Circulating GDF15 May Estimate Vasculitis Activity and Predict Poor Outcomes During the Disease Course of ANCA-Associated Vasculitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood Sampling and Consent Form
2.3. Clinical Data at Diagnosis
2.4. Measurement of Circulating GDF15 at Diagnosis
2.5. Clinical Data During AAV Disease Course
2.6. ANCA Types
2.7. Statistical Analyses
3. Results
3.1. Characteristics at AAV Diagnosis
3.2. Characteristics During the Disease Course
3.3. Correlation of Circulating GDF15 with AAV Activity-Related Variables at Diagnosis
3.4. Optimal Cut-Off of Circulating GDF15 and Its Relative Risk to the Highest Tertile of BVAS at Diagnosis
3.5. Determination of a Cut-Off of Circulating GDF15 at Diagnosis and Its Relative Risk for All-Cause Mortality During the Disease Course
3.6. Determination of a Cut-Off of Circulating GDF15 at Diagnosis and Its Relative Risk for Progression to ESKD During the Disease Course
3.7. Comparison of Cumulative Patients and ESKD-Free Survival Rates According to Each Cut-Off
3.8. Cox Proportional Hazards Model Analyses of Variables at Diagnosis for All-Cause Mortality or Progression to ESKD During the Disease Course
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsiao, E.C.; Koniaris, L.G.; Zimmers-Koniaris, T.; Sebald, S.M.; Huynh, T.V.; Lee, S.J. Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol. Cell. Biol. 2000, 20, 3742–3751. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keipert, S.; Ost, M. Stress-induced FGF21 and GDF15 in obesity and obesity resistance. Trends. Endocrinol. Metab. 2021, 32, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Johann, K.; Kleinert, M.; Klaus, S. The Role of GDF15 as a Myomitokine. Cells 2021, 10, 2990. [Google Scholar] [CrossRef] [PubMed]
- Coll, A.P.; Chen, M.; Taskar, P.; Rimmington, D.; Patel, S.; Tadross, J.A.; Cimino, I.; Yang, M.; Welsh, P.; Virtue, S.; et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 2020, 578, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Pence, B.D. Growth Differentiation Factor-15 in Immunity and Aging. Front. Aging 2022, 3, 837575. [Google Scholar] [CrossRef]
- Moon, J.S.; Goeminne, L.J.E.; Kim, J.T.; Tian, J.W.; Kim, S.H.; Nga, H.T.; Kang, S.G.; Kang, B.E.; Byun, J.S.; Lee, Y.S.; et al. Growth differentiation factor 15 protects against the aging-mediated systemic inflammatory response in humans and mice. Aging Cell. 2020, 19, e13195. [Google Scholar] [CrossRef]
- Rochette, L.; Dogon, G.; Zeller, M.; Cottin, Y.; Vergely, C. GDF15 and Cardiac Cells: Current Concepts and New Insights. Int. J. Mol. Sci. 2021, 22, 8889. [Google Scholar] [CrossRef]
- Alarcon-Dionet, A.; Ruiz, A.; Chavez-Galan, L.; Buendia-Roldan, I.; Selman, M. GDF15 as a potential biomarker to distinguish fibrotic from non-fibrotic hypersensitivity pneumonitis. Sci. Rep. 2024, 14, 859. [Google Scholar] [CrossRef]
- Kobayashi, S.; Yamazaki, H.; Imamura, T.; Fujioka, H.; Kakeshita, K.; Koike, T.; Kinugawa, K. Implication of serum growth differentiation factor-15 level in patients with renal diseases. Int. Urol. Nephrol. 2023, 55, 2935–2941. [Google Scholar] [CrossRef]
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef]
- Watts, R.; Lane, S.; Hanslik, T.; Hauser, T.; Hellmich, B.; Koldingsnes, W.; Mahr, A.; Segelmark, M.; Cohen-Tervaert, J.W.; Scott, D. Development and validation of a consensus methodology for the classification of the ANCA-associated vasculitides and polyarteritis nodosa for epidemiological studies. Ann. Rheum. Dis. 2007, 66, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Suppiah, R.; Robson, J.C.; Grayson, P.C.; Ponte, C.; Craven, A.; Khalid, S.; Judge, A.; Hutchings, A.; Merkel, P.A.; Luqmani, R.A.; et al. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for microscopic polyangiitis. Ann. Rheum. Dis. 2022, 81, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Robson, J.C.; Grayson, P.C.; Ponte, C.; Suppiah, R.; Craven, A.; Judge, A.; Khalid, S.; Hutchings, A.; Watts, R.A.; Merkel, P.A.; et al. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for granulomatosis with polyangiitis. Ann. Rheum. Dis. 2022, 81, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Grayson, P.C.; Ponte, C.; Suppiah, R.; Robson, J.C.; Craven, A.; Judge, A.; Khalid, S.; Hutchings, A.; Luqmani, R.A.; Watts, R.A.; et al. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology Classification Criteria for Eosinophilic Granulomatosis with Polyangiitis. Ann. Rheum. Dis. 2022, 81, 309–314. [Google Scholar] [CrossRef]
- Mukhtyar, C.; Lee, R.; Brown, D.; Carruthers, D.; Dasgupta, B.; Dubey, S.; Flossmann, O.; Hall, C.; Hollywood, J.; Jayne, D.; et al. Modification and validation of the Birmingham Vasculitis Activity Score (version 3). Ann. Rheum. Dis. 2009, 68, 1827–1832. [Google Scholar] [CrossRef]
- Guillevin, L.; Pagnoux, C.; Seror, R.; Mahr, A.; Mouthon, L.; Toumelin, P.L.; French Vasculitis Study Group (FVSG). The Five-Factor Score revisited: Assessment of prognoses of systemic necrotizing vasculitides based on the French Vasculitis Study Group (FVSG) cohort. Medicine 2011, 90, 19–27. [Google Scholar] [CrossRef]
- Ahn, S.S.; Ha, J.W.; Park, Y.B.; Lee, S.W. BVAS version 3 and BVAS/GPA: Standing on the same line? Clin. Rheumatol. 2022, 41, 3429–3437. [Google Scholar] [CrossRef]
- Phatak, S.; Aggarwal, A.; Agarwal, V.; Lawrence, A.; Misra, R. Antineutrophil cytoplasmic antibody (ANCA) testing: Audit from a clinical immunology laboratory. Int. J. Rheum. Dis. 2017, 20, 774–778. [Google Scholar] [CrossRef]
- Moiseev, S.; Cohen Tervaert, J.W.; Arimura, Y.; Bogdanos, D.P.; Csernok, E.; Damoiseaux, J.; Ferrante, M.; Flores-Suárez, L.F.; Fritzler, M.J.; Invernizzi, P.; et al. 2020 international consensus on ANCA testing beyond systemic vasculitis. Autoimmun. Rev. 2020, 19, 102618. [Google Scholar] [CrossRef]
- Lee, W.I.; Subramaniam, K.; Hawkins, C.A.; Randall, K.L. The significance of ANCA positivity in patients with inflammatory bowel disease. Pathology 2019, 51, 634–639. [Google Scholar] [CrossRef]
- Bilge, N.S.; Kaşifoğlu, T.; Korkmaz, C. PTU-induced ANCA-positive vasculitis: An innocent or a life-threatening adverse effect? Rheumatol. Int. 2013, 33, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.H.; Wang, A.; Hilliard, B.K.; Carvalho, F.; Rosen, C.E.; Ahasic, A.M.; Herzog, E.L.; Kang, I.; Pisani, M.A.; Yu, S.; et al. GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell 2019, 178, 1231–1244.e11. [Google Scholar] [CrossRef]
- Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. GDF15: An emerging modulator of immunity and a strategy in COVID-19 in association with iron metabolism. Trends. Endocrinol. Metab. 2021, 32, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Asrih, M.; Wei, S.; Nguyen, T.T.; Yi, H.S.; Ryu, D.; Gariani, K. Overview of growth differentiation factor 15 in metabolic syndrome. J. Cell. Mol. Med. 2023, 27, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Fu, J. GDF15 as a key disease target and biomarker: Linking chronic lung diseases and ageing. Mol. Cell. Biochem. 2024, 479, 453–466. [Google Scholar] [CrossRef]
- Adela, R.; Banerjee, S.K. GDF-15 as a Target and Biomarker for Diabetes and Cardiovascular Diseases: A Translational Prospective. J. Diabetes Res. 2015, 2015, 490842. [Google Scholar] [CrossRef]
- Li, X.; Huai, Q.; Zhu, C.; Zhang, X.; Xu, W.; Dai, H.; Wang, H. GDF15 Ameliorates Liver Fibrosis by Metabolic Reprogramming of Macrophages to Acquire Anti-Inflammatory Properties. Cell. Mol. Gastroenterol. Hepatol. 2023, 16, 711–734. [Google Scholar] [CrossRef]
- Chen, J.; Peng, H.; Chen, C.; Wang, Y.; Sang, T.; Cai, Z.; Zhao, Q.; Chen, S.; Lin, X.; Eling, T.; et al. NAG-1/GDF15 inhibits diabetic nephropathy via inhibiting AGE/RAGE-mediated inflammation signaling pathways in C57BL/6 mice and HK-2 cells. Life Sci. 2022, 311, 121142. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, H.; Ju, H.; Chen, H.; Jin, H.; Sun, M. Circulating GDF-15 in relation to the progression and prognosis of chronic kidney disease: A systematic review and dose-response meta-analysis. Eur. J. Intern. Med. 2023, 110, 77–85. [Google Scholar] [CrossRef]
- Al-Mudares, F.; Reddick, S.; Ren, J.; Venkatesh, A.; Zhao, C.; Lingappan, K. Role of Growth Differentiation Factor 15 in Lung Disease and Senescence: Potential Role Across the Lifespan. Front. Med. 2020, 7, 594137. [Google Scholar] [CrossRef]
- Haris, Á.; Polner, K.; Arányi, J.; Braunitzer, H.; Kaszás, I.; Rosivall, L.; Kökény, G.; Mucsi, I. Simple, readily available clinical indices predict early and late mortality among patients with ANCA-associated vasculitis. BMC Nephrol. 2017, 18, 76. [Google Scholar] [CrossRef] [PubMed]
- Dagostin, M.A.; Nunes, S.L.O.; Shinjo, S.K.; Pereira, R.M.R. Mortality predictors in ANCA-associated vasculitis: Experience of a Brazilian monocentric cohort of a rheumatology center. Medicine 2021, 100, e28305. [Google Scholar] [CrossRef] [PubMed]
- Titeca-Beauport, D.; Francois, A.; Lobbedez, T.; Guerrot, D.; Launay, D.; Vrigneaud, L.; Daroux, M.; Lebas, C.; Bienvenu, B.; Hachulla, E.; et al. Early predictors of one-year mortality in patients over 65 presenting with ANCA-associated renal vasculitis: A retrospective, multicentre study. BMC Nephrol. 2018, 19, 317. [Google Scholar] [CrossRef] [PubMed]
- Brix, S.R.; Noriega, M.; Tennstedt, P.; Vettorazzi, E.; Busch, M.; Nitschke, M.; Jabs, W.J.; Özcan, F.; Wendt, R.; Hausberg, M.; et al. Development and validation of a renal risk score in ANCA-associated glomerulonephritis. Kidney Int. 2018, 94, 1177–1188. [Google Scholar] [CrossRef]
- Liang, H.; Xin, M.; Zhao, L.; Wang, L.; Sun, M.; Wang, J. Serum creatinine level and ESR values associated to clinical pathology types and prognosis of patients with renal injury caused by ANCA-associated vasculitis. Exp. Ther. Med. 2017, 14, 6059–6063. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Lyu, Y.; Dai, W.; Tong, Y.; Li, Y. GDF15 as a biomarker of ageing. Exp. Gerontol. 2021, 146, 111228. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alexiou, A.; Papadakis, M.; Nadwa, E.H.; Albogami, S.M.; Alorabi, M.; Saad, H.M.; Batiha, G.E. Metformin and growth differentiation factor 15 (GDF15) in type 2 diabetes mellitus: A hidden treasure. J. Diabetes 2022, 14, 806–814. [Google Scholar] [CrossRef]
- Karusheva, Y.; Petry, C.J.; Yasara, N.; Kottahachchi, D.; Premawardhena, A.; Barker, P.; Burling, K.; Sattar, N.; Welsh, P.; Mettananda, S.; et al. Association of GDF15 levels with body mass index and endocrine status in β-thalassaemia. Clin. Endocrinol. 2023, 99, 182–189. [Google Scholar] [CrossRef]
- He, X.; Su, J.; Ma, X.; Lu, W.; Zhu, W.; Wang, Y.; Bao, Y.; Zhou, J. The association between serum growth differentiation factor 15 levels and lower extremity atherosclerotic disease is independent of body mass index in type 2 diabetes. Cardiovasc. Diabetol. 2020, 19, 40. [Google Scholar] [CrossRef]
- Haam, J.H.; Kim, B.T.; Kim, E.M.; Kwon, H.; Kang, J.H.; Park, J.H.; Kim, K.K.; Rhee, S.Y.; Kim, Y.H.; Lee, K.Y. Diagnosis of Obesity: 2022 Update of Clinical Practice Guidelines for Obesity by the Korean Society for the Study of Obesity. J. Obes. Metab. Syndr. 2023, 32, 121–129. [Google Scholar] [CrossRef]
Variables | Values |
---|---|
At the time of AAV diagnosis | |
Demographic data | |
Age (years) | 64.0 (52.0–74.0) |
Male sex (N, (%)) | 32 (40.5) |
Female sex (N, (%)) | 47 (59.5) |
Ex-smoker (N, (%)) | 3 (3.8) |
Body mass index (kg/m2) | 22.4 (20.8–24.7) |
AAV subtype (N, (%)) | |
MPA | 39 (49.4) |
GPA | 24 (30.4) |
EGPA | 16 (20.3) |
ANCA positivity | |
MPO-ANCA titre | 0 (0–32.0) mean 27.2 |
PR3-ANCA titre | 0 (0–0) |
MPO-ANCA (or P-ANCA)-positive (N, (%)) | 45 (57.0) |
PR3-ANCA (or C-ANCA)-positive (N, (%)) | 12 (15.2) |
Both ANCA-positive (N, (%)) | 3 (3.8) |
ANCA-negative (N, (%)) | 25 (31.6) |
AAV-specific indices | |
BVAS | 5.0 (3.0–17.0) |
FFS | 0 (0–1.0) |
Systemic items of BVAS (N, (%)) | |
General manifestation | 17 (21.5) |
Cutaneous manifestation | 12 (15.2) |
Mucous and ocular manifestation | 7 (8.9) |
Otorhinolaryngologic manifestation | 41 (51.9) |
Pulmonary manifestation | 49 (62.0) |
Cardiovascular manifestation | 9 (11.4) |
Gastrointestinal manifestation | 0 (0) |
Renal manifestation | 38 (48.1) |
Nervous systemic manifestation | 26 (32.9) |
Comorbidities (N, (%)) | |
Type 2 diabetes mellitus | 17 (21.5) |
Hypertension | 26 (32.9) |
Dyslipidaemia | 14 (17.7) |
Acute-phase reactants | |
ESR (mm/hr) | 21.0 (7.0–74.8) |
CRP (mg/L) | 3.6 (0.9–28.6) |
Laboratory results | |
White blood cell count (/mm3) | 7610.0 (5960.0–10,560.0) |
Haemoglobin (g/dL) | 12.0 (10.2–13.6) |
Platelet count (×1000/mm3) | 243.5 (192.3–354.8) |
Fasting glucose (mg/dL) | 94.5 (87.8–109.3) |
Blood urea nitrogen (mg/dL) | 19.4 (13.9–28.7) |
Serum creatinine (mg/dL) | 0.8 (0.6–1.6) |
Total serum protein (g/dL) | 6.8 (6.3–7.3) |
Serum albumin (g/dL) | 4.2 (3.6–4.4) |
Circulating GDF15 (pg/mL) | 995.0 (549.0–2211.0) |
During the disease course | |
Poor outcome (N, (%) | |
All-cause mortality | 6 (7.6) |
ESKD | 20 (25.3) |
Follow-up duration based on each poor outcome (months) | |
All-cause mortality | 26.7 (12.1–45.7) |
ESKD | 25.8 (9.0–41.2) |
Medications | |
Glucocorticoids | 78 (98.7) |
Cyclophosphamide | 52 (65.8) |
Rituximab | 16 (20.3) |
Mycophenolate mofetil | 20 (25.3) |
Azathioprine | 48 (60.8) |
Tacrolimus | 7 (8.9) |
Methotrexate | 3 (3.8) |
All-Cause Mortality | |||||||||
Variables | Univariable | Multivariable (Serum GDF15) | Multivariable (Serum GDF15 ≥ 2239.5 pg/mL) | ||||||
HR | 95% CI | p Value | HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age | 1.098 | 0.997, 1.208 | 0.056 | 1.125 | 0.894, 1.416 | 0.314 | 1.124 | 0.902, 1.402 | 0.299 |
BVAS | 1.077 | 0.995, 1.167 | 0.066 | 0.819 | 0.651, 1.029 | 0.087 | 0.805 | 0.639, 1.015 | 0.060 |
CRP (mg/L) | 1.016 | 1.000, 1.033 | 0.052 | 1.042 | 0.988, 1.100 | 0.130 | 1.043 | 0.989, 1.101 | 0.122 |
White blood cell count (/mm3) | 1.130 | 1.021, 1.250 | 0.018 | 1.374 | 0.994, 1.899 | 0.054 | 1.490 | 1.000, 2.221 | 0.050 |
Haemoglobin (g/dL) | 0.604 | 0.388, 0.941 | 0.026 | 1.206 | 0.367, 3.970 | 0.757 | 1.210 | 0.368, 3.978 | 0.753 |
Total serum protein (g/dL) | 0.390 | 0.150, 1.016 | 0.054 | 0.815 | 0.111, 5.952 | 0.840 | 0.845 | 0.100, 7.154 | 0.877 |
Serum albumin (g/dL) | 0.152 | 0.047, 0.490 | 0.002 | 0.110 | 0.005, 2.245 | 0.151 | 0.175 | 0.007, 4.694 | 0.299 |
Circulating GDF15 (pg/mL) | 1.000 | 1.000, 1.001 | 0.016 | 1.000 | 0.999, 1.001 | 0.624 | |||
Circulating GDF15 ≥ 2239.5 pg/mL | 7.834 | 1.431, 42.890 | 0.018 | 4.994 | 0.106, 236.015 | 0.414 | |||
End-Stage Kidney Disease | |||||||||
Variables | Univariable | Multivariable (Serum GDF15) | Multivariable (Serum GDF15 ≥ 2208.5 pg/mL) | ||||||
HR | 95% CI | p value | HR | 95% CI | p value | HR | 95% CI | p value | |
Female sex | 4.123 | 1.208, 14.072 | 0.024 | 2.703 | 0.523, 13.980 | 0.236 | 3.311 | 0.632, 17.334 | 0.156 |
ESR (mm/hr) | 1.017 | 1.006, 1.027 | 0.002 | 1.030 | 1.009, 1.051 | 0.005 | 1.029 | 1.008, 1.051 | 0.008 |
CRP (mg/L) | 1.015 | 1.005, 1.025 | 0.005 | 0.985 | 0.956, 1.014 | 0.297 | 0.988 | 0.959, 1.019 | 0.452 |
Haemoglobin (g/dL) | 0.737 | 0.594, 0.915 | 0.006 | 1.095 | 0.686, 1.749 | 0.704 | 1.161 | 0.723, 1.865 | 0.536 |
Blood urea nitrogen (mg/dL) | 1.019 | 0.997, 1.041 | 0.092 | 0.974 | 0.905, 1.047 | 0.470 | 0.966 | 0.899, 1.038 | 0.350 |
Serum creatinine (mg/dL) | 1.326 | 1.086, 1.619 | 0.006 | 2.922 | 1.316, 6.488 | 0.008 | 2.818 | 1.240, 6.408 | 0.013 |
Serum albumin (g/dL) | 0.501 | 0.263, 0.956 | 0.036 | 1.798 | 0.402, 8.046 | 0.443 | 2.267 | 0.456, 11.277 | 0.317 |
Circulating GDF15 (pg/mL) | 1.000 | 1.000, 1.000 | <0.001 | 1.000 | 1.000, 1.000 | 0.135 | |||
Circulating GDF15 ≥ 2208.5 pg/mL | 5.006 | 2.066, 12.128 | <0.001 | 3.979 | 0.916, 17.285 | 0.065 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, T.; Ha, J.W.; Park, Y.-B.; Lee, S.-W. Circulating GDF15 May Estimate Vasculitis Activity and Predict Poor Outcomes During the Disease Course of ANCA-Associated Vasculitis. J. Clin. Med. 2025, 14, 1876. https://doi.org/10.3390/jcm14061876
Yoon T, Ha JW, Park Y-B, Lee S-W. Circulating GDF15 May Estimate Vasculitis Activity and Predict Poor Outcomes During the Disease Course of ANCA-Associated Vasculitis. Journal of Clinical Medicine. 2025; 14(6):1876. https://doi.org/10.3390/jcm14061876
Chicago/Turabian StyleYoon, Taejun, Jang Woo Ha, Yong-Beom Park, and Sang-Won Lee. 2025. "Circulating GDF15 May Estimate Vasculitis Activity and Predict Poor Outcomes During the Disease Course of ANCA-Associated Vasculitis" Journal of Clinical Medicine 14, no. 6: 1876. https://doi.org/10.3390/jcm14061876
APA StyleYoon, T., Ha, J. W., Park, Y.-B., & Lee, S.-W. (2025). Circulating GDF15 May Estimate Vasculitis Activity and Predict Poor Outcomes During the Disease Course of ANCA-Associated Vasculitis. Journal of Clinical Medicine, 14(6), 1876. https://doi.org/10.3390/jcm14061876