Cephalomedullary Nailing vs. Dynamic Hip Screw for the Treatment of Pertrochanteric Fractures: The Role of Cytokines in the Prediction of Surgical Invasiveness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Laboratory Examinations
2.3. Surgical Techniques
2.4. DHS—Minimally Invasive Percutaneous Osteosynthesis (MIPO)
2.5. Intramedullary Nail
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Becker, N.; Hafner, T.; Pishnamaz, M.; Hildebrand, F.; Kobbe, P. Patient-specific risk factors for adverse outcomes following geriatric proximal femur fractures. Eur. J. Trauma Emerg. Surg. 2022, 48, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Shams, A.; Samy, M.A.; Abosalem, A.A.; Mesregah, M.K. Outcomes of minimally invasive osteosynthesis of intertrochanteric fractures with dynamic hip screw: A prospective case series. J. Clin. Orthop. Trauma 2022, 27, 101824. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Wang, Q.; Shang, H. Minimally Invasive Percutaneous Plate Osteosynthesis technique combined with locking compression plates guided by C-Arm X-Ray machine in treatment of tibial metaphyseal fractures: Curative effect and postoperative complications. Pak. J. Med. Sci. 2022, 38, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Wan, H.Y.; Qin, H.J.; Jiang, N.; Yu, B. Interleukin-6 versus Common Inflammatory Biomarkers for Diagnosing Fracture-Related Infection: Utility and Potential Influencing Factors. J. Immunol. Res. 2021, 2021, 1461638. [Google Scholar] [CrossRef]
- Osipov, B.; Paralkar, M.P.; Emami, A.J.; Cunningham, H.C.; Tjandra, P.M.; Pathak, S.; Langer, H.T.; Baar, K.; Christiansen, B.A. Sex differences in systemic bone and muscle loss following femur fracture in mice. J. Orthop. Res. 2022, 40, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Jawa, R.S.; Anillo, S.; Huntoon, K.; Baumann, H.; Kulaylat, M. Interleukin-6 in surgery, trauma, and critical care part II: Clinical implications. J. Intensive Care Med. 2011, 26, 73–87. [Google Scholar] [CrossRef]
- Watanabe, E.; Hirasawa, H.; Oda, S.; Matsuda, K.; Hatano, M.; Tokuhisa, T. Extremely high interleukin-6 blood levels and out-come in the critically ill are associated with tumor necrosis factor- and interleukin-1-related gene polymorphisms. Crit. Care Med. 2005, 33, 89–97. [Google Scholar] [CrossRef]
- Schinkel, C.; Wick, M.; Muhr, G.; Köller, M. Analysis of systemic interleukin-11 after major trauma. Shock 2005, 23, 30–34. [Google Scholar] [CrossRef]
- Heizmann, O.; Koeller, M.; Muhr, G.; Oertli, D.; Schinkel, C. Th1- and Th2-type cytokines in plasma after major trauma. J. Trauma 2008, 65, 1374–1378. [Google Scholar] [CrossRef]
- Ahrengart, L.; Rnkvist, H.T.; Fornander, P.; Thorngren, K.G.; Pasanen, L.; Wahlström, P.; Honkonen, S.; Lindgren, U. A randomized study of the compression hip screw and Gamma nail in 426 fractures. Clin. Orthop. Relat. Res. 2002, 401, 209–222. [Google Scholar] [CrossRef]
- Xu, H.; Liu, Y.; Sezgin, E.A.; Tarasevičius, Š.; Christensen, R.; Raina, D.B.; Tägil, M.; Lidgren, L. Comparative effectiveness research on proximal femoral nail versus dynamic hip screw in patients with trochanteric fractures: A systematic review and meta-analysis of randomized trials. J. Orthop. Surg. Res. 2022, 17, 292. [Google Scholar] [CrossRef] [PubMed]
- Pajarinen, J.; Lindahl, J.; Michelsson, O.; Savolainen, V.; Hirvensalo, E. Pertrochanteric femoral fractures treated with a dynamic hip crew or a proximal femoral nail. A randomised study comparing post-operative rehabilitation. J. Bone Joint. Surg. Br. 2005, 87, 76–81. [Google Scholar] [CrossRef]
- Carulli, C.; Piacentini, F.; Paoli, T.; Civinini, R.; Innocenti, M. A comparison of two fixation methods for femoral trochanteric fractures: A new generation intramedullary system vs. sliding hip screw. Clin. Cases Miner. Bone Metab. 2017, 14, 40–47. [Google Scholar] [CrossRef]
- Lewis, S.R.; Macey, R.; Gill, J.R.; Parker, M.J.; Griffin, X.L. Cephalomedullary nails versus extramedullary implants for extracapsular hip fractures in older adults. Cochrane Database Syst. Rev. 2022, 1, CD000093. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Chen, S.Y.; Chang, S.M. What should be filled in the blank of 31A2.1 in AO/OTA-2018 classification. Injury 2020, 51, 1408–1409. [Google Scholar] [CrossRef]
- Irigoyen, R.R.C.; DE-Lucena, R.L.; Machado, J.K.S.; DA-Silva, G.S.; Schwartsmann, C.R.; Belangero, W.D.; Spinelli, L.F. Description of a minimally invasive technique with a modified instrument for the osteosynthesis of proximal femoral fractures using the standard DHS and case series. Rev. Col. Bras. Cir. 2020, 47, e20202590. [Google Scholar] [CrossRef]
- Marino, M.; Scuderi, F.; Provenzano, C.; Scheller, J.; Rose-John, S.; Bartoccioni, E. IL-6 regulates MCP-1, ICAM-1 and IL-6 expression in human myoblasts. J. Neuroimmunol. 2008, 196, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, F.; Nizegorodcew, T.; Regazzoni, P. Quantification of surgical trauma: Comparison of conventional and minimally invasive surgical techniques for pertrochanteric fracture surgery based on markers of inflammation (interleukins). J. Orthop. Traumatol. 2012, 13, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; Suh, S.W.; Park, J.H.; Shin, Y.S.; Yoon, J.R.; Yang, J.H. Comparison of soft-tissue serum markers in stable intertrochanteric fracture: Dynamic hip screw versus proximal femoral nail—A preliminary study. Injury 2011, 42, 204–208. [Google Scholar] [CrossRef]
- Kleinveld, D.J.; Tuip-de Boer, A.M.; Hollmann, M.W.; Juffermans, N.P. Early increase in anti-inflammatory biomarkers is associated with the development of multiple organ dysfunction syndrome in severely injured trauma patients. Trauma Surg. Acute Care Open 2019, 4, e000343. [Google Scholar] [CrossRef]
- Brown, M.; Worrell, C.; Pariante, C.M. Inflammation and early life stress: An updated review of childhood trauma and inflammatory markers in adulthood. Pharmacol. Biochem. Behav. 2021, 211, 173291. [Google Scholar] [CrossRef]
- Fischer, J.; Hans, D.; Lamy, O.; Marques-Vidal, P.; Vollenweider, P.; Aubry-Rozier, B. “Inflammaging” and bone in the OsteoLaus cohort. Immun. Ageing 2020, 17, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tylicka, M.; Guszczyn, T.; Maksimowicz, M.; Kamińska, J.; Matuszczak, E.; Karpińska, M.; Koper-Lenkiewicz, O.M. The Concentration of Selected Inflammatory Cytokines (IL-6, IL-8, CXCL5, IL-33) and Damage-Associated Molecular Patterns (HMGB-1, HSP-70) Released in an Early Response to Distal Forearm Fracture and the Performed Closed Reduction With Kirschner Wire Fixation in Children. Front. Endocrinol. 2021, 12, 749667. [Google Scholar]
- Kristek, G.; Radoš, I.; Kristek, D.; Kapural, L.; Nešković, N.; Škiljić, S.; Horvat, V.; Mandić, S.; Haršanji-Drenjančević, I. Influence of postoperative analgesia on systemic inflammatory response and postoperative cognitive dysfunction after femoral fractures surgery: A randomized controlled trial. Reg. Anesth. Pain Med. 2019, 44, 59–68. [Google Scholar] [CrossRef]
- Van Munster, B.C.; Korevaar, J.C.; Zwinderman, A.H.; Levi, M.; Wiersinga, W.J.; De Rooij, S.E. Time-course of cytokines during delirium in elderly patients with hip fractures. J. Am. Geriatr. Soc. 2008, 56, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liu, Q.; Liu, Y.; Jiang, R. Comparison of Proximal Femoral Nail Antirotation and Dynamic Hip Screw Internal Fixation on Serum Markers in Elderly Patients with Intertrochanteric Fractures. J. Coll. Physicians Surg. Pak. 2019, 29, 644–648. [Google Scholar] [CrossRef]
- Yue, Y.; Shang, C.; Dong, H.; Meng, K. Interleukin-1 in cerebrospinal fluid for evaluating the neurological outcome in traumatic brain injury. Biosci. Rep. 2019, 39, BSR20181966. [Google Scholar] [CrossRef] [PubMed]
- Kyriakoulis, K.G.; Kollias, A.; Poulakou, G.; Kyriakoulis, I.G.; Trontzas, I.P.; Charpidou, A.; Syrigos, K. The Effect of Anakinra in Hospitalized Patients with COVID-19: An Updated Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 4462. [Google Scholar] [CrossRef]
- Malhotra, H.; Garg, V.; Singh, G. Biomarker Approach Towards Rheumatoid Arthritis Treatment. Curr. Rheumatol. Rev. 2021, 17, 162–175. [Google Scholar] [CrossRef]
Variables (Mean, SD) | DHS (n = 30) | Nail (n = 30) | p Value |
---|---|---|---|
Age | 86 (6.3) | 81.9 (20.5) | 0.3 |
Gender | 1 | ||
Male | 7 | 8 | |
Female | 23 | 22 | |
Surgical side | 0.89 | ||
Left | 13 | 14 | |
Right | 17 | 16 | |
Hgb (pre operative) | 11.2 (1.3) | 11.8 (1.8) | 0.13 |
Type of fracture | 0.75 | ||
A1 | 9 | 11 | |
A2 | 21 | 19 | |
Number of transfusions | 1.5 (1.3) | 0.8 (1.1) | 0.052 |
Surgical time (min) | 54.2 (18.3) | 56.4 (19.5) | 0.66 |
BMI | 23.3 (3.4) | 24.7 (4.3) | 0.14 |
Mean number of comorbidities | 2.4 (0.97) | 2.3 (1.3) | 0.7 |
Variables | DHS (n = 30); Mean (SD), Range | Nail (n = 30); Mean (SD), Range | p Value |
---|---|---|---|
IL-1 (pg/mL) | 0.6 | ||
pre | 14.8 (13.3); 7.8–42.6 | 6.8 (1.2); 5.6–7.9 | |
1st postoperative day | 16.6 (17.2); 7.8–53.3 | 7.1 (2.1); 5–9.2 | |
2nd postoperative day | 13.7 (10.7); 7.8–34.8 | 7.8 (0.6); 7.2–8.3 | |
3th postoperative day | 11.6 (6.9); 7.8–25.5 | 8.8 (1.1); 7.7–9.9 | |
IL-6 (pg/mL) | 0.03 * | ||
pre | 39 (13.5); 18.6–62.8 | 19.6 (7.6); 13–30 | |
1st postoperative day | 49.9 (51.9); 4.1–159.4 | 67.2 (52.8); 18.5–138 | |
2nd postoperative day | 75.2 (56.6); 26.2–173.3 | 47.8 (41.5); 5.3–108.3 | |
3th postoperative day | 42.4 (40.1); 10.2–129.1 | 13.6 (5.4); 8–21 | |
IL-8 (pg/mL) | 0.5 | ||
pre | 69.8 (96.6); 32–389 | 33.8 (3.6); 32–39.3 | |
1st postoperative day | 192.2 (416);32–1136 | 101.1 (124); 32–286 | |
2nd postoperative day | 32.4 (1.2); 32–35 | 41.6 (19.3); 32–71 | |
3th postoperative day | 32.1 (0.37); 32–33 | 32 (0); 0 | |
IL-10 (pg/mL) | 0.8 | ||
pre | 5.4 (3.04); 3.1–9.9 | 20.8 (35.5); 3.1–74.1 | |
1st postoperative day | 7.7 (4.5); 3.1–13.2 | 36.2 (54.4); 3.1–113.1 | |
2nd postoperative day | 6.07 (3.7); 3.1–11.8 | 40.6 (75); 3.1–153.1 | |
3th postoperative day | 4.07 (1.42); 3.1–6.4 | 6 (4.3); 3.1–12.3 | |
CK (UI/L) | 0.7 | ||
pre | 196.5 (164); 33–456 | 162 (56.2); 93–218 | |
1st postoperative day | 328.7 (205); 65–623 | 336 (89.7); 218–424 | |
2nd postoperative day | 403.1 (290.7); 101–875 | 333.2 (112); 211–483 | |
3th postoperative day | 180.5 (101.4); 48–328 | 136 (27); 102–165 | |
CRP (mg/mL) | 0.9 | ||
pre | 7.8 (4.6); 1.5–13.1 | 6.8 (2.6); 3.2–9.6 | |
1st postoperative day | 7.2 (4.3); 1.9–13.8 | 7.2 (2.2); 4.5–9.4 | |
2nd postoperative day | 11.4 (4.5); 4.9–16.4 | 9.2 (2.6); 6.1–11.7 | |
3th postoperative day | 6.6 (4.5); 1.4–14.1 | 6 (1.95); 3.9–8.4 | |
VAS | 0.5 | ||
pre | 2.5 (0.8); 1–4 | 2.9 (1.6); 0–5 | |
1st postoperative day | 2.9 (1.2); 2–6 | 2.9 (1.6); 0–6 | |
2nd postoperative day | 2.2 (0.9); 0–4 | 2.7 (1.4); 0–6 | |
3th postoperative day | 1.8 (0.7); 0–3 | 2.3 (1.5); 0–4 | |
IL-1 (pg/mL) | 0.6 | ||
pre | 14.8 (13.3); 7.8–42.6 | 6.8 (1.2); 5.6–7.9 | |
1st postoperative day | 16.6 (17.2); 7.8–53.3 | 7.1 (2.1); 5–9.2 | |
2nd postoperative day | 13.7 (10.7); 7.8–34.8 | 7.8 (0.6); 7.2–8.3 | |
3th postoperative day | 11.6 (6.9); 7.8–25.5 | 8.8 (1.1); 7.7–9.9 | |
IL-6 (pg/mL) | 0.03 * | ||
pre | 39 (13.5); 18.6–62.8 | 19.6 (7.6); 13–30 | |
1st postoperative day | 49.9 (51.9); 4.1–159.4 | 67.2 (52.8); 18.5–138 | |
2nd postoperative day | 75.2 (56.6); 26.2–173.3 | 47.8 (41.5); 5.3–108.3 | |
3th postoperative day | 42.4 (40.1); 10.2–129.1 | 13.6 (5.4); 8–21 | |
IL-8 (pg/mL) | 0.5 | ||
pre | 69.8 (96.6); 32–389 | 33.8 (3.6); 32–39.3 | |
1st postoperative day | 192.2 (416); 32–1136 | 101.1 (124); 32–286 | |
2nd postoperative day | 32.4 (1.2); 32–35 | 41.6 (19.3); 32–71 | |
3th postoperative day | 32.1 (0.37); 32–33 | 32 (0); 0 | |
IL-10 (pg/mL) | 0.8 | ||
pre | 5.4 (3.04); 3.1–9.9 | 20.8 (35.5); 3.1–74.1 | |
1st postoperative day | 7.7 (4.5); 3.1–13.2 | 36.2 (54.4); 3.1–113.1 | |
2nd postoperative day | 6.07 (3.7); 3.1–11.8 | 40.6 (75); 3.1–153.1 | |
3th postoperative day | 4.07 (1.42); 3.1–6.4 | 6 (4.3); 3.1–12.3 | |
CK (UI/L) | 0.7 | ||
pre | 196.5 (164); 33–456 | 162 (56.2); 93–218 | |
1st postoperative day | 328.7 (205); 65–623 | 336 (89.7); 218–424 | |
2nd postoperative day | 403.1 (290.7); 101–875 | 333.2 (112); 211–483 | |
3th postoperative day | 180.5 (101.4); 48–328 | 136 (27); 102–165 | |
CRP (mg/mL) | 0.9 | ||
pre | 7.8 (4.6); 1.5–13.1 | 6.8 (2.6); 3.2–9.6 | |
1st postoperative day | 7.2 (4.3); 1.9–13.8 | 7.2 (2.2); 4.5–9.4 | |
2nd postoperative day | 11.4 (4.5); 4.9–16.4 | 9.2 (2.6); 6.1–11.7 | |
3th postoperative day | 6.6 (4.5); 1.4–14.1 | 6 (1.95); 3.9–8.4 | |
VAS | 0.5 | ||
pre | 2.5 (0.8); 1–4 | 2.9 (1.6); 0–5 | |
1st postoperative day | 2.9 (1.2); 2–6 | 2.9 (1.6); 0–6 | |
2nd postoperative day | 2.2 (0.9); 0–4 | 2.7 (1.4); 0–6 | |
3th postoperative day | 1.8 (0.7); 0–3 | 2.3 (1.5); 0–4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Prete, A.; Sessa, P.; Del Prete, F.; Carulli, C.; Sani, G.; Manfredi, M.; Civinini, R. Cephalomedullary Nailing vs. Dynamic Hip Screw for the Treatment of Pertrochanteric Fractures: The Role of Cytokines in the Prediction of Surgical Invasiveness. J. Clin. Med. 2025, 14, 1825. https://doi.org/10.3390/jcm14061825
Del Prete A, Sessa P, Del Prete F, Carulli C, Sani G, Manfredi M, Civinini R. Cephalomedullary Nailing vs. Dynamic Hip Screw for the Treatment of Pertrochanteric Fractures: The Role of Cytokines in the Prediction of Surgical Invasiveness. Journal of Clinical Medicine. 2025; 14(6):1825. https://doi.org/10.3390/jcm14061825
Chicago/Turabian StyleDel Prete, Armando, Pasquale Sessa, Ferdinando Del Prete, Christian Carulli, Giacomo Sani, Mariangela Manfredi, and Roberto Civinini. 2025. "Cephalomedullary Nailing vs. Dynamic Hip Screw for the Treatment of Pertrochanteric Fractures: The Role of Cytokines in the Prediction of Surgical Invasiveness" Journal of Clinical Medicine 14, no. 6: 1825. https://doi.org/10.3390/jcm14061825
APA StyleDel Prete, A., Sessa, P., Del Prete, F., Carulli, C., Sani, G., Manfredi, M., & Civinini, R. (2025). Cephalomedullary Nailing vs. Dynamic Hip Screw for the Treatment of Pertrochanteric Fractures: The Role of Cytokines in the Prediction of Surgical Invasiveness. Journal of Clinical Medicine, 14(6), 1825. https://doi.org/10.3390/jcm14061825