New Insights of Cardiac Arrhythmias Associated with Sleep-Disordered Breathing: From Mechanisms to Clinical Implications—A Narrative Review
Abstract
:1. Introduction
2. Epidemiology and Pathophysiology
2.1. Autonomic Nervous System Alterations
2.2. Hypercapnia and Hypercapnic Hypoxia
2.3. Chemoreflex and Baroreflex
2.4. Intrathoracic Pressure Swings
2.5. Inflammation
2.6. Cardiac Remodeling
3. Frequent Arrhythmias Associated with Obstructive Sleep Apnea
3.1. Atrial Fibrillation
3.2. Ventricular Arrhythmias
3.3. Sudden Cardiac Death
3.4. Bradyarrhythmias
4. Screening and Clinical Evaluation
4.1. Screening OSA
4.2. Screening Arrhythmia in SDB
4.3. Clinical Implications
5. Prevention and Treatment Alternatives of Arrhythmia Associated with OSA
5.1. Pharmacotherapy
5.2. Mandibular Advancement Devices
5.3. Surgical Treatment
5.4. Catheter Ablation or Cryoablation Therapy
5.5. Implantable Cardioverter-Defibrillator (ICD) and Other Device Therapy
6. Conclusions
6.1. Existing Research Gaps
6.2. Potential for Future Studies
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
OSA | Obstructive sleep apnea |
CPAP | Continuous positive airway pressure |
ROS | Reactive oxygen species |
AHI | Apnea-hypopnea index |
AF | Atrial fibrillation |
ERP | Effective myocardial refractory period |
PABs | Premature atrial beats |
hs-CRP | High sensitive C reactive protein |
NO | Nitric oxide |
NF-κB | Nuclear factor kappa light chain enhancer of activated B cells |
DNA | Deoxyribonucleic acid |
ADP | After depolarizing potentials |
CI | Confidence interval |
ANS | Autonomic nervous system |
GP | Ganglionated plexi |
RTX | Resiniferatoxin |
CSA | Central sleep apnea |
HFrEF | Heart failure with reduced ejection fraction |
HFpEF | Heart failure with preserved ejection fraction |
LTCC | L-type calcium channels |
TRPC | Transient receptor potential canonical channels |
TRPC1 | Transient receptor potential canonical 1 |
TRPC6 | Transient receptor potential canonical 6 |
APD | Action potential duration |
SDB | Sleep disordered breathing |
NABS | Neck Circumference, Age, Body Mass Index, Snoring |
PSG | Polysomnography |
HSAT | Home sleep apnea testing |
SCD | Sudden cardiac death |
HRV | Heart rate variability |
BMI | Body Mass Index |
TMAO | Trimethylamine N-oxide |
STEMI | ST-elevation Myocardial Infarction |
HNS | Hypoglossal nerve stimulation |
DISE | Drug-induced sleep endoscopy |
TORS | Transoral robotic surgery |
RDI | Respirator Disturbance Index |
ICD | Implantable cardioverter-defibrillator |
UPPP | Uvulopalatopharingoplasty |
CHF | Congestive heart failure |
References
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef] [PubMed]
- Martí-Almor, J.; Jiménez-López, J.; Casteigt, B.; Conejos, J.; Valles, E.; Farré, N.; Flor, M.F. Obstructive Sleep Apnea Syndrome as a Trigger of Cardiac Arrhythmias. Curr. Cardiol. Rep. 2021, 23, 20. [Google Scholar] [CrossRef]
- Fein, A.S.; Shvilkin, A.; Shah, D.; Haffajee, C.I.; Das, S.; Kumar, K.; Kramer, D.B.; Zimetbaum, P.J.; Buxton, A.E.; Josephson, M.E.; et al. Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation. J. Am. Coll. Cardiol. 2013, 62, 300–305. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Sleep Medicine—Association for Sleep Clinicians and Researchers [Internet]. AASM|International Classification of Sleep Disorders. Available online: https://aasm.org/clinical-resources/international-classification-sleep-disorders/ (accessed on 5 January 2025).
- Sateia, M.J. International Classification of Sleep Disorders-Third Edition. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Chung, M.K.; Olshansky, B.; Dobrev, D.; Jackson, C.L.; Kundel, V.; Linz, D.; Redeker, N.S.; Redline, S.; Sanders, P.; et al. Sleep-Disordered Breathing and Cardiac Arrhythmias in Adults: Mechanistic Insights and Clinical Implications: A Scientific Statement From the American Heart Association. Circulation 2022, 146, e119–e136. [Google Scholar] [CrossRef]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef]
- Olafiranye, O.; Akinboboye, O.; Mitchell, J.; Ogedegbe, G.; Jean-Louis, G. Obstructive Sleep Apnea and Cardiovascular Disease in Blacks: A Call to Action from Association of Black Cardiologists. Am. Heart J. 2013, 165, 468–476. [Google Scholar] [CrossRef]
- Thornton, J.D.; Dudley, K.A.; Saeed, G.J.; Schuster, S.T.; Schell, A.; Spilsbury, J.C.; Patel, S.R. Differences in Symptoms and Severity of Obstructive Sleep Apnea between Black and White Patients. Ann. Am. Thorac. Soc. 2022, 19, 272–278. [Google Scholar] [CrossRef]
- Ardissino, M.; Reddy, R.K.; Slob, E.A.W.; Patel, K.H.K.; Ryan, D.K.; Gill, D.; Ng, F.S. Sleep Disordered Breathing, Obesity and Atrial Fibrillation: A Mendelian Randomisation Study. Genes 2022, 13, 104. [Google Scholar] [CrossRef]
- Zasadzińska-Stempniak, K.; Zajączkiewicz, H.; Kukwa, A. Prevalence of Obstructive Sleep Apnea in the Young Adult Population: A Systematic Review. J. Clin. Med. 2024, 13, 1386. [Google Scholar] [CrossRef]
- Glasser, M.; Bailey, N.; McMillan, A.; Goff, E.; Morrell, M.J. Sleep apnoea in older people. Breathe 2011, 7, 248–256. [Google Scholar] [CrossRef]
- Peker, Y.; Akdeniz, B.; Altay, S.; Balcan, B.; Başaran, Ö.; Baysal, E.; Başaran, Ö.; Baysal, E.; Çelik, A.; Dursunoğlu, D.; et al. Obstructive Sleep Apnea and Cardiovascular Disease: Where Do We Stand? Anatol. J. Cardiol. 2023, 27, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.J.; Zipes, D.P. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ. Res. 2014, 114, 1004–1021. [Google Scholar] [CrossRef] [PubMed]
- Di Caro, M.V.; Lei, K.; Yee, B.; Tak, T. The Effects of Obstructive Sleep Apnea on the Cardiovascular System: A Comprehensive Review. J. Clin. Med. 2024, 13, 3223. [Google Scholar] [CrossRef]
- Martynowicz, H.; Wichniak, A.; Więckiewicz, M. Sleep disorders and cardiovascular risk: Focusing on sleep fragmentation. Dent. Med. Probl. 2024, 61, 475–477. [Google Scholar] [CrossRef]
- Prabhakar, N.R.; Semenza, G.L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 2012, 92, 967–1003. [Google Scholar] [CrossRef]
- Maniaci, A.; Lavalle, S.; Parisi, F.M.; Barbanti, M.; Cocuzza, S.; Iannella, G.; Magliulo, G.; Pace, A.; Lentini, M.; Masiello, E.; et al. Impact of Obstructive Sleep Apnea and Sympathetic Nervous System on Cardiac Health: A Comprehensive Review. J. Cardiovasc. Dev. Dis. 2024, 11, 204. [Google Scholar] [CrossRef]
- Mansukhani, M.P.; Wang, S.; Somers, V.K. Chemoreflex physiology and implications for sleep apnoea: Insights from studies in humans. Exp. Physiol. 2015, 100, 130–135. [Google Scholar] [CrossRef]
- Increase in Vulnerability of Atrial Fibrillation in an Acute Intermittent Hypoxia Model: Importance of Autonomic Imbalance. Available online: https://pubmed.ncbi.nlm.nih.gov/23622813/ (accessed on 19 January 2025).
- Giannoni, A.; Borrelli, C.; Gentile, F.; Sciarrone, P.; Spießhöfer, J.; Piepoli, M.; Richerson, G.B.; Floras, J.S.; Coats, A.J.; Javaheri, S.; et al. Autonomic and respiratory consequences of altered chemoreflex function: Clinical and therapeutic implications in cardiovascular diseases. Eur. J. Heart Fail. 2023, 25, 642–656. [Google Scholar] [CrossRef]
- Blain, G.M.; Smith, C.A.; Henderson, K.S.; Dempsey, J.A. Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2. J. Physiol. 2010, 588, 2455–2471. [Google Scholar] [CrossRef]
- Mody, P.; Rukhadze, I.; Kubin, L. Rats subjected to chronic-intermittent hypoxia have increased density of noradrenergic terminals in the trigeminal sensory and motor nuclei. Neurosci. Lett. 2011, 505, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A.; Veasey, S.C.; Morgan, B.J.; O’Donnell, C.P. Pathophysiology of sleep apnea. Physiol. Rev. 2010, 90, 47–112. [Google Scholar] [CrossRef] [PubMed]
- Linz, D.; McEvoy, R.D.; Cowie, M.R.; Somers, V.K.; Nattel, S.; Lévy, P.; Kalman, J.M.; Sanders, P. Associations of Obstructive Sleep Apnea with Atrial Fibrillation and Continuous Positive Airway Pressure Treatment: A Review. JAMA Cardiol. 2018, 3, 532–540. [Google Scholar] [CrossRef]
- Schlatzer, C.; Schwarz, E.I.; Sievi, N.A.; Clarenbach, C.F.; Gaisl, T.; Haegeli, L.M.; Duru, F.; Stradling, J.R.; Kohler, M. Intrathoracic pressure swings induced by simulated obstructive sleep apnoea promote arrhythmias in paroxysmal atrial fibrillation. EP Eur. 2016, 18, 64–70. [Google Scholar] [CrossRef]
- Linz, B.; Hohl, M.; Lang, L.; Wong, D.W.; Nickel, A.G.; De La Torre, C.; Sticht, C.; Wirth, K.; Boor, P.; Maack, C.; et al. Repeated exposure to transient obstructive sleep apnea–related conditions causes an atrial fibrillation substrate in a chronic rat model. Heart Rhythm. 2021, 18, 455–464. [Google Scholar] [CrossRef]
- Xie, J.Y.; Liu, W.X.; Ji, L.; Chen, Z.; Gao, J.M.; Chen, W.; Zhu, Q. Relationship between inflammatory factors and arrhythmia and heart rate variability in OSAS patients. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2037–2053. [Google Scholar]
- Harris, S.M.; Harvey, E.J.; Hughes, T.R.; Ramji, D.P. The interferon-gamma-mediated inhibition of lipoprotein lipase gene transcription in macrophages involves casein kinase 2- and phosphoinositide-3-kinase-mediated regulation of transcription factors Sp1 and Sp3. Cell Signal. 2008, 20, 2296–2301. [Google Scholar] [CrossRef]
- Lv, R.; Liu, X.; Zhang, Y.; Dong, N.; Wang, X.; He, Y.; Yue, H.; Yin, Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct. Target. Ther. 2023, 8, 1–46. [Google Scholar]
- Aimo, A.; Castiglione, V.; Borrelli, C.; Saccaro, L.F.; Franzini, M.; Masi, S.; Emdin, M.; Giannoni, A. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur. J. Prev. Cardiol. 2020, 27, 494–510. [Google Scholar] [CrossRef]
- Lavie, L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia--revisited--the bad ugly and good: Implications to the heart and brain. Sleep Med. Rev. 2015, 20, 27–45. [Google Scholar] [CrossRef]
- Kottkamp, H.; Berg, J.; Bender, R.; Rieger, A.; Schreiber, D. Box Isolation of Fibrotic Areas (BIFA): A Patient-Tailored Substrate Modification Approach for Ablation of Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2016, 27, 22–30. [Google Scholar] [CrossRef]
- Yagmur, J.; Yetkin, O.; Cansel, M.; Acikgoz, N.; Ermis, N.; Karakus, Y.; Tasolar, H. Assessment of atrial electromechanical delay and influential factors in patients with obstructive sleep apnea. Sleep Breath. 2012, 16, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Cowie, M.R.; Linz, D.; Redline, S.; Somers, V.K.; Simonds, A.K. Sleep Disordered Breathing and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 608–624. [Google Scholar] [CrossRef]
- Javaheri, S.; Javaheri, S.; Somers, V.K.; Gozal, D.; Mokhlesi, B.; Mehra, R.; McNicholas, W.T.; Zee, P.C.; Campos-Rodriguez, F.; Martinez-Garcia, M.A.; et al. Interactions of Obstructive Sleep Apnea with the Pathophysiology of Cardiovascular Disease, Part 1: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2024, 84, 1208–1223. [Google Scholar] [CrossRef] [PubMed]
- Monahan, K.; Storfer-Isser, A.; Mehra, R.; Shahar, E.; Mittleman, M.; Rottman, J.; Punjabi, N.; Sanders, M.; Quan, S.F.; Resnick, H.; et al. Triggering of Nocturnal Arrhythmias by Sleep-Disordered Breathing Events. J. Am. Coll. Cardiol. 2009, 54, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- Fozzard, H.A. Afterdepolarizations and triggered activity. Basic. Res. Cardiol. 1992, 87 (Suppl. S2), 105–113. [Google Scholar]
- Rossi, V.A.; Stradling, J.R.; Kohler, M. Effects of obstructive sleep apnoea on heart rhythm. Eur. Respir. J. 2013, 41, 1439–1451. [Google Scholar] [CrossRef]
- Mohammadieh, A.M.; Sutherland, K.; Kanagaratnam, L.B.; Whalley, D.W.; Gillett, M.J.; Cistulli, P.A. Clinical screening tools for obstructive sleep apnea in a population with atrial fibrillation: A diagnostic accuracy trial. J. Clin. Sleep Med. 2021, 17, 1015–1024. [Google Scholar] [CrossRef]
- Sterling, K.L.; Alpert, N.; Malik, A.S.; Pépin, J.; Benjafield, A.V.; Malhotra, A.; Piccini, J.P.; Cistulli, P.A.; Nunez, C.M.; Barrett, M.; et al. Association Between Sleep Apnea Treatment and Health Care Resource Use in Patients with Atrial Fibrillation. J. Am. Heart Assoc. 2024, 13, e030679. [Google Scholar] [CrossRef]
- Youssef, I.; Kamran, H.; Yacoub, M.; Patel, N.; Goulbourne, C.; Kumar, S.; Kane, J.; Hoffner, H.; Salifu, M.; McFarlane, S.I. Obstructive Sleep Apnea as a Risk Factor for Atrial Fibrillation: A Meta-Analysis. J. Sleep Disord. Ther. 2018, 7, 282. [Google Scholar] [CrossRef]
- Zhao, L.-P.; Kofidis, T.; Lim, T.-W.; Chan, S.-P.; Ong, T.-H.; Tan, H.-C.; Lee, C.-H. Sleep apnea is associated with new-onset atrial fibrillation after coronary artery bypass grafting. J. Crit. Care 2015, 30, e1–e1418. [Google Scholar] [CrossRef] [PubMed]
- Budhiraja, R.; Budhiraja, P.; Quan, S.F. Sleep-disordered breathing and cardiovascular disorders. Respir. Care 2010, 55, 1322–1332; discussion 1330–1332. [Google Scholar] [PubMed]
- Tavares, L.; Lador, A.; Valderrábano, M. Sleep Apnea and Atrial Fibrillation: Role of the Cardiac Autonomic Nervous System. Methodist Bakey Cardiovasc. J. 2021, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Vandenberk, B.; Haemers, P.; Morillo, C. The autonomic nervous system in atrial fibrillation—Pathophysiology and non-invasive assessment. Front. Cardiovasc. Med. 2024, 10, 1327387. [Google Scholar] [CrossRef]
- Tavares, L.; Rodríguez-Mañero, M.; Kreidieh, B.; Ibarra-Cortez, S.H.; Chen, J.; Wang, S.; Markovits, J.; Barrios, R.; Valderrábano, M. Cardiac Afferent Denervation Abolishes Ganglionated Plexi and Sympathetic Responses to Apnea: Implications for Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2019, 12, e006942. [Google Scholar] [CrossRef]
- Anter, E.; Di Biase, L.; Contreras-Valdes, F.M.; Gianni, C.; Mohanty, S.; Tschabrunn, C.M.; Viles-Gonzalez, J.F.; Leshem, E.; Buxton, A.E.; Kulbak, G.; et al. Atrial Substrate and Triggers of Paroxysmal Atrial Fibrillation in Patients with Obstructive Sleep Apnea. Circ. Arrhythm. Electrophysiol. 2017, 10, e005407. [Google Scholar] [CrossRef]
- Horvath, C.M.; Fisser, C.; Floras, J.S.; Sossalla, S.; Wang, S.; Tomlinson, G.; Rankin, F.; Yatsu, S.; Ryan, C.M.; Bradley, T.D.; et al. Nocturnal Cardiac Arrhythmias in Heart Failure with Obstructive and Central Sleep Apnea. Chest 2024, 166, 1546–1556. [Google Scholar] [CrossRef]
- Linz, D.; Denner, A.; Illing, S.; Hohl, M.; Ukena, C.; Mahfoud, F.; Ewen, S.; Reil, J.C.; Wirth, K.; Böhm, M. Impact of obstructive and central apneas on ventricular repolarisation: Lessons learned from studies in man and pigs. Clin. Res. Cardiol. 2016, 105, 639–647. [Google Scholar] [CrossRef]
- Dematteis, M.; Godin-Ribuot, D.; Arnaud, C.; Ribuot, C.; Stanke-Labesque, F.; Pépin, J.L.; Lévy, P. Cardiovascular Consequences of Sleep-Disordered Breathing: Contribution of Animal Models to Understanding of the Human Disease. ILAR J. 2009, 50, 262–281. [Google Scholar] [CrossRef]
- Carlson, J.T.; Hedner, J.; Elam, M.; Ejnell, H.; Sellgren, J.; Wallin, B.G. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest 1993, 103, 1763–1768. [Google Scholar] [CrossRef]
- Morand, J.; Arnaud, C.; Pepin, J.L.; Godin-Ribuot, D. Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death. Sci. Rep. 2018, 8, 2997. [Google Scholar] [CrossRef] [PubMed]
- Martinez AB, R.; Barbosa, G.R.; Lopes, M.R.; de Almeida Barbosa, R.H. Sleep apnea and sudden death in the non-cardiac population: A systematic review. Rev. Port. Cardiol. 2024, 43, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Laczay, B.; Faulx, M.D. Obstructive Sleep Apnea and Cardiac Arrhythmias: A Contemporary Review. J. Clin. Med. 2021, 10, 3785. [Google Scholar] [CrossRef] [PubMed]
- Chemoreflexes—Physiology and Clinical Implications. Available online: https://pubmed.ncbi.nlm.nih.gov/12609009/ (accessed on 19 January 2025).
- Teo, Y.H.; Han, R.; Leong, S.; Teo, Y.N.; Syn, N.L.; Wee, C.F.; Tan, B.K.J.; Wong, R.C.; Chai, P.; Kojodjojo, P.; et al. Prevalence, types and treatment of bradycardia in obstructive sleep apnea—A systematic review and meta-analysis. Sleep Med. 2022, 89, 104–113. [Google Scholar] [CrossRef]
- Riaz, S.; Bhatti, H.; Sampat, P.J.; Dhamoon, A. The Converging Pathologies of Obstructive Sleep Apnea and Atrial Arrhythmias. Cureus 2020, 12, e9388. [Google Scholar] [CrossRef]
- Mehawej, J.; Saczynski, J.S.; Kiefe, C.I.; Abu, H.O.; Tisminetzky, M.; Wang, W.; Bamgbade, B.A.; Ding, E.; Lessard, D.; Otabil, E.M.; et al. Association between risk of obstructive sleep apnea and cognitive performance, frailty, and quality of life among older adults with atrial fibrillation. J. Clin. Sleep Med. 2022, 18, 469–475. [Google Scholar] [CrossRef]
- Marinheiro, R.; Parreira, L.; Amador, P.; Mesquita, D.; Farinha, J.; Fonseca, M.; Duarte, T.; Lopes, C.; Fernandes, A.; Caria, R. Ventricular Arrhythmias in Patients with Obstructive Sleep Apnea. Curr. Cardiol. Rev. 2019, 15, 64–74. [Google Scholar] [CrossRef]
- Abbasi, A.; Gupta, S.S.; Sabharwal, N.; Meghrajani, V.; Sharma, S.; Kamholz, S.; Kupfer, Y. A comprehensive review of obstructive sleep apnea. Sleep Sci. 2021, 14, 142–154. [Google Scholar]
- Mittal, S.; Golombeck, D.; Pimienta, J. Sleep Apnoea and AF: Where Do We Stand? Practical Advice for Clinicians. Arrhythmia Electrophysiol. Rev. 2021, 10, 140–146. [Google Scholar] [CrossRef]
- Delesie, M.; Knaepen, L.; Hendrickx, B.; Huygen, L.; Verbraecken, J.; Weytjens, K.; Dendale, P.; Heidbuchel, H.; Desteghe, L. The value of screening questionnaires/scoring scales for obstructive sleep apnoea in patients with atrial fibrillation. Arch. Cardiovasc. Dis. 2021, 114, 737–747. [Google Scholar] [CrossRef]
- Resano-Barrio, M.P.; Arroyo-Espliguero, R.; Viana-Llamas, M.C.; Mediano, O. Obstructive Sleep Apnoea Syndrome: Continuous Positive Airway Pressure Therapy for Prevention of Cardiovascular Risk. Eur. Cardiol. 2020, 15, e65. [Google Scholar] [CrossRef] [PubMed]
- Frangopoulos, F.; Nicolaou, I.; Zannetos, S.; Economou, N.T.; Adamide, T.; Trakada, G. Association between Respiratory Sleep Indices and Cardiovascular Disease in Sleep Apnea-A Community-Based Study in Cyprus. J. Clin. Med. 2020, 9, 2475. [Google Scholar] [CrossRef] [PubMed]
- Gami, A.S.; Olson, E.J.; Shen, W.K.; Wright, R.S.; Ballman, K.V.; Hodge, D.O.; Herges, R.M.; Howard, D.E.; Somers, V.K. Obstructive sleep apnea and the risk of sudden cardiac death: A longitudinal study of 10,701 adults. J. Am. Coll. Cardiol. 2013, 62, 610–616. [Google Scholar] [CrossRef]
- Blackwell, J.N.; Walker, M.; Stafford, P.; Estrada, S.; Adabag, S.; Kwon, Y. Sleep Apnea and Sudden Cardiac Death. Circ. Rep. 2019, 1, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Regn, D.D.; Davis, A.H.; Smith, W.D.; Blasser, C.J.; Ford, C.M. Central Sleep Apnea in Adults: Diagnosis and Treatment. Fed. Pract. 2023, 40, 78–86. [Google Scholar] [CrossRef]
- Mariani, M.V.; Pierucci, N.; Piro, A.; Trivigno, S.; Chimenti, C.; Galardo, G.; Miraldi, F.; Vizza, C.D. Incidence and Determinants of Spontaneous Cardioversion of Early Onset Symptomatic Atrial Fibrillation. Medicina 2022, 58, 1513. [Google Scholar] [CrossRef]
- He, H.; Lachlan, T.; Chandan, N.; Lim, V.G.; Kimani, P.; Ng, G.A.; Ali, A.; Randeva, H.; Osman, F. Obstructive Sleep Apnoea and Cardiac Arrhythmias (OSCA) trial: A nested cohort study using injectable loop recorders and Holter monitoring in patients with obstructive sleep apnoea. BMJ Open. 2023, 13, e070884. [Google Scholar]
- Acharya, R.; Basnet, S.; Tharu, B.; Koirala, A.; Dhital, R.; Shrestha, P.; Poudel, D.; Ghimire, S.; Kafle, S. Obstructive Sleep Apnea: Risk Factor for Arrhythmias, Conduction Disorders, and Cardiac Arrest. Cureus 2020, 12, e9992. [Google Scholar]
- Alshoaibi, N. Outcome of Cardiac Monitor During Sleep Study for Screening of Subclinical Atrial Fibrillation. Cureus 2020, 12, e8987. [Google Scholar] [CrossRef]
- Menon, T.; Ogbu, I.; Kalra, D.K. Sleep-Disordered Breathing and Cardiac Arrhythmias. J. Clin. Med. 2024, 13, 6635. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, Y.; Xu, J.; Yi, F. Association between obstructive sleep apnea (OSA) and atrial fibrillation (AF): A dose-response meta-analysis. Medicine 2022, 101, e29443. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Kotelnicka, O.; Margulska, A.; Gabryelska, A.; Sochal, M.; Białasiewicz, P.; Strzelecki, D. “Leaky Gut” as a Keystone of the Connection between Depression and Obstructive Sleep Apnea Syndrome? A Rationale and Study Design. Metabolites 2022, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Liu, X.; Ren, Z.; Fei, X.; Luo, J.; Yang, X.; Liang, B. Gut microbiota and cardiac arrhythmia. Front. Cell. Infect. Microbiol. 2023, 13, 1147687. [Google Scholar] [CrossRef]
- HPS2-THRIVE Collaborative Group; Landray, M.J.; Haynes, R.; Hopewell, J.C.; Parish, S.; Aung, T. Effects of extended-release niacin with laropiprant in high-risk patients. N. Engl. J. Med. 2014, 371, 203–212. [Google Scholar]
- Bazoukis, G.; Bollepalli, S.C.; Chung, C.T.; Li, X.; Tse, G.; Bartley, B.L. Application of artificial intelligence in the diagnosis of sleep apnea. J. Clin. Sleep Med. 2023, 19, 1337–1363. [Google Scholar] [CrossRef]
- Shiina, K.; Takata, Y.; Takahashi, T.; Kani, J.; Nakano, H.; Takada, Y.; Yazaki, Y.; Satomi, K.; Tomiyama, H. Nutritional Status and Sleep Quality Are Associated with Atrial Fibrillation in Patients with Obstructive Sleep Apnea: Results from Tokyo Sleep Heart Study. Nutrients 2023, 15, 3943. [Google Scholar] [CrossRef]
- Stafford, P.L.; Harmon, E.; Patel, P.; Walker, M.; Akoum, N.; Park, S.-J.; Cho, Y.; Bilchick, K.; Mehta, N.; Mazimba, S.; et al. Positional obstructive sleep apnea in patients with atrial fibrillation. Sleep Breath. 2023, 27, 487–494. [Google Scholar] [CrossRef]
- Gami, A.S.; Howard, D.E.; Olson, E.J.; Somers, V.K. Day-night pattern of sudden death in obstructive sleep apnea. N. Engl. J. Med. 2005, 352, 1206–1214. [Google Scholar] [CrossRef]
- Amen, S.; Rasool, B.; Al Lami, B.S.; Gamal Shehata, C.; Mohammad, A.N.; Maaroof, P.; Abdullah, R.M.; Subedi, R.; Al-Lami, R. Obstructive Sleep Apnea and Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Prospective Studies. Cureus 2024, 16, e71752. [Google Scholar] [CrossRef]
- Silva, R.; Brito, T.P.; Wanderley Neto, A.C.; Frota, R.B.; Melo, J.C. Major risk factors for obstructive sleep apnea monitored in the home. Sao Paulo Med. J. 2021, 139, 643–647. [Google Scholar] [CrossRef]
- Bazoukis, G.; Bollepalli, S.C.; Chung, C.T.; Li, X.; Tse, G.; Bartley, B.L.; Batool-Anwar, S.; Quan, S.F.; Armoundas, A.A. Impact of risk-factor modification on arrhythmia recurrence among morbidly obese patients undergoing atrial fibrillation ablation. J. Cardiovasc. Electrophysiol. 2020, 31, 1979–1986. [Google Scholar]
- Dai, H.; Hou, T.; Wang, Q.; Hou, Y.; Zhu, Z.; Zhu, Y.; Xu, M. Roles of gut microbiota in atrial fibrillation: Insights from Mendelian randomization analysis and genetic data from over 430,000 cohort study participants. Cardiovasc. Diabetol. 2023, 22, 306. [Google Scholar] [CrossRef] [PubMed]
- Mao, M.; Zhai, C.; Qian, G. Gut microbiome relationship with arrhythmias and conduction blocks: A two-sample Mendelian randomization study. J. Electrocardiol. 2023, 80, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Ramphul, K.; Lohana, P.; Verma, R.; Kumar, N.; Ramphul, Y.; Lohana, A.; Sombans, S.; Mejias, S.G.; Kumari, K. Cardiac arrhythmias and mortality risk among patients with obstructive sleep apnea following admission for acute myocardial infarction or acute ischemic stroke. Arch. Med. Sci. Atheroscler. Dis. 2022, 7, e109–e115. [Google Scholar] [CrossRef]
- Rana, D.; Torrilus, C.; Ahmad, W.; Okam, N.A.; Fatima, T.; Jahan, N. Obstructive Sleep Apnea and Cardiovascular Morbidities: A Review Article. Cureus 2020, 12, e10424. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Y.-M.; Zhu, J.; Wu, S.; Wang, J.; Zhang, H.; Shao, X.-H.; Mo, R.; Tan, J.-S.; Wang, J.-Y. Clinical characteristics and thrombotic risk of atrial fibrillation with obstructive sleep apnea: Results from a multi-center atrial fibrillation registry study. BMC Cardiovasc. Disord. 2022, 22, 331. [Google Scholar] [CrossRef]
- André, S.; Andreozzi, F.; Van Overstraeten, C.; Ben Youssef, S.; Bold, I.; Carlier, S.; Gruwez, A.; Bruyneel, A.-V.; Bruyneel, M. Cardiometabolic comorbidities in obstructive sleep apnea patients are related to disease severity, nocturnal hypoxemia, and decreased sleep quality. Respir. Res. 2020, 21, 35. [Google Scholar] [CrossRef]
- Kainulainen, S.; Suni, A.; Lipponen, J.A.; Kulkas, A.; Duce, B.; Korkalainen, H.; Nikkonen, S.; Sillanmäki, S. Morbid obesity influences the nocturnal electrocardiogram wave and interval durations among suspected sleep apnea patients. Ann. Noninvasive Electrocardiol. 2024, 29, e13101. [Google Scholar] [CrossRef]
- Chu, Y.; Zinchuk, A. The Present and Future of the Clinical Use of Physiological Traits for the Treatment of Patients with OSA: A Narrative Review. J. Clin. Med. 2024, 13, 1636. [Google Scholar] [CrossRef]
- Abe, H.; Takahashi, M.; Yaegashi, H.; Eda, S.; Tsunemoto, H.; Kamikozawa, M.; Koyama, J.; Yamazaki, K.; Ikeda, U. Efficacy of continuous positive airway pressure on arrhythmias in obstructive sleep apnea patients. Heart Vessel. 2010, 25, 63–69. [Google Scholar] [CrossRef]
- Yang, D.; Li, L.; Dong, J.; Yang, W.; Liu, Z. Effects of continuous positive airway pressure on cardiac events and metabolic components in patients with moderate to severe obstructive sleep apnea and coronary artery disease: A meta-analysis. J. Clin. Sleep Med. 2023, 19, 2015–2025. [Google Scholar] [CrossRef] [PubMed]
- Abid, R.; Zhang, L.; Bhat, A. Non-CPAP Therapies for Obstructive Sleep Apnea in Adults. Mo Med. 2024, 121, 385–390. [Google Scholar] [PubMed]
- Schweitzer, P.K.; Taranto-Montemurro, L.; Ojile, J.M.; Thein, S.G.; Drake, C.L.; Rosenberg, R.; Corser, B.; Abaluck, B.; Sangal, R.B.; Maynard, J. The Combination of Aroxybutynin and Atomoxetine in the Treatment of Obstructive Sleep Apnea (MARIPOSA): A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2023, 208, 1316–1327. [Google Scholar] [CrossRef]
- Beccuti, G.; Bioletto, F.; Parasiliti-Caprino, M.; Benso, A.; Ghigo, E.; Cicolin, A.; Broglio, F. Estimating Cardiovascular Benefits of Tirzepatide in Sleep Apnea and Obesity: Insight from the SURMOUNT-OSA Trials. Curr. Obes. Rep. 2024, 13, 739–742. [Google Scholar] [CrossRef]
- Ou, Y.-H.; Colpani, J.T.; Cheong, C.S.; Loke, W.; Thant, A.T.; Shih, E.C.; Lee, F.; Chan, S.-P.; Sia, C.-H.; Koo, C.-Y.; et al. Mandibular Advancement vs CPAP for Blood Pressure Reduction in Patients with Obstructive Sleep Apnea. J. Am. Coll. Cardiol. 2024, 83, 1760–1772. [Google Scholar] [CrossRef]
- Cooper, T.; Sufyan, A.S.; Aboubakr, S. Hypoglossal Stimulation Device. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: http://www.ncbi.nlm.nih.gov/books/NBK594264/ (accessed on 2 February 2025).
- Nag, D.S.; Chatterjee, A.; Patel, R.; Sen, B.; Pal, B.D.; Wadhwa, G. Recent advances in managing obstructive sleep apnea. World J. Clin. Cases. 2024, 12, 5456–5461. [Google Scholar] [CrossRef]
- Wollny, M.; Heiser, C.; Sommer, U.; Schöbel, C.; Braun, M. Adverse Events with Hypoglossal Nerve Stimulation in the Treatment of Obstructive Sleep Apnea-A Systematic Review of Clinical Trials and Real-World Data. J. Clin. Med. 2024, 13, 4282. [Google Scholar] [CrossRef]
- Tukanov, E.; Van Loo, D.; Dieltjens, M.; Verbraecken, J.; Vanderveken, O.M.; Op de Beeck, S. Baseline Characteristics Associated with Hypoglossal Nerve Stimulation Treatment Outcomes in Patients with Obstructive Sleep Apnea: A Systematic Review. Life 2024, 14, 1129. [Google Scholar] [CrossRef]
- Lee, H.M.; Kim, H.Y.; Suh, J.D.; Han, K.D.; Kim, J.K.; Lim, Y.C.; Hong, S.-C.; Cho, J.H. Uvulopalatopharyngoplasty reduces the incidence of cardiovascular complications caused by obstructive sleep apnea: Results from the national insurance service survey 2007–2014. Sleep Med. 2018, 45, 11–16. [Google Scholar] [CrossRef]
- Van Daele, M.; Smolders, Y.; Van Loo, D.; Bultynck, C.; Verbraecken, J.; Vroegop, A.; Lapperre, T.; de Beeck, S.O.; Dieltjens, M.; Vanderveken, O.M. Personalized Treatment for Obstructive Sleep Apnea: Beyond CPAP. Life 2024, 14, 1007. [Google Scholar] [CrossRef]
- Mittal, A.; Ish, P.; Rathi, V.; Kumawat, S.K.; Chakrabarti, S.; Suri, J.C. Rehabilitation in obstructive sleep apnea: An ignored treatment adjunct. Monaldi 2024. [Google Scholar] [CrossRef]
- Peromaa-Haavisto, P.; Luostarinen, M.; Juusela, R.; Tuomilehto, H.; Kössi, J. Obstructive Sleep Apnea: The Effect of Bariatric Surgery After Five Years-A Prospective Multicenter Trial. Obes. Surg. 2024, 34, 1544–1551. [Google Scholar] [CrossRef]
- Campos-Rodríguez, F.; Chiner, E.; de la Rosa-Carrillo, D.; Cosío, B.G.; Hernádez-Hernández, J.R.; Jiménez, D.; Méndez, R.; Molina-Molina, M.; Soto-Campos, J.-G.; Vaquero, J.-M.; et al. Respiratory Pathology and Cardiovascular Diseases: A Scoping Review. Open Respir. Arch. 2025, 7, 100392. [Google Scholar] [CrossRef]
- Caples, S.M.; Mansukhani, M.P.; Friedman, P.A.; Somers, V.K. The impact of continuous positive airway pressure treatment on the recurrence of atrial fibrillation post cardioversion: A randomized controlled trial. Int. J. Cardiol. 2019, 278, 133–136. [Google Scholar] [CrossRef]
- Traaen, G.M.; Aakerøy, L.; Hunt, T.-E.; Øverland, B.; Bendz, C.; Sande, L.Ø.; Aakhus, S.; Fagerland, M.W.; Steinshamn, S.; Anfinsen, O.-G.; et al. Effect of Continuous Positive Airway Pressure on Arrhythmia in Atrial Fibrillation and Sleep Apnea: A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 573–582. [Google Scholar] [CrossRef]
- Szymanski, F.M.; Filipiak, K.J.; Platek, A.E.; Hrynkiewicz-Szymanska, A.; Kotkowski, M.; Kozluk, E.; Kiliszek, M.; Sierdzinski, J.; Opolski, G. Presence and severity of obstructive sleep apnea and remote outcomes of atrial fibrillation ablations—A long-term prospective, cross-sectional cohort study. Sleep Breath. 2015, 19, 849–856. [Google Scholar] [CrossRef]
- Kawakami, H.; Nagai, T.; Fujii, A.; Uetani, T.; Nishimura, K.; Inoue, K.; Suzuki, J.; Oka, Y.; Okura, T.; Higaki, J.; et al. Apnea-hypopnea index as a predictor of atrial fibrillation recurrence following initial pulmonary vein isolation: Usefulness of type-3 portable monitor for sleep-disordered breathing. J. Interv. Card. Electrophysiol. 2016, 47, 237–244. [Google Scholar] [CrossRef]
- O’Keefe, E.L.; Sturgess, J.E.; O’Keefe, J.H.; Gupta, S.; Lavie, C.J. Prevention and Treatment of Atrial Fibrillation via Risk Factor Modification. Am. J. Cardiol. 2021, 160, 46–52. [Google Scholar] [CrossRef]
- Negru, A.; Crisan, S.; Vacarescu, C.; Mihaicuta, S.; Frentz, S.M.; A Luca, S.; I Gaita, D.; Luca, C.T.; Bebec, D.L.; Milko, D.; et al. Right ventricular outflow tract arrhythmias in patients with obstructive sleep apnea- electrophysiological insights. Eur. Heart J. 2024, 45, ehae666.682. [Google Scholar] [CrossRef]
- Defaye, P.; Mendelson, M.; Tamisier, R.; Jacon, P.; Venier, S.; Arnol, N.; Pépin, J.-L. Validation of an apnea and hypopnea detection algorithm implemented in implantable cardioverter defibrillators. The AIRLESS study. Sci. Rep. 2019, 9, 9597. [Google Scholar] [CrossRef]
- Mazza, A.; Bendini, M.G.; Bianchi, V.; Esposito, C.; Calò, L.; Andreoli, C.; Santobuono, V.E.; Russo, A.D.; Viscusi, M.; La Greca, C.; et al. Association Between Device-Detected Sleep-Disordered Breathing and Implantable Defibrillator Therapy in Patients with Heart Failure. JACC Clin. Electrophysiol. 2022, 8, 1249–1256. [Google Scholar] [CrossRef] [PubMed]
- Moubarak, G.; Bouzeman, A.; de Geyer d’Orth, T.; Bouleti, C.; Beuzelin, C.; Cazeau, S. Variability in obstructive sleep apnea: Analysis of pacemaker-detected respiratory disturbances. Heart Rhythm. 2017, 14, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Szajerska-Kurasiewicz, A.; Loboda, D.; Roleder, T.; Stepanik, M.; Durmala, J.; Golba, K.S. Sleep-disordered breathing as a risk factor for unnecessary pacemaker implantation. Pol. Heart J. Kardiol. Pol. 2022, 80, 191–197. [Google Scholar] [CrossRef]
- Neagos, A.; Vrinceanu, D.; Dumitru, M.; Costache, A.; Cergan, R. Demographic, anthropometric, and metabolic characteristics of obstructive sleep apnea patients from Romania before the COVID-19 pandemic. Exp. Ther. Med. 2021, 22, 1487. [Google Scholar] [CrossRef]
- Wimms, A.; Benjafield, A.; Valentine, K.; Malhotra, A. 0532 Global prevalence of mild Obstructive Sleep Apnea in females. Sleep 2023, 46, A234. [Google Scholar] [CrossRef]
- Lechat, B.; Loffler, K.A.; Reynolds, A.C.; Naik, G.; Vakulin, A.; Jennings, G. High night-to-night variability in sleep apnea severity is associated with uncontrolled hypertension. NPJ Digit. Med. 2023, 6, 57. [Google Scholar] [CrossRef]
- Lechat, B.; Nguyen, D.P.; Scott, H.; Escourrou, P.; Vakulin, A.; Adams, R.; Eckert, D.J. Seasonal and Weekly Variability in OSA Severity. Am. J. Crit. Care Med. 2024, 209, A2987. [Google Scholar]
- Gunta, S.P.; Jakulla, R.S.; Ubaid, A.; Mohamed, K.; Bhat, A.; López-Candales, A.; Norgard, N. Obstructive Sleep Apnea and Cardiovascular Diseases: Sad Realities and Untold Truths regarding Care of Patients in 2022. Cardiovasc. Ther. 2022, 6006127. [Google Scholar] [CrossRef]
ECG Change Type | Association with OSA | Level of Evidence |
---|---|---|
Atrial Fibrillation | Strongly associated | High (level 1) |
Bradycardia | Associated | High (level 1) |
Premature Ventricular Beats/ Ventricular Tachycardia | Associated | Moderate (level 2) |
Malignant Ventricular Arrhythmias responsible for SCD | Associated | Moderate (level 3) |
Treatment Modality | Level of Evidence | References |
---|---|---|
Continuous Positive Airway Pressure (CPAP) | High | Meta-analysis of 7 randomized controlled trials with 4268 patients showed a significant reduction in cardiovascular events and stroke (adherence time > 4 h) Meta-analysis of 11 trials with 5410 patients showing significant reduction in major cardiovascular events and all-cause cardiovascular death |
Pharmacotherapy | Moderate | MARIPOSA randomized controlled trial, SURMOUNT-OSA trials |
Mandibular Advancement Device | Moderate | CRESCENT trial comparing mandibular advancement devices and CPAP for blood pressure reduction |
Hypoglossal Nerve Stimulation | Moderate | Research showing significant improvements in quality of life, AHI, oxygen desaturation index, and sustained benefits for up to 5 years |
Surgical Treatment (Uvulopalatopharyngoplasty) | Moderate | Studies showing success in reducing AHI but with risks such as bleeding, swallowing difficulties and voice changes |
Bariatric Surgery | Moderate | Long-term benefits in reducing OSA severity, quality of life improvement and reduction in cardiovascular risk 5 years post-surgery |
Positional Therapy | Low | Traditional methods less effective than CPAP in reducing AHI, adherence issues |
Antiarrhythmic Drug Therapy | Low | Lack of evidence supporting efficacy, reduced responsiveness in severe OSA patients |
Catheter Ablation or Cryoablation Therapy | Moderate | Observational studies and meta-analyses indicate increased risk of recurrent AF following ablation procedures, poorer outcomes with severe OSA |
Implantable Cardioverter-Defibrillator (ICD) and Other Device Therapy | Moderate | AIRLESS study demonstrates reliable detection of OSA through integrated transthoracic impedance sensor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birză, M.R.; Negru, A.G.; Frent, Ș.M.; Florescu, A.-R.; Popa, A.M.; Manzur, A.R.; Lascu, A.; Mihaicuța, S. New Insights of Cardiac Arrhythmias Associated with Sleep-Disordered Breathing: From Mechanisms to Clinical Implications—A Narrative Review. J. Clin. Med. 2025, 14, 1922. https://doi.org/10.3390/jcm14061922
Birză MR, Negru AG, Frent ȘM, Florescu A-R, Popa AM, Manzur AR, Lascu A, Mihaicuța S. New Insights of Cardiac Arrhythmias Associated with Sleep-Disordered Breathing: From Mechanisms to Clinical Implications—A Narrative Review. Journal of Clinical Medicine. 2025; 14(6):1922. https://doi.org/10.3390/jcm14061922
Chicago/Turabian StyleBirză, Mariela Romina, Alina Gabriela Negru, Ștefan Marian Frent, Andreea-Roxana Florescu, Alina Mirela Popa, Andrei Raul Manzur, Ana Lascu, and Stefan Mihaicuța. 2025. "New Insights of Cardiac Arrhythmias Associated with Sleep-Disordered Breathing: From Mechanisms to Clinical Implications—A Narrative Review" Journal of Clinical Medicine 14, no. 6: 1922. https://doi.org/10.3390/jcm14061922
APA StyleBirză, M. R., Negru, A. G., Frent, Ș. M., Florescu, A.-R., Popa, A. M., Manzur, A. R., Lascu, A., & Mihaicuța, S. (2025). New Insights of Cardiac Arrhythmias Associated with Sleep-Disordered Breathing: From Mechanisms to Clinical Implications—A Narrative Review. Journal of Clinical Medicine, 14(6), 1922. https://doi.org/10.3390/jcm14061922