A Deep Learning-Based Detection and Segmentation System for Multimodal Ultrasound Images in the Evaluation of Superficial Lymph Node Metastases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Ultrasound Examination Protocol
2.3. System Architecture
2.3.1. Detection Module
2.3.2. Shape Analysis Module
2.3.3. Contour Analysis Module
Algorithm 1. Contour sharpness evaluation |
1:START Contour Analysis Module 2: INPUT: Mask from Mask R-CNN defining LN contour 3: OUTPUT: Contour clarity metric 4:# Step 1: Analyze pixels along the contour 5: SELECT every 12th pixel along the contour for analysis 6:# Step 2: Calculate the slope of the contour 7: FOR each selected pixel: 8: DETERMINE slope using two neighboring pixels 9: # Simplify slope calculation to avoid complex computations 10:# Step 3: Draw a perpendicular line 11: FOR each selected pixel: 12: DRAW perpendicular line to the slope through the pixel of interest 13: ANALYZE a small area around the line to detect pixel intensity changes 14:# Step 4: Measure intensity change 15: FOR each perpendicular line: 16: CALCULATE intensity change from inside to outside the contour 17: NORMALIZE intensity difference by dividing by 255 19:# Step 5: Calculate the average intensity change 20: COMPUTE average intensity change across all analyzed contour pixels 21:# Step 6: Output the metric 22: RETURN average intensity change as the contour sharpness metric 23:END Contour Analysis Module |
2.3.4. Doppler Analysis Module
- Regarding general vascularity percentage, the vascular density is high in lymphoma and inflammatory lymph ganglia and low in physiological ones. In metastatic LNs, usually, the density of blood vessels is very low.
Algorithm 2. Vascularity percentage evaluation |
1:START Vascularity Percentage Evaluation 2: INPUT: Mask from Mask R-CNN defining LN contour 3: OUTPUT: Vascularity percentage 4:# Step 1: Extract colored pixels within the mask 5: CONVERT the input mask to HSV color space using OpenCV 6:# Step 2: Define HSV mask thresholds 7: SET lower_HSV = [0, 1, 1] # Lower bounds: hue, saturation, value 8: SET upper_HSV = [180, 255, 255] # Upper bounds: hue, saturation, value 9:# Step 3: Apply the HSV mask 10: COMPUTE HSV_mask by filtering pixels within the defined lower and upper bounds 11:# Step 4: Count colored pixels 12: COUNT colored_pixels within the scaled mask using the HSV_mask 13:# Step 5: Calculate vascularity percentage 14: COUNT total_pixels inside the scaled mask 15: CALCULATE vascularity_percentage = (colored_pixels/total_pixels) × 100 16:# Step 6: Output the result 17: RETURN vascularity_percentage 18:END Vascularity Percentage Evaluation |
- 2.
- Regarding vascular pattern/position, hilar vessels are seen in healthy LNs. Branching is not usually visible in small ones. When it comes to metastasis, the ganglia have a peripheral aberrant pattern caused by the cancerous neo-vascularization. As for inflammatory LNs, a hilar branching pattern is often found, and when it comes to lymphoma, the pattern is typically mixed and hilar, with a tree-like and extensive branching appearance.
Algorithm 3. Vascularity position evaluation |
1:START Vascularity Position Evaluation 2: INPUT: Mask defining LN contour, colored pixels identified using HSV mask 3: OUTPUT: Vascularity position parameter 4:# Step 1: Compute the centroid of the LN contour 5: COMPUTE centroid of LN contour 6:# Step 2: Compute distances from colored pixels to the centroid 7: FOR each colored_pixel in the mask: 8: CALCULATE euclidean_distance from colored_pixel to centroid 9: STORE distance in colored_pixel_distances_list 10:# Step 3: Compute the average distance for colored pixels 11: CALCULATE avg_colored_distance = MEAN(colored_pixel_distances_list) 12:# Step 4: Compute distances from contour pixels to the centroid 13: FOR each contour_pixel in the LN contour: 14: CALCULATE euclidean_distance from contour_pixel to centroid 15: STORE distance in contour_pixel_distances_list 16:# Step 5: Compute the average distance for contour pixels 17: CALCULATE avg_contour_distance = MEAN(contour_pixel_distances_list) 18:# Step 6: Compute the vascularity position parameter 19: CALCULATE vascularity_position = avg_colored_distance/avg_contour_distance 20:# Step 7: Output the result 21: RETURN vascularity_position 22:END Vascularity Position Evaluation |
2.3.5. Elastography Analysis Module
- -
- Hue, 0–39; saturation, 1–255; and value, 1–255;
- -
- Hue, 136–180; saturation, 1–255; and value, 1–255.
Algorithm 4. Translation algorithm |
1:START Translate Contour 2: INPUT: Image, Contour 3: OUTPUT: Translated Contour 4:# Step 1: Detect and remove the color scale 5: CALL DetectAndRemoveColorScale(image) 6:# Step 2: Detect the region containing the actual ultrasound (US) image 7: ultrasound_region = DetectUltrasoundRegion(image) 8:# Step 3: Detect the colored region to determine translation direction 9: colored_region_side = DetectColoredRegion(image) 10:# Step 4: Translate the contour 11: IF colored_region_side == “left”: 12: FOR each pixel in contour: 13: TRANSLATE pixel_x = pixel_x + (ultrasound_region.width/2) 14: ELSE: 15: FOR each pixel in contour: 16: TRANSLATE pixel_x = pixel_x − (ultrasound_region.width/2) 17: END IF 18: RETURN Translated Contour 19:END TranslateContour |
20:# Detect B-mode US Region Algorithm 21:# Identifies the region containing the US image, excluding margins. 22:START Detect Ultrasound Region 23: INPUT: Image 24: OUTPUT: Ultrasound Region 25:# Step 1: Preprocessing 26: APPLY bilinear_filter to image to reduce noise 27: APPLY morphological_opening to remove noise outside main object 28: BINARIZE image using a threshold 29:# Step 2: Find connected components 30: COMPONENTS = connectedComponentsWithStats(binarized_image) 31:# Step 3: Identify the largest connected component 32: ultrasound_region = FIND largest connected component in COMPONENTS 33: RETURN ultrasound_region 34:END Detect Ultrasound Region |
35:# Detect Colored Elastography Region Algorithm 36:# Determines whether the elastography region is on the left or right side of the image. 37:START Detect Colored Region 38: INPUT: Image 39: OUTPUT: Side of the image with more colored pixels (“left” or “right”) 40:# Step 1: Convert image to HSV color space 41: hsv_image = CONVERT image to HSV 42:# Step 2: Extract colored pixels in the specified range 43: colored_pixels = EXTRACT pixels in range (0, 10, 10) to (180, 255, 255) 44:# Step 3: Count colored pixels in left and right halves of the image 45: left_count = COUNT colored_pixels in left half of hsv_image 46: right_count = COUNT colored_pixels in right half of hsv_image 47:# Step 4: Determine the side with more colored pixels 48: IF left_count > right_count: 49: RETURN “left” 50: ELSE: 51: RETURN “right” 52: END IF 53:END Detect Colored Region |
2.4. Detection Module Evaluation
2.4.1. Accuracy Metrics on the Training Dataset
2.4.2. Total Loss on the Training Dataset
- ○
- loss_cls: Classification loss in the ROI head [35], determines how effectively the model labels a predicted box with the appropriate class;
- ○
- loss_box_reg: Localization loss in the ROI head [35], calculates the box localization loss (predicted location vs. true location);
- ○
- loss_rpn_cls: Classification loss in the region proposal network (RPN) [35], evaluates how effectively the RPN labels the anchor boxes as foreground or background.
- ○
- loss_rpn_log: Localization loss in the RPN [35], calculates the RPN’s localization loss for the predicted regions;
- ○
- loss_mask: Mask loss in the Mask head [35], identifies the correctness of the predicted binary masks.
2.4.3. AP Metrics for Segmentation Tasks on Validation and Test Datasets
2.4.4. Loss on Validation Dataset
3. Results
3.1. Detection Module Performance Evaluation
3.2. Shape Analysis Module and Contour Analysis Module on B-Mode US Performance Evaluation
3.3. Doppler Analysis Module Performance Evaluation
3.4. Elastography Analysis Module Performance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Cancer Institute. Understanding Cancer Statistics. Available online: https://www.cancer.gov/about-cancer/understanding/statistics (accessed on 24 January 2025).
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2020; in press. [Google Scholar]
- Obinu, A.; Gavini, E.; Rassu, G.; Maestri, M.; Bonferoni, M.C.; Giunchedi, P. Lymph node metastases: Importance of detection and treatment strategies. Expert Opin. Drug Deliv. 2018, 15, 459–467. [Google Scholar] [CrossRef]
- Nathanson, S.D.; Rosso, K.; Chitale, D.; Burke, M. Lymph Node Metastasis. In Introduction to Cancer Metastasis; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2017; pp. 235–261. ISBN 9780128040034. [Google Scholar] [CrossRef]
- Ioachim, H.L.; Medeiros, L.J. Ioachim’s Lymph Node Pathology, 4th ed.; Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2009. [Google Scholar]
- Allaf, M.E.; Partin, A.W.; Carter, H.B. The importance of pelvic lymph node dissection in men with clinically localized prostate cancer. Rev. Urol. 2006, 8, 112–119. [Google Scholar]
- McLaughlin, S.A.; Wright, M.J.; Morris, K.T.; Giron, G.L.; Sampson, M.R.; Brockway, J.P.; Hurley, K.E.; Riedel, E.R.; Van Zee, K.J. Prevalence of lymphedema in women with breast cancer 5 years after sentinel lymph node biopsy or axillary dissection: Objective measurements. J. Clin. Oncol. 2008, 26, 5213–5219. [Google Scholar] [CrossRef]
- Del Bianco, P.; Zavagno, G.; Burelli, P.; Scalco, G.; Barutta, L.; Carraro, P.; Pietrarota, P.; Meneghini, G.; Morbin, T.; Tacchetti, G.; et al. Morbidity comparison of sentinel lymph node biopsy versus conventional axillary lymph node dissection for breast cancer patients: Results of the sentinella-GIVOM Italian randomised clinical trial. Eur. J. Surg. Oncol. 2008, 34, 508–513. [Google Scholar] [CrossRef]
- Psychogios, G.; Mantsopoulos, K.; Bohr, C.; Koch, M.; Zenk, J.; Iro, H. Incidence of occult cervical metastasis in head and neck carcinomas: Development over time. J. Surg. Oncol. 2013, 107, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Alba, J.R.; Basterra, J.; Ferrer, J.C.; Santonja, F.; Zapater, E. Hypothyroidism in patients treated with radiotherapy for head and neck carcinoma: Standardised long-term follow-up study. J. Laryngol. Otol. 2016, 130, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Armanious, M.A.; Mohammadi, H.; Khodor, S.; Oliver, D.E.; Johnstone, P.A.; Fradley, M.G. Cardiovascular effects of radiation therapy. Curr. Probl. Cancer 2018, 42, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Gane, E.; Michaleff, Z.; Cottrell, M.; McPhail, S.; Hatton, A.; Panizza, B.; O’Leary, S. Prevalence, incidence, and risk factors for shoulder and neck dysfunction after neck dissection: A systematic review. Eur. J. Surg. Oncol. 2017, 43, 1199–1218. [Google Scholar] [CrossRef]
- Strojan, P.; Hutcheson, K.A.; Eisbruch, A.; Beitler, J.J.; Langendijk, J.A.; Lee, A.W.; Corry, J.; Mendenhall, W.M.; Smee, R.; Rinaldo, A.; et al. Treatment of late sequelae after radiotherapy for head and neck cancer. Cancer Treat. Rev. 2017, 59, 79–92. [Google Scholar] [CrossRef]
- van Hagen, P.; Hulshof, M.C.C.M.; Van Lanschot, J.J.B.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; Richel, D.J.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef]
- de Gouw, D.J.; Klarenbeek, B.R.; Driessen, M.; Bouwense, S.A.; van Workum, F.; Fütterer, J.J.; Rovers, M.M.; Broek, R.P.T.; Rosman, C. Detecting pathological complete response in esophageal cancer after neoadjuvant therapy based on imaging techniques: A diagnostic systematic review and meta-analysis. J. Thorac. Oncol. 2019, 14, 1156–1171. [Google Scholar] [CrossRef] [PubMed]
- Little, A.G.; Lerut, A.E.; Harpole, D.H.; Hofstetter, W.L.; Mitchell, J.D.; Altorki, N.K.; Krasna, M.J. The Society of Thoracic Surgeons practice guidelines on the role of multimodality treatment for cancer of the esophagus and gastroesophageal junction. Ann. Thorac. Surg. 2014, 98, 1880–1885. [Google Scholar] [CrossRef]
- Mao, Y.; Hedgire, S.; Harisinghani, M. Radiologic Assessment of Lymph Nodes in Oncologic Patients. Curr. Radiol. Rep. 2014, 2, 36. [Google Scholar] [CrossRef]
- Loch, F.N.; Asbach, P.; Haas, M.; Seeliger, H.; Beyer, K.; Schineis, C.; Degro, C.E.; Margonis, G.A.; Kreis, M.E.; Kamphues, C. Accuracy of various criteria for lymph node staging in ductal adenocarcinoma of the pancreatic head by computed tomography and magnetic resonance imaging. World J. Surg. Oncol. 2020, 18, 213. [Google Scholar] [CrossRef]
- Mabeta, P. Paradigms of vascularization in melanoma: Clinical significance and potential for therapeutic targeting. Biomed. Pharmacother. 2020, 127, 110135. [Google Scholar] [CrossRef]
- Tenajas, R.; Miraut, D.; Illana, C.I.; Alonso-Gonzalez, R.; Arias-Valcayo, F.; Herraiz, J.L. Recent Advances in Artificial Intelligence-Assisted Ultrasound Scanning. Appl. Sci. 2023, 13, 3693. [Google Scholar] [CrossRef]
- Szatkowski, W.; Pniewska, K.; Janeczek, M.; Ryś, J.; Banaś, T.; Muzykiewicz, K.; Iwańska, E.; Jakubowicz, J.; Karolewski, K.; Szadurska, A.; et al. The Assessment of Sentinel Lymph Node Mapping Methods in Endometrial Cancer. J. Clin. Med. 2025, 14, 676. [Google Scholar] [CrossRef] [PubMed]
- Sato, E.; Fukuda, M.; Katayama, I.; Takagi, Y.; Sasaki, M.; Mori, H.; Kawakami, M.; Nishino, T.; Ariji, Y.; Sumi, M. Metastatic Lymph Node Detection on Ultrasound Images Using YOLOv7 in Patients with Head and Neck Squamous Cell Carcinoma. Cancers 2024, 16, 274. [Google Scholar] [CrossRef]
- Rinneburger, M.; Carolus, H.; Iuga, A.I.; Weisthoff, M.; Lennartz, S.; Große Hokamp, N.; Caldeira, L.; Shahzad, R.; Maintz, D.; Laqua, F.C.; et al. Automated Localization and Segmentation of Cervical Lymph Nodes on Contrast-Enhanced CT Using a 3D Foveal Fully Convolutional Neural Network. Eur. Radiol. Exp. 2023, 7, 45. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Shi, J.; Xiong, J.; Jiang, J.; Chang, W.; Chen, M.; Zhang, Q. Segmentation of Lymph Nodes in Ultrasound Images Using U-Net Convolutional Neural Networks and Gabor-Based Anisotropic Diffusion. Preprint 2021. [Google Scholar] [CrossRef]
- Rusu-Both, R.; Socaci, C.; Palagos, A. Machine-Learning Based Elastography Analysis in Predicting Lymph Node Metastasis. In Proceedings of the 2024 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 16–18 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Zhou, L.-Q.; Wu, X.-L.; Huang, S.-Y.; Wu, G.-G.; Ye, H.-R.; Wei, Q.; Bao, L.-Y.; Deng, Y.-B.; Li, X.-R.; Cui, X.-W.; et al. Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning. Radiology 2020, 294, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Ervik, Ø.; Tveten, I.; Hofstad, E.F.; Langø, T.; Leira, H.O.; Amundsen, T.; Sørger, H. Automatic Segmentation of Mediastinal Lymph Nodes and Blood Vessels in Endobronchial Ultrasound (EBUS) Images Using Deep Learning. J. Imaging 2024, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Guo, Y.; Jia, L.; Yao, M.; Shao, S.; Chen, J.; Xu, Y.; Wu, R. A Convolutional Neural Network Based on Ultrasound Images of Primary Breast Masses: Prediction of Lymph-Node Metastasis in Collaboration With Classification of Benign and Malignant Tumors. Front. Physiol. 2022, 13, 882648. [Google Scholar] [CrossRef]
- Sun, S.; Mutasa, S.; Liu, M.Z.; Nemer, J.; Sun, M.; Siddique, M.; Desperito, E.; Jambawalikar, S.; Ha, R.S. Deep learning prediction of axillary lymph node status using ultrasound images. Comput. Biol. Med. 2022, 143, 105250. [Google Scholar] [CrossRef]
- Ariji, Y.; Kise, Y.; Fukuda, M.; Kuwada, C.; Ariji, E. Segmentation of metastatic cervical lymph nodes from CT images of oral cancers using deep-learning technology. Dentomaxillofac. Radiol. 2022, 51, 20210515. [Google Scholar] [CrossRef]
- Ariji, Y.; Fukuda, M.; Kise, Y.; Nozawa, M.; Yanashita, Y.; Fujita, H.; Katsumata, A.; Ariji, E. Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 127, 458–463. [Google Scholar] [CrossRef]
- Ariji, Y.; Fukuda, M.; Nozawa, M.; Kuwada, C.; Goto, M.; Ishibashi, K.; Nakayama, A.; Sugita, Y.; Nagao, T.; Ariji, E. Automatic detection of cervical lymph nodes in patients with oral squamous cell carcinoma using a deep learning technique: A preliminary study. Oral Radiol. 2021, 37, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Kann, B.H.; Aneja, S.; Loganadane, G.V.; Kelly, J.R.; Smith, S.M.; Decker, R.H.; Yu, J.B.; Park, H.S.; Yarbrough, W.G.; Malhotra, A.; et al. Pretreatment identification of head and neck cancer nodal metastasis and extranodal extension using deep learning neural networks. Sci. Rep. 2018, 8, 14036. [Google Scholar] [CrossRef]
- Supervisely: Unified OS for Computer Vision. Available online: https://supervise.ly (accessed on 28 June 2022).
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. arXiv 2017, arXiv:1703.06870. [Google Scholar] [CrossRef]
- Ritza.co. Scikit-Learn vs. TensorFlow vs. PyTorch vs. Keras. Available online: https://ritza.co/articles/scikit-learn-vs-tensorflow-vs-pytorch-vs-keras (accessed on 10 October 2024).
- GitHub. GitHub—Facebookresearch/Detectron2: Detectron2 Is a Platform for Object Detection, Segmentation, and Other Visual Recognition Tasks. Available online: https://github.com/facebookresearch/detectron2 (accessed on 10 November 2024).
- PyTorch. Available online: https://pytorch.org/ (accessed on 10 November 2024).
- Detectron2.readthedocs.io. Benchmarks—Detectron2 0.6 Documentation. Available online: https://detectron2.readthedocs.io/en/latest/notes/benchmarks.html (accessed on 10 November 2024).
- Cloud Computing, Evolved|Paperspace. Available online: https://www.paperspace.com/ (accessed on 21 November 2024).
- Detectron2.engine—Detectron2 0.6 Documentation. Available online: https://detectron2.readthedocs.io/en/latest/modules/engine.html (accessed on 10 November 2024).
- Training on Detectron2 with a Validation Set and Plot Loss on It to Avoid Overfitting. Available online: https://eidos-ai.medium.com/training-on-detectron2-with-a-validation-set-and-plot-loss-on-it-to-avoid-overfitting-6449418fbf4e (accessed on 11 November 2024).
- Detectron2.model_zoo—Detectron2 0.6 Documentation. Available online: https://detectron2.readthedocs.io/en/latest/modules/model_zoo.html (accessed on 10 November 2024).
- Sun, Q.; Lin, X.; Zhao, Y.; Li, L.; Yan, K.; Liang, D.; Sun, D.; Li, Z.-C. Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don’t Forget the Peritumoral Region. Front. Oncol. 2020, 10, 53. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, Z.; Leng, X.; Ma, F. Artificial Intelligence Algorithm-Based Ultrasound Image Segmentation Technology in the Diagnosis of Breast Cancer Axillary Lymph Node Metastasis. J. Healthc. Eng. 2021, 2021, 8830260. [Google Scholar] [CrossRef] [PubMed]
- COCO—Common Objects in Context. Available online: https://cocodataset.org/#detection-eval (accessed on 20 October 2024).
- mAP (Mean Average Precision) for Object Detection. Available online: https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173 (accessed on 11 November 2024).
- Rus, G.; Andraș, I.; Vaida, C.; Crișan, N.; Gherman, B.; Radu, C.; Tucan, P.; Iakab, S.; Hajjar, N.A.; Pisla, D. Artificial Intelligence-Based Hazard Detection in Robotic-Assisted Single-Incision Oncologic Surgery. Cancers 2023, 15, 3387. [Google Scholar] [CrossRef] [PubMed]
- Tucan, P.; Vaida, C.; Horvath, D.; Caprariu, A.; Burz, A.; Gherman, B.; Iakab, S.; Pisla, D. Design and Experimental Setup of a Robotic Medical Instrument for Brachytherapy in Non-Resectable Liver Tumors. Cancers 2022, 14, 5841. [Google Scholar] [CrossRef] [PubMed]
Detection Module—Version 1 | Detection Module—Version 2 | ||
---|---|---|---|
Model No. | Unique Model | US Model | Doppler US Model |
Implementation | Detecton2 implementation of Mask R-CNN | YOLOv8 implementation of Mask R-CNN | YOLOv8 implementation of Mask R-CNN |
Image type | B-US, D-US, E-US * | B-US, E-US * | D-US * |
Dataset | 397 images | 305 images | 92 images |
Augmented dataset | 2382 images | 1830 images | 552 images |
Image resolution | 760 × 574 1280 × 876 1442 × 802 1552 × 873 | 760 × 574 1280 × 876 1442 × 802 1552 × 873 | 760 × 574 1280 × 876 1442 × 802 1552 × 873 |
Training dataset (60%) | 1428 images | 1098 images | 330 images |
Validation dataset (20%) | 477 images | 366 images | 111 images |
Test dataset (20%) | 477 images | 366 images | 111 images |
Metrics | Value |
---|---|
fast_rcnn/cls_accuracy | 0.98828125 |
fast_rcnn/false_negative | 0.1788537549 |
fast_rcnn/fg_cls_accuracy | 0.8211462451 |
loss_box_reg | 0.02857693098 |
loss_cls | 0.01522202883 |
loss_mask | 0.09584703296 |
loss_rpn_cls | 0.00001277672754 |
loss_rpn_loc | 0.001906370104 |
mask_rcnn/accuracy | 0.9256435529 |
mask_rcnn/false_negative | 0.06005441454 |
mask_rcnn/false_positive | 0.05255943234 |
roi_head/num_bg_samples | 494 |
roi_head/num_fg_samples | 18 |
rpn/num_neg_anchors | 252 |
rpn/num_pos_anchors | 4 |
total_loss | 0.1452940319 |
Metrics | Test Dataset | Validation Dataset |
---|---|---|
AP | 60.6610 | 64.0297 |
AP50 | 88.2196 | 89.9009 |
AP75 | 63.5684 | 77.2141 |
Metrics | Test Dataset | Validation Dataset |
---|---|---|
AP | 75.0419 | 74.8861 |
AP50 | 92.5031 | 95.8426 |
AP75 | 86.8613 | 87.2800 |
Metrics | Test Dataset | Validation Dataset |
---|---|---|
AP | 82.8358 | 82.8358 |
AP50 | 99.0333 | 99.0333 |
AP75 | 98.6250 | 98.6250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu-Both, R.; Socaci, M.-C.; Palagos, A.-I.; Buzoianu, C.; Avram, C.; Vălean, H.; Chira, R.-I. A Deep Learning-Based Detection and Segmentation System for Multimodal Ultrasound Images in the Evaluation of Superficial Lymph Node Metastases. J. Clin. Med. 2025, 14, 1828. https://doi.org/10.3390/jcm14061828
Rusu-Both R, Socaci M-C, Palagos A-I, Buzoianu C, Avram C, Vălean H, Chira R-I. A Deep Learning-Based Detection and Segmentation System for Multimodal Ultrasound Images in the Evaluation of Superficial Lymph Node Metastases. Journal of Clinical Medicine. 2025; 14(6):1828. https://doi.org/10.3390/jcm14061828
Chicago/Turabian StyleRusu-Both, Roxana, Marius-Cristian Socaci, Adrian-Ionuț Palagos, Corina Buzoianu, Camelia Avram, Honoriu Vălean, and Romeo-Ioan Chira. 2025. "A Deep Learning-Based Detection and Segmentation System for Multimodal Ultrasound Images in the Evaluation of Superficial Lymph Node Metastases" Journal of Clinical Medicine 14, no. 6: 1828. https://doi.org/10.3390/jcm14061828
APA StyleRusu-Both, R., Socaci, M.-C., Palagos, A.-I., Buzoianu, C., Avram, C., Vălean, H., & Chira, R.-I. (2025). A Deep Learning-Based Detection and Segmentation System for Multimodal Ultrasound Images in the Evaluation of Superficial Lymph Node Metastases. Journal of Clinical Medicine, 14(6), 1828. https://doi.org/10.3390/jcm14061828