The Role of Accurate Estimations of Blood Loss and Identification of Risk Factors in the Management of Early Postpartum Hemorrhage in Women Undergoing a Cesarean Section
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Population
- Calculated pregnancy blood volume = 0.75 × ([maternal height (inches) × 50] + [maternal weight (pounds) × 25]);
- Percentage of blood volume lost = (pre-delivery Hct − post-delivery Hct)/pre-delivery Hct;
- fEBL = Calculated pregnancy blood volume x percentage of blood volume lost.
2.2. Study Outcome Definitions
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohlmann, M.K.; Rath, W. Medical prevention and treatment of postpartum hemorrhage: A comparison of different guidelines. Arch. Gynecol. Obstet. 2014, 289, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Sentilhes, L.; Goffinet, F.; Vayssiere, C.; Deneux-Tharaux, C. Comparison of postpartum haemorrhage guidelines: Discrepancies underline our lack of knowledge. BJOG 2017, 124, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Betran, A.P.; Ye, J.; Moller, A.B.; Souza, J.P.; Zhang, J. Trends and projections of caesarean section rates: Global and regional estimates. BMJ Glob. Health 2021, 6, e005671. [Google Scholar] [CrossRef] [PubMed]
- Committee on Practice, B.-O. Practice Bulletin No. 183: Postpartum Hemorrhage. Obstet. Gynecol. 2017, 130, e168–e186. [Google Scholar]
- Feduniw, S.; Warzecha, D.; Szymusik, I.; Wielgos, M. Epidemiology, prevention and management of early postpartum hemorrhage—A systematic review. Ginekol. Pol. 2020, 91, 38–44. [Google Scholar] [CrossRef]
- Dildy, G.A., 3rd; Paine, A.R.; George, N.C.; Velasco, C. Estimating blood loss: Can teaching significantly improve visual estimation? Obstet. Gynecol. 2004, 104, 601–606. [Google Scholar] [CrossRef]
- Larsson, C.; Saltvedt, S.; Wiklund, I.; Pahlen, S.; Andolf, E. Estimation of blood loss after cesarean section and vaginal delivery has low validity with a tendency to exaggeration. Acta Obstet. Gynecol. Scand. 2006, 85, 1448–1452. [Google Scholar] [CrossRef]
- Schorn, M.N. Measurement of blood loss: Review of the literature. J. Midwifery Womens Health 2010, 55, 20–27. [Google Scholar] [CrossRef]
- Gari, A.; Hussein, K.; Daghestani, M.; Aljuhani, S.; Bukhari, M.; Alqahtani, A.; Almarwani, M. Estimating blood loss during cesarean delivery: A comparison of methods. J. Taibah Univ. Med. Sci. 2022, 17, 732–736. [Google Scholar] [CrossRef]
- Ali Algadiem, E.; Aleisa, A.A.; Alsubaie, H.I.; Buhlaiqah, N.R.; Algadeeb, J.B.; Alsneini, H.A. Blood Loss Estimation Using Gauze Visual Analogue. Trauma Mon. 2016, 21, e34131. [Google Scholar] [CrossRef]
- Stafford, I.; Dildy, G.A.; Clark, S.L.; Belfort, M.A. Visually estimated and calculated blood loss in vaginal and cesarean delivery. Am. J. Obstet. Gynecol. 2008, 199, 519.e1–519.e7. [Google Scholar] [CrossRef] [PubMed]
- Zdanowicz, J.A.; Schneider, S.; Martignoni, C.; Lamari, S.; Fuchs, A.; Daskalakis, M.; Surbek, D. A Retrospective before and after Assessment of Multidisciplinary Management for Postpartum Hemorrhage. J. Clin. Med. 2023, 12, 7471. [Google Scholar] [CrossRef] [PubMed]
- Nyflot, L.T.; Sandven, I.; Stray-Pedersen, B.; Pettersen, S.; Al-Zirqi, I.; Rosenberg, M.; Jacobsen, A.F.; Vangen, S. Risk factors for severe postpartum hemorrhage: A case-control study. BMC Pregnancy Childbirth 2017, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Sentilhes, L.; Merlot, B.; Madar, H.; Sztark, F.; Brun, S.; Deneux-Tharaux, C. Postpartum haemorrhage: Prevention and treatment. Expert. Rev. Hematol. 2016, 9, 1043–1061. [Google Scholar] [CrossRef]
- Wilbeck, J.; Hoffman, J.W.; Schorn, M.N. Postpartum Hemorrhage: Emergency Management for Uncontrolled Vaginal Bleeding. Adv. Emerg. Nurs. J. 2022, 44, 213–219. [Google Scholar] [CrossRef]
- Kwiatkowski, S.; Huras, H.; Fuchs, T.; Sokołowska, M.; Oszukowski, P.; Stojko, R.; Czajkowski, K.; Kamiński, P.; Sieroszewski, P.; Drews, K.; et al. Postpartum haemorrhage (PPH)—The Polish Society of Obstetricians and Gynecologists Guideline. Ginekol. Perinatol. Praktyczna 2022, 7, 34–45. [Google Scholar]
- Perinatology EBL Calculator. Available online: https://www.perinatology.com/calculators/Calculated%20Blood%20%20Loss%20CalculatorO.htm (accessed on 5 March 2025).
- Wielgos, M.; Bomba-Opon, D.; Breborowicz, G.H.; Czajkowski, K.; Debski, R.; Leszczynska-Gorzelak, B.; Oszukowski, P.; Radowicki, S.; Zimmer, M. Recommendations of the Polish Society of Gynecologists and Obstetricians regarding caesarean sections. Ginekol. Pol. 2018, 89, 644–657. [Google Scholar] [CrossRef]
- Al Kadri, H.M.; Al Anazi, B.K.; Tamim, H.M. Visual estimation versus gravimetric measurement of postpartum blood loss: A prospective cohort study. Arch. Gynecol. Obstet. 2011, 283, 1207–1213. [Google Scholar] [CrossRef]
- Meiser, A.; Casagranda, O.; Skipka, G.; Laubenthal, H. Quantification of blood loss. How precise is visual estimation and what does its accuracy depend on? Anaesthesist 2001, 50, 13–20. [Google Scholar] [CrossRef]
- Quantitative Blood Loss in Obstetric Hemorrhage: ACOG COMMITTEE OPINION, Number 794. Obstet. Gynecol. 2019, 134, e150–e156. [CrossRef]
- Oyelese, Y.; Ananth, C.V. Postpartum hemorrhage: Epidemiology, risk factors, and causes. Clin. Obstet. Gynecol. 2010, 53, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Whitley, J.; Dazelle, W.; Kripalani, S.; Ahmadzia, H. The association between body mass index and postpartum hemorrhage after cesarean delivery. Sci. Rep. 2023, 13, 11998. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.A.; Flood, M.; Pollock, W.; Cullinane, F.; McDonald, S. Risk factors for severe postpartum haemorrhage: A population-based retrospective cohort study. Aust. N. Z. J. Obstet. Gynaecol. 2020, 60, 522–532. [Google Scholar] [CrossRef]
- Ende, H.B.; Lozada, M.J.; Chestnut, D.H.; Osmundson, S.S.; Walden, R.L.; Shotwell, M.S.; Bauchat, J.R. Risk Factors for Atonic Postpartum Hemorrhage: A Systematic Review and Meta-analysis. Obstet. Gynecol. 2021, 137, 305–323. [Google Scholar] [CrossRef]
- Liu, C.N.; Yu, F.B.; Xu, Y.Z.; Li, J.S.; Guan, Z.H.; Sun, M.N.; Liu, C.A.; He, F.; Chen, D.J. Prevalence and risk factors of severe postpartum hemorrhage: A retrospective cohort study. BMC Pregnancy Childbirth 2021, 21, 332. [Google Scholar] [CrossRef] [PubMed]
- Patek, K.; Friedman, P. Postpartum Hemorrhage-Epidemiology, Risk Factors, and Causes. Clin. Obstet. Gynecol. 2023, 66, 344–356. [Google Scholar] [CrossRef]
- Zewdu, D.; Tantu, T. Incidence and predictors of severe postpartum hemorrhage after cesarean delivery in South Central Ethiopia: A retrospective cohort study. Sci. Rep. 2023, 13, 3635. [Google Scholar] [CrossRef]
- Indarti, J.; Al Fattah, A.N.; Dewi, Z.; Hasani, R.D.K.; Mahdi, F.A.N.; Surya, R. Teenage Pregnancy: Obstetric and Perinatal Outcome in a Tertiary Centre in Indonesia. Obstet. Gynecol. Int. 2020, 2020, 2787602. [Google Scholar] [CrossRef]
- Pubu, Z.M.; Bianba, Z.M.; Yang, G.; CyRen, L.M.; Pubu, D.J.; Suo Lang, K.Z.; Zhen, B.; Zhaxi, Q.Z.; Nyma, Z.G. Factors Affecting the Risk of Postpartum Hemorrhage in Pregnant Women in Tibet Health Facilities. Med. Sci. Monit. 2021, 27, e928568. [Google Scholar] [CrossRef]
- Beta, J.; Khan, N.; Khalil, A.; Fiolna, M.; Ramadan, G.; Akolekar, R. Maternal and neonatal complications of fetal macrosomia: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2019, 54, 308–318. [Google Scholar] [CrossRef]
- Quezada-Robles, A.; Quispe-Sarmiento, F.; Bendezu-Quispe, G.; Vargas-Fernandez, R. Fetal Macrosomia and Postpartum Hemorrhage in Latin American and Caribbean Region: Systematic Review and Meta-analysis. Rev. Bras.Ginecol. Obstet. 2023, 45, e706–e723. [Google Scholar] [CrossRef] [PubMed]
- Magann, E.F.; Evans, S.; Hutchinson, M.; Collins, R.; Howard, B.C.; Morrison, J.C. Postpartum hemorrhage after vaginal birth: An analysis of risk factors. South Med. J. 2005, 98, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Skjeldestad, F.E.; Oian, P. Blood loss after cesarean delivery: A registry-based study in Norway, 1999–2008. Am. J. Obstet. Gynecol. 2012, 206, 76.e1–76.e7. [Google Scholar] [CrossRef] [PubMed]
- Peled, Y.; Melamed, N.; Chen, R.; Pardo, J.; Ben-Shitrit, G.; Yogev, Y. The effect of time of day on outcome of unscheduled cesarean deliveries. J. Matern. Fetal Neonatal Med. 2011, 24, 1051–1054. [Google Scholar] [CrossRef]
- Chainarong, N.; Deevongkij, K.; Petpichetchian, C. Secondary postpartum hemorrhage: Incidence, etiologies, and clinical courses in the setting of a high cesarean delivery rate. PLoS ONE 2022, 17, e0264583. [Google Scholar] [CrossRef]
- Mitta, K.; Tsakiridis, I.; Dagklis, T.; Grigoriadou, R.; Mamopoulos, A.; Athanasiadis, A.; Kalogiannidis, I. Incidence and Risk Factors for Postpartum Hemorrhage: A Case-Control Study in a Tertiary Hospital in Greece. Medicina 2023, 59, 1151. [Google Scholar] [CrossRef]
PPH (n = 21) | Control Group (n = 452) | p Value | |
---|---|---|---|
Age (years) | 32 | 32 | 0.89 |
[30–34] | [29–35] | ||
≤30 | 5 (23.8%) | 122 (27%) | 0.90 |
31–34 | 11 (52.4%) | 192 (42.5%) | |
35–39 | 4 (19%) | 109 (24.1%) | |
≥40 | 1 (4.8%) | 29 (6.4%) | |
Gestational age at delivery (weeks) | 39 | 39 | 0.35 |
[38–40] | [38–40] | ||
Pre-term delivery < 37 weeks | 1 (4.8%) | 36 (8%) | 0.99 |
Gravidity | 2 | 2 | 0.93 |
[1–3] | [1–3] | ||
Parity | 1 | 1 | 0.59 |
[1–2] | [1–2] | ||
1 | 13 (61.9%) | 239 (52.9%) | 0.50 |
2 | 5 (23.8%) | 162 (35.8%) | |
≥3 | 3 (14.3%) | 51 (11.3%) | |
Pre-pregnancy weight (kg) | 73 | 63 | 0.16 |
[61–77.5] | [55–74.6] | ||
Gestational weight gain (kg) | 15 | 12 | 0.15 |
[11–18] | [9–16] | ||
<10 | 5 (23.8%) | 120 (26.5%) | 0.21 |
10–14.99 | 5 (23.8%) | 186 (41.2%) | |
15–19.99 | 7 (33.3%) | 95 (21%) | |
≥20 | 4 (19%) | 51 (11.3%) | |
Pre-delivery weight (kg) | 82 | 77 | 0.06 |
[77–91] | [68–87.2] | ||
Height (m) | 1.67 | 1.65 | 0.52 |
[1.64–1.69] | [1.62–1.7] | ||
Pre-pregnancy BMI (kg/m2) | 23.8 | 22.8 | 0.23 |
[21–27.3] | [20.4–26.6] | ||
<25 | 11 (52.4%) | 297 (65.7%) | 0.32 |
25–29.9 | 7 (33.3%) | 95 (21%) | |
≥30 | 3 (14.3%) | 60 (13.3%) | |
Mode of CS | |||
Elective | 9 (42.9%) | 274 (60.6%) | 0.16 |
Emergency | 12 (57.1%) | 178 (39.4%) | |
History of CS | |||
0 | 14 (66.7%) | 279 (61.7%) | 0.93 |
1 | 6 (28.6%) | 142 (31.4%) | |
≥2 | 1 (4.8%) | 31 (6.9%) | |
Indications for CS | |||
Intrauterine fetal asphyxia | 3 (14.3%) | 46 (10.2%) | 0.17 |
1st-stage arrest disorder | 4 (19%) | 65 (14.4%) | |
2nd-stage arrest disorder | 4 (19%) | 42 (9.3%) | |
Malpresentation | 0 (0%) | 37 (8.2%) | |
Cephalo-pelvic disproportion | 0 (0%) | 15 (3.3%) | |
Placenta previa | 1 (4.8%) | 7 (1.5%) | |
Placental abruption | 1 (4.8%) | 7 (1.5%) | |
Other | 8 (38.1%) | 233 (51.5%) | |
Pre-eclampsia | 0 (0%) | 10 (2.2%) | 0.99 |
Myomas | 2 (9.5%) | 5 (1.1%) | 0.03 |
Duration of surgery (min.) | 60 | 46 | 0.001 |
[50–70] | [39–58] | ||
<30 | 0 (0%) | 17 (3.8%) | <0.01 |
30–59.9 | 9 (42.9%) | 328 (72.6%) | |
≥60 | 12 (57.1%) | 107 (23.7%) | |
Night shift | 1 (4.8%) | 69 (15.3%) | 0.34 |
Type of anesthesia | |||
Spinal | 17 (81%) | 397 (87.8%) | 0.28 |
Epidural | 4 (19%) | 41 (9.1%) | |
General | 0 (0%) | 14 (3.1%) | |
Surgeon experience | |||
Resident | 7 (33.3%) | 171 (37.8%) | 0.34 |
Assistant specialist | 9 (42.9%) | 126 (27.9%) | |
Consultant | 5 (23.8%) | 155 (34.3%) | |
Uterine atony | 13 (61.9%) | 10 (2.2%) | <0.001 |
Erythrocytes concentration before CS (mln/dL) | 4.21 ± 0.37 | 4.16 ± 0.34 | 0.58 |
(3.47–4.95) | (2.83–5.16) | ||
Erythrocytes after CS (mln/dL) | 3.36 ± 0.28 | 3.73 ± 0.34 | <0.001 |
(2.92–4.03) | (2.54–4.79) | ||
Erythrocytes diff. (mln/dL) | 0.79 | 0.44 | <0.001 |
[0.7–0.93] | [0.28–0.58] | ||
<0.7 | 5 (23.8%) | 402 (88.9% | <0.001 |
≥0.7 | 16 (76.2%) | 50 (11.1%) | |
Hgb concentration before CS (mg/dL) | 12.6 ± 1.24 | 12.4 ± 1 | 0.48 |
(9.9–14.8) | (8.8–15.3) | ||
Hgb concentration after CS (mg/dL) | 10.3 ± 0.83 (8.6–12.1) | 11.2 ± 0.96 (8–14.4) | <0.001 |
Hgb diff. (mg/dL) | 2.1 | 1.2 | <0.001 |
[1.9–2.9] | [0.8–1.7] | ||
<2 | 6 (28.6%) | 394 (87.2%) | <0.001 |
≥2 | 15 (71.4%) | 58 (12.8%) | |
Hct before CS (%) | 37.2 ± 3 | 36.6 ± 2.6 | 0.41 |
(30.9–42.8) | (25.6–44.1) | ||
Hct after CS (%) | 29.3 ± 2.2 | 32.8 ± 2.6 | <0.001 |
(25.5–33.7) | (23–42.1) | ||
Hct diff. (%) | 7.4 | 3.8 | <0.001 |
[6.8–8.2] | [2.5–5.1] | ||
<7 | 7 (33.3%) | 431 (95.4%) | <0.001 |
≥7 | 14 (66.7%) | 21 (4.6%) | |
FBW (g) | 3780 | 3417.5 | <0.01 |
[3480–3950] | [3060–3747.5] | ||
<3000 | 4 (19%) | 99 (21.9%) | <0.05 |
3000–3499 | 2 (9.5%) | 163 (36.1%) | |
3500–3999 | 10 (47.6%) | 140 (31%) | |
≥4000 | 5 (23.8%) | 50 (11.1%) | |
Fetal macrosomia ≥ 4000 g | 5 (23.8%) | 50 (11.1%) | 0.08 |
Fetal sex | |||
Male | 11 (52.4%) | 231 (51.1%) | 0.99 |
Female | 10 (47.6%) | 221 (48.9%) | |
1st minute Apgar | 10 | 10 | 0.63 |
[10-10] | [10-10] | ||
5th minute Apgar | 10 | 10 | 0.64 |
[10-10] | [10-10] | ||
10th minute Apgar | 10 | 10 | 0.73 |
[10-10] | [10-10] | ||
Umbilical artery pH | 7.3 | 7.29 | 0.50 |
[7.28–7.34] | [7.26–7.32] |
Group | dEBL (mL) | sEBL (mL) | fEBL (mL) | p Value |
---|---|---|---|---|
PPH (n = 21) | 1230 | 1000 | 1173.3 | <0.001 a |
[1230–1288] | [1000–1000] | [1126.6–1351.8] | <0.05 b | |
Control group (n = 452) | 652 | 600 | 604 | <0.001 a,c |
[652–778] | [500–700] | [379.8–792.3] |
Risk Factor | Estimate | OR | 95%CI | p Value |
---|---|---|---|---|
Age (years) | ||||
31–34 | 0.335 | 1.4 | 1.02–1.91 | <0.05 |
35–39 | −0.110 | 0.9 | 0.61–1.3 | 0.56 |
≥40 | −0.173 | 0.84 | 0.46–1.53 | 0.57 |
Pre-term delivery < 37 weeks | −0.549 | 0.58 | 0.34–0.99 | <0.05 |
Parity | ||||
2 | −0.567 | 0.57 | 0.42–0.76 | <0.001 |
≥3 | 0.078 | 1.08 | 0.73–1.6 | 0.70 |
Gestational weight gain (kg) | ||||
10–14.99 | −0.438 | 0.64 | 0.46–0.91 | <0.01 |
15–19.99 | 0.57 | 1.77 | 1.24–2.53 | <0.01 |
≥20 | 0.63 | 1.88 | 1.23–2.9 | <0.01 |
Pre-pregnancy BMI (kg/m2) | ||||
25–29.9 | 0.688 | 1.99 | 1.47–2.69 | <0.001 |
≥30 | 0.3 | 1.35 | 0.92–1.98 | 0.12 |
Emergency CS | 0.719 | 2.05 | 1.58–2.66 | <0.001 |
History of CS | ||||
1 | −0.172 | 0.84 | 0.63–1.12 | 0.23 |
≥2 | −0.442 | 0.64 | 0.37–1.13 | 0.12 |
Indication for CS | ||||
Intrauterine fetal asphyxia | 0.642 | 1.9 | 1.24–2.91 | <0.01 |
1st-stage arrest disorder | 0.584 | 1.8 | 1.23–2.62 | <0.01 |
2nd-stage arrest disorder | 1.02 | 2.77 | 1.83–4.21 | <0.001 |
Placenta previa | 1.43 | 4.16 | 1.75–9.91 | 0.001 |
Placetnal abruption | 1.43 | 4.16 | 1.75–9.91 | 0.001 |
Surgery time (min.) | ||||
≥60 | 1.41 | 4.1 | 3.1–5.42 | <0.001 |
Night shift | −1.3 | 0.28 | 0.17–0.45 | <0.001 |
Epidural anesthesia | 0.82 | 2.3 | 1.54–3.36 | <0.001 |
Surgeon experience | ||||
Resident | 0.238 | 1.27 | 0.92–1.75 | 0.15 |
Assistant specialist | 0.795 | 2.21 | 1.6–3.1 | <0.001 |
FBW (g) | ||||
3000–3499 | −1.19 | 0.3 | 0.2–0.47 | <0.001 |
3500–3999 | 0.57 | 1.77 | 1.24–2.51 | 0.001 |
≥4000 | 0.91 | 2.47 | 1.61–3.81 | <0.001 |
Risk Factor | Estimate | OR | 95%CI | p Value |
---|---|---|---|---|
Age (years) | ||||
31–34 | 0.535 | 1.71 | 1.19–2.44 | <0.01 |
35–39 | −0.188 | 0.83 | 0.54–1.27 | 0.39 |
≥40 | 0.082 | 1.09 | 0.56–2.08 | 0.8 |
Pre-pregnancy BMI (kg/m2) | ||||
25–29.9 | 0.975 | 2.65 | 1.87–3.76 | <0.001 |
≥30 | 0.987 | 2.68 | 1.71–4.21 | <0.001 |
Emergency CS | 1.402 | 4.06 | 2.94–5.62 | <0.001 |
Night shift | −2.272 | 0.10 | 0.06–0.19 | <0.001 |
Surgeon experience | ||||
Resident | 0.618 | 1.86 | 1.27–2.7 | 0.001 |
Assistant specialist | 1.141 | 3.13 | 2.15–4.55 | <0.001 |
Fetal macrosomia ≥ 4000 g | 1.159 | 3.19 | 2.14–4.74 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Włodarczyk, Z.; Śliwka, A.; Maciocha, H.; Paruszewski, S.; Wyszyńska, J.; Kłopecka, M.; Afrykańska, G.; Śliwińska, M.; Ludwin, A.; Stanirowski, P.J. The Role of Accurate Estimations of Blood Loss and Identification of Risk Factors in the Management of Early Postpartum Hemorrhage in Women Undergoing a Cesarean Section. J. Clin. Med. 2025, 14, 1861. https://doi.org/10.3390/jcm14061861
Włodarczyk Z, Śliwka A, Maciocha H, Paruszewski S, Wyszyńska J, Kłopecka M, Afrykańska G, Śliwińska M, Ludwin A, Stanirowski PJ. The Role of Accurate Estimations of Blood Loss and Identification of Risk Factors in the Management of Early Postpartum Hemorrhage in Women Undergoing a Cesarean Section. Journal of Clinical Medicine. 2025; 14(6):1861. https://doi.org/10.3390/jcm14061861
Chicago/Turabian StyleWłodarczyk, Zofia, Aleksandra Śliwka, Hanna Maciocha, Szymon Paruszewski, Julia Wyszyńska, Maja Kłopecka, Gabriela Afrykańska, Marta Śliwińska, Artur Ludwin, and Paweł Jan Stanirowski. 2025. "The Role of Accurate Estimations of Blood Loss and Identification of Risk Factors in the Management of Early Postpartum Hemorrhage in Women Undergoing a Cesarean Section" Journal of Clinical Medicine 14, no. 6: 1861. https://doi.org/10.3390/jcm14061861
APA StyleWłodarczyk, Z., Śliwka, A., Maciocha, H., Paruszewski, S., Wyszyńska, J., Kłopecka, M., Afrykańska, G., Śliwińska, M., Ludwin, A., & Stanirowski, P. J. (2025). The Role of Accurate Estimations of Blood Loss and Identification of Risk Factors in the Management of Early Postpartum Hemorrhage in Women Undergoing a Cesarean Section. Journal of Clinical Medicine, 14(6), 1861. https://doi.org/10.3390/jcm14061861