesia in adult cardiac surgery: A retrospective study. BMC Anesthesiol. 2021, 21, 166. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Besnier, E.; Moussa, M.D.; Thill, C.; Vallin, F.; Donnadieu, N.; Ruault, S.; Lorne, E.; Scherrer, V.; Lanoiselée, J.; Lefebvre, T.; et al. Opioid-free anaesthesia with dexmedetomidine and lidocaine versus remifentanil-based anaesthesia in cardiac surgery: Study protocol of a French randomised, multicentre and single-blinded OFACS trial. BMJ Open. 2024, 14, e079984. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Intraoperative |
---|
Dexmedetomidine: 0.5 mcg/kg in 10 min, then 0.5 mcg/kg/h until end of CPB Ketamine: 0.25 mg/kg in 10 min, then 0.25 mg/kg/h until end of CPB Magnesium sulfate: 4 g after intubation Sufentanil: 10–15 mcg before intubation, 5 mcg repeated dose as needed Acetaminophen: 1 g at sternum closure Local infiltration or parasternal intercostal plane block |
Postoperative |
Acetaminophen: 500 mg–1 g scheduled every 6 h Metamizole or NSAID: PO every 8 h PRN |
Opioids only if VAS > 4 |
Morphine: iv titration until patient has resumed oral intake, then 5–10 mg PO every 4 h PRN Daily re-evaluation of opioid prescriptions Discontinuation of opioids when chest tubes removed, then tramadol as a rescue if VAS > 4 |
Characteristics | Pre-ERAS (n = 162) | ERAS (n = 248) | p Value |
---|---|---|---|
Age, years, median [IQR] | 67 [59, 74] | 64 [55, 71] | 0.010 |
Gender, n (%) | |||
Male | 112 (69) | 186 (75) | 0.193 |
Female | 50 (31) | 62 (25) | |
BMI, kg/m2, median [IQR] | 25.75 [22.80, 29.63] | 26.78 [23.91, 30.43] | 0.018 |
Smoker, n (%) | 40 (25) | 63 (25) | 0.921 |
Patients with alcohol overconsumption, n (%) | 28 (17) | 26 (10.5) | 0.430 |
Patients with recreational drug use, n (%) | 1 (0.6) | 5 (2) | 0.493 |
Arterial hypertension, n (%) | 113 (70) | 170 (69) | 0.510 |
Diabetes, n (%) | 28 (17) | 56 (22) | 0.194 |
Dyslipidemia, n (%) | 78 (48) | 144 (58) | 0.061 |
Chronic pulmonary disease, n (%) | 25 (15.4) | 40 (16) | 0.342 |
Extracardiac arteriopathy, n (%) | 42 (26) | 24 (10) | 0.001 |
Cerebrovascular disease, n (%) | 17 (10) | 13 (5) | 0.046 |
ASA class, n (%) | 1: 0 (0) 2: 14 (8) 3: 121 (74) 4: 26 (16) 5: 0 (0) | 1: 0 (0) 2: 31 (12) 3: 169 (68) 4: 46 (18) 5: 0 (0) | 0.321 |
LVEF, %, median [IQR] | 60 [55, 65] | 60 [55, 65] | 0.743 |
Preoperative creatinine value, mmol/L, median [IQR] | 89 [73, 104] | 85 [73, 97] | 0.146 |
Characteristics | Pre-ERAS (n = 162) | ERAS (n = 248) | p Value |
---|---|---|---|
Isolated CABG, n (%) | 50 (30) | 73 (29) | 0.758 |
Other surgery, n (%) | 112 (70) | 175 (71) | 0.758 |
Aortic cross-clamp duration, minutes, median [IQR] | 72 [54, 98] | 54 [42, 72] | 0.001 |
CPB duration, minutes, median [IQR] | 94 [71, 126] | 73 [56, 91] | 0.001 |
Operation duration, minutes, median [IQR] | 227 [190, 274] | 175 [144, 210] | 0.001 |
Redo surgery, n (%) | 24 (14) | 19 (7) | 0.021 |
Isolated cerebral perfusion, n (%) | 6 (4) | 5 (2) | 0.425 |
Systemic circulatory arrest, n (%) | 5 (3) | 5 (2) | 0.143 |
Characteristics | Pre-ERAS (n = 162) | ERAS (n = 248) | p Value |
---|---|---|---|
Intraoperative PONV prophylaxis administration, n (%) | 72 (45) | 140 (59) | 0.006 |
Fast-track extubation, <6 h, n (%) | 77 (47.5) | 185 (74.6) | 0.0001 |
Duration of mechanical ventilation, hours, median [IQR] | 2.15 [0, 5.7] | 0 [0, 3.73] | 0.0003 |
Drain removal, number of days since operation, median [IQR] | 3 [2, 4] | 3 [2, 4] | 0.713 |
VAS, maximum value, median [IQR] | POD0: 6 [4, 7] POD1: 5 [4, 6] POD2: 4 [2, 6] POD3: 2 [0, 4] | POD0: 7 [5, 8] POD1: 7 [5, 8] POD2: 5 [3, 6] POD3: 3 [2, 5] | 0.0013 <0.0001 0.0050 0.0163 |
Pain control on oral analgesics, VAS < 4, number of days since operation, median [IQR] | 3 [1.5, 4] | 3 [2, 5] | 0.0087 |
Last opioid use, number of days since operation, median [IQR] | 3 [2, 5] | 2 [1, 3] | <0.0001 |
Patients discharged on tramadol, n (%) | 21 (13) | 9 (3.6) | <0.0001 |
Mobilization, at first meal after extubation, n (%) | 4 (2.5) | 118 (47.6) | 0.0001 |
Mobilization, n (%) | POD1: 77 (47.5) POD2: 101 (62.3) POD3: 103 (63.6) | POD1: 185 (74.6) POD2: 196 (79) POD3: 181 (73) | 0.0001 0.001 0.018 |
Observed nausea and vomiting, n (%) | POD0: 28 (17.3) POD1: 26 (16) POD2: 27 (16.7) POD3: 15 (9.3) | POD0: 33 (13.3) POD1: 38 (15.3) POD2: 22 (8.9) POD3: 26 (10.5) | 0.319 0.125 0.004 0.822 |
Time to bowel recovery, number of days since operation, median [IQR] | 4.5 [4, 5] | 3 [3, 4] | 0.0001 |
Characteristics | Pre-ERAS (n = 162) | ERAS (n = 248) | p Value |
---|---|---|---|
Hospital LOS, days, median [IQR] | 12 [9, 16] | 9 [7, 12] | 0.0001 |
ICU LOS, days, median [IQR] | 1.08 [0.94, 2.12] | 1.1 [0.94, 1.95] | 0.563 |
Death, n (%) | 3 (1.85) | 0 (0) | 0.031 |
Patients free of any complications, n (%) | 20 (12.4) | 60 (24.2) | 0.003 |
Reoperation, n (%) | 15 (9.3) | 17 (6.9) | 0.401 |
Pneumonia, n (%) | 21 (13) | 21 (8.5) | 0.142 |
Lobar atelectasia, n (%) | 10 (6.2) | 18 (7.3) | 0.670 |
Acute confusional state, n (%) | 13 (8) | 9 (3.6) | 0.053 |
ICU neuropathy, n (%) | 2 (1.2) | 1 (0.4) | 0.334 |
Ileus or constipation, n (%) | 0 (0) | 3 (1.2) | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othenin-Girard, A.; Ltaief, Z.; Verdugo-Marchese, M.; Lavanchy, L.; Vuadens, P.; Nowacka, A.; Gunga, Z.; Melly, V.; Abdurashidova, T.; Botteau, C.; et al. Enhanced Recovery After Surgery (ERAS) Protocols in Cardiac Surgery: Impact on Opioid Consumption. J. Clin. Med. 2025, 14, 1768. https://doi.org/10.3390/jcm14051768
Othenin-Girard A, Ltaief Z, Verdugo-Marchese M, Lavanchy L, Vuadens P, Nowacka A, Gunga Z, Melly V, Abdurashidova T, Botteau C, et al. Enhanced Recovery After Surgery (ERAS) Protocols in Cardiac Surgery: Impact on Opioid Consumption. Journal of Clinical Medicine. 2025; 14(5):1768. https://doi.org/10.3390/jcm14051768
Chicago/Turabian StyleOthenin-Girard, Alexandra, Zied Ltaief, Mario Verdugo-Marchese, Luc Lavanchy, Patrice Vuadens, Anna Nowacka, Ziyad Gunga, Valentine Melly, Tamila Abdurashidova, Caroline Botteau, and et al. 2025. "Enhanced Recovery After Surgery (ERAS) Protocols in Cardiac Surgery: Impact on Opioid Consumption" Journal of Clinical Medicine 14, no. 5: 1768. https://doi.org/10.3390/jcm14051768
APA StyleOthenin-Girard, A., Ltaief, Z., Verdugo-Marchese, M., Lavanchy, L., Vuadens, P., Nowacka, A., Gunga, Z., Melly, V., Abdurashidova, T., Botteau, C., Hennemann, M., Graf, J., Schoettker, P., Kirsch, M., & Rancati, V. (2025). Enhanced Recovery After Surgery (ERAS) Protocols in Cardiac Surgery: Impact on Opioid Consumption. Journal of Clinical Medicine, 14(5), 1768. https://doi.org/10.3390/jcm14051768