Eligibility of Outpatients with Chronic Heart Failure for Vericiguat and Omecamtiv Mecarbil: From Clinical Trials to the Real-World Practice
Abstract
:1. Introduction
2. Materials and Methods
- VICTORIA trial—inclusion criteria: Patients aged 18 years or older with symptomatic (New York Heart Association (NYHA) class II-IV) CHF on standard therapy, with LVEF <45% and a previous HF hospitalization within 6 months or IV diuretic treatment for HF (without hospitalization) within 3 months, increased B-type natriuretic peptide (BNP) and amino terminal pro-brain natriuretic peptide (NT-proBNP) values. Exclusion criteria: Clinically unstable patients; systolic blood pressure <100 mmHg or symptomatic hypotension; use of long-acting nitrates/nitric oxide (NO) donors, phosphodiesterase type 5 (PDE5) inhibitors, or sGC stimulators; patients awaiting heart transplantation or receiving continuous IV infusion of inotrope or implanted ventricular assist device; presence of primary valvular heart disease requiring or within 3 months after surgery/intervention; hypertrophic obstructive cardiomyopathy; acute myocarditis; amyloidosis; sarcoidosis; takotsubo cardiomyopathy post-heart transplant cardiomyopathy; tachycardia-induced cardiomyopathy and/or uncontrolled tachyarrhythmia; acute coronary syndrome or coronary revascularization within 60 days or indication for coronary revascularization; symptomatic carotid stenosis; transient ischemic attack (TIA) or stroke within 60 days; complex congenital heart disease; active endocarditis or constrictive pericarditis; estimated glomerular filtration rate (eGFR) <15 mL/min/1.73 m2 or chronic dialysis; severe hepatic insufficiency; malignancy or other non-cardiac condition limiting life expectancy to <3 years; continuous home oxygen for severe pulmonary disease; current alcohol and/or drug abuse; interstitial lung disease; and pregnancy or breastfeeding [48].
- GALACTIC HF trial—inclusion criteria: Patients ≥ 18 to ≤85 years of age, symptomatic (NYHA class II to IV) CHF and LVEF ≤ 35%, managed with HF SoC therapies with a recent (within 1 year) hospitalization for heart failure (HHF) or urgent visit to emergency department (ED) for heart failure, and increased BNP or NT-proBNP levels. Exclusion criteria: Patients with malignancies (latest 5 years); mechanical hemodynamic support; IV treatment with inotropes, vasopressors, diuretics, or vasodilators; supplemental oxygen therapy; non-invasive mechanical ventilation; recent (within 3 months) acute coronary syndrome, stroke, or TIA; recent cardiac surgery or percutaneous interventions; recent (30 days) insertion of other cardiac devices; severe uncorrected valvular heart disease; hypertrophic or infiltrative cardiomyopathy, active myocarditis; constrictive pericarditis; clinically significant congenital heart disease; untreated severe arrhythmias; systolic blood pressure > 140 mmHg or <85 mmHg, or diastolic blood pressure > 90 mmHg, or heart rate > 110 beats per minute, or < 50 beats per minute; eGFR < 20 mL/min/1.73 m2 or receiving dialysis; hepatic impairment; and pregnancy or breastfeeding [53].
3. Results
3.1. Eligibility for Vericiguat
3.2. Eligibility for Omecamtiv Mecarbil
3.3. Comparison of Eligible and Non-Eligible Patients for Vericiguat and OM
4. Discussion
Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CHF | chronic heart failure |
LVEF | left ventricular ejection fraction |
OM | omecamtiv mecarbil |
sGC | soluble guanylate cyclase |
NYHA | New York Heart Association |
NO | nitric oxide |
PDE5 | phosphodiesterase type 5 |
HHF | hospitalization for heart failure |
ED | emergency department |
TIA | transient ischemic attack |
eGFR | estimated glomerular filtration rate |
IQR | interquartile range |
CKD | chronic kidney disease |
BNP | B-type natriuretic peptide |
NT-pro-BNP | amino terminal pro-brain natriuretic peptide |
References
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Dunlay, S.M.; Roger, V.L. Understanding the epidemic of heart failure: Past, present, and future. Curr. Heart Fail. Rep. 2014, 11, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Roger, V.L. Epidemiology of Heart Failure: A Contemporary Perspective. Circ. Res. 2021, 128, 1421–1434. [Google Scholar] [CrossRef]
- Bui, A.L.; Horwich, T.B.; Fonarow, G.C. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol. 2011, 8, 30–41. [Google Scholar] [CrossRef]
- Levy, D.; Kenchaiah, S.; Larson, M.G.; Benjamin, E.J.; Kupka, M.J.; Ho, K.K.; Murabito, J.M.; Vasan, R.S. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 2002, 347, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhu, S.; Yin, X.; Xie, C.; Xue, J.; Zhu, M.; Weng, F.; Zhu, S.; Xiang, B.; Zhou, X.; et al. Burden, Trends, and Inequalities of Heart Failure Globally, 1990 to 2019: A Secondary Analysis Based on the Global Burden of Disease 2019 Study. J. Am. Heart Assoc. 2023, 12, e027852. [Google Scholar] [CrossRef]
- Emmons-Bell, S.; Johnson, C.; Roth, G. Prevalence, incidence and survival of heart failure: A systematic review. Heart 2022, 108, 1351–1360. [Google Scholar] [CrossRef]
- Pontone, G.; Guaricci, A.I.; Fusini, L.; Baggiano, A.; Guglielmo, M.; Muscogiuri, G.; Volpe, A.; Abete, R.; Aquaro, G.; Barison, A.; et al. Cardiac Magnetic Resonance for Prophylactic Implantable-Cardioverter Defibrillator Therapy in Ischemic Cardiomyopathy: The DERIVATE-ICM International Registry. JACC Cardiovasc. Imaging 2023, 16, 1387–1400. [Google Scholar] [CrossRef]
- Di Cesare, E.; Carerj, S.; Palmisano, A.; Carerj, M.L.; Catapano, F.; Vignale, D.; Di Cesare, A.; Milanese, G.; Sverzellati, N.; Francone, M.; et al. Multimodality imaging in chronic heart failure. Radiol. Med. 2021, 126, 231–242. [Google Scholar] [CrossRef]
- Cameli, M.; Sciaccaluga, C.; Loiacono, F.; Simova, I.; Miglioranza, M.H.; Nistor, D.; Bandera, F.; Emdin, M.; Giannoni, A.; Ciccone, M.M.; et al. The analysis of left atrial function predicts the severity of functional impairment in chronic heart failure: The FLASH multicenter study. Int. J. Cardiol. 2019, 286, 87–91. [Google Scholar] [CrossRef]
- Merlo, M.; Gagno, G.; Baritussio, A.; Bauce, B.; Biagini, E.; Canepa, M.; Cipriani, A.; Castelletti, S.; Dellegrottaglie, S.; Guaricci, A.I.; et al. Clinical application of CMR in cardiomyopathies: Evolving concepts and techniques: A position paper of myocardial and pericardial diseases and cardiac magnetic resonance working groups of Italian society of cardiology. Heart Fail. Rev. 2023, 28, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Ghio, S.; Acquaro, M.; Agostoni, P.; Ambrosio, G.; Carluccio, E.; Castiglione, V.; Colombo, D.; D’Alto, M.; Delle Grottaglie, S.; Dini, F.L.; et al. Right heart failure in left heart disease: Imaging, functional, and biochemical aspects of right ventricular dysfunction. Heart Fail. Rev. 2023, 28, 1009–1022. [Google Scholar] [CrossRef] [PubMed]
- Santini, L.; Adamo, F.; Mahfouz, K.; Colaiaco, C.; Finamora, I.; De Lucia, C.; Danisi, N.; Gentile, S.; Sorrentino, C.; Romano, M.G.; et al. Remote Management of Heart Failure in Patients with Implantable Devices. Diagnostics 2024, 14, 2554. [Google Scholar] [CrossRef]
- Craig, W.; Ohlmann, S. The Benefits of Using Active Remote Patient Management for Enhanced Heart Failure Outcomes in Rural Cardiology Practice: Single-Site Retrospective Cohort Study. J. Med. Internet Res. 2024, 26, e49710. [Google Scholar] [CrossRef]
- De Lathauwer, I.L.J.; Nieuwenhuys, W.W.; Hafkamp, F.; Regis, M.; Brouwers, R.W.M.; Funk, M.; Kemps, H.M.C. Remote patient monitoring in heart failure: A comprehensive meta-analysis of effective programme components for hospitalization and mortality reduction. Eur. J. Heart Fail. 2025. [Google Scholar] [CrossRef]
- Peretto, G.; Barison, A.; Forleo, C.; Di Resta, C.; Esposito, A.; Aquaro, G.D.; Scardapane, A.; Palmisano, A.; Emdin, M.; Resta, N.; et al. Late gadolinium enhancement role in arrhythmic risk stratification of patients with LMNA cardiomyopathy: Results from a long-term follow-up multicentre study. Europace 2020, 22, 1864–1872. [Google Scholar] [CrossRef]
- Yoon, M.; Park, J.J.; Hur, T.; Hua, C.H.; Hussain, M.; Lee, S.; Choi, D.J. Application and Potential of Artificial Intelligence in Heart Failure: Past, Present, and Future. Int. J. Heart Fail. 2024, 6, 11–19. [Google Scholar] [CrossRef]
- Yasmin, F.; Shah, S.M.I.; Naeem, A.; Shujauddin, S.M.; Jabeen, A.; Kazmi, S.; Siddiqui, S.A.; Kumar, P.; Salman, S.; Hassan, S.A.; et al. Artificial intelligence in the diagnosis and detection of heart failure: The past, present, and future. Rev. Cardiovasc. Med. 2021, 22, 1095–1113. [Google Scholar] [CrossRef]
- Yu, C.S.; Wu, J.L.; Shih, C.M.; Chiu, K.L.; Chen, Y.D.; Chang, T.H. Exploring Mortality and Prognostic Factors of Heart Failure with In-Hospital and Emergency Patients by Electronic Medical Records: A Machine Learning Approach. Risk Manag. Healthc. Policy 2025, 18, 77–93. [Google Scholar] [CrossRef]
- Seringa, J.; Hirata, A.; Pedro, A.R.; Santana, R.; Magalhaes, T. Health Care Professionals and Data Scientists’ Perspectives on a Machine Learning System to Anticipate and Manage the Risk of Decompensation from Patients with Heart Failure: Qualitative Interview Study. J. Med. Internet Res. 2025, 27, e54990. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Martini, C.; Gatti, M.; Dell’Aversana, S.; Ricci, F.; Guglielmo, M.; Baggiano, A.; Fusini, L.; Bracciani, A.; Scafuri, S.; et al. Feasibility of late gadolinium enhancement (LGE) in ischemic cardiomyopathy using 2D-multisegment LGE combined with artificial intelligence reconstruction deep learning noise reduction algorithm. Int. J. Cardiol. 2021, 343, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Joyce, T.; Lorenzoni, V.; Guaricci, A.I.; Pavon, A.G.; Fusini, L.; Andreini, D.; Rabbat, M.G.; Aquaro, G.D.; Abete, R.; et al. AI Cardiac MRI Scar Analysis Aids Prediction of Major Arrhythmic Events in the Multicenter DERIVATE Registry. Radiology 2023, 307, e222239. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Van der Linden, L.; Hias, J.; Walgraeve, K.; Petrovic, M.; Tournoy, J.; Vandenbriele, C.; Van Aelst, L. Guideline-Directed Medical Therapies for Heart Failure with a Reduced Ejection Fraction in Older Adults: A Narrative Review on Efficacy, Safety and Timeliness. Drugs Aging 2023, 40, 691–702. [Google Scholar] [CrossRef]
- Tang, H.; Germinal, K.; Milfort, A.; Chen, W.H.; Chang, S.H.; Huang, W.; Li, Y.; Lu, Y.; Ahmed, M.M.; Kimmel, S.E.; et al. The most effective combination of pharmacological therapy for heart failure with reduced ejection fraction: A network meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 2024, 24, 666. [Google Scholar] [CrossRef]
- Colombo, G.; Biering-Sorensen, T.; Ferreira, J.P.; Lombardi, C.M.; Bonelli, A.; Garascia, A.; Metra, M.; Inciardi, R.M. Cardiac remodelling in the era of the recommended four pillars heart failure medical therapy. ESC Heart Fail. 2024. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Kober, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Belohlavek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Anker, S.D.; Butler, J.; Filippatos, G.; Brueckmann, M.; Ofstad, A.P.; Pfarr, E.; Jamal, W.; et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020, 396, 819–829. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Sattar, N.; Brueckmann, M.; Jamal, W.; Cotton, D.; et al. Empagliflozin in Patients with Heart Failure, Reduced Ejection Fraction, and Volume Overload: EMPEROR-Reduced Trial. J. Am. Coll. Cardiol. 2021, 77, 1381–1392. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Tentolouris, A.; Vlachakis, P.; Tzeravini, E.; Eleftheriadou, I.; Tentolouris, N. SGLT2 Inhibitors: A Review of Their Antidiabetic and Cardioprotective Effects. Int. J. Environ. Res. Public Health 2019, 16, 2965. [Google Scholar] [CrossRef]
- McGill, J.B.; Subramanian, S. Safety of Sodium-Glucose Co-Transporter 2 Inhibitors. Am. J. Cardiol. 2019, 124 (Suppl. S1), S45–S52. [Google Scholar] [CrossRef] [PubMed]
- Basile, P.; Monitillo, F.; Santoro, D.; Falco, G.; Carella, M.C.; Khan, Y.; Moretti, A.; Santobuono, V.E.; Memeo, R.; Pontone, G.; et al. Impact on ventricular arrhythmic burden of SGLT2 inhibitors in patients with chronic heart failure evaluated with cardiac implantable electronic device monitoring. J. Cardiol. 2024, in press. [Google Scholar] [CrossRef]
- Maged, R.; Sinha, M.; Koneru, H.M.; Sarwar, H.; Bandi, V.V.; Tarar, P.; Halawa, N. Efficacy of Sodium-Glucose 2 Transporter Inhibitors in Heart Failure with Preserved Ejection Fraction: A Narrative Review. Cureus 2024, 16, e69623. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Bohm, M.; Brunner-La Rocca, H.P.; Choi, D.J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Haghighat, L.; DeJong, C.; Teerlink, J.R. New and future heart failure drugs. Nat. Cardiovasc. Res. 2024, 3, 1389–1407. [Google Scholar] [CrossRef]
- Ismail, Z.; Aboughdir, M.; Duric, B.; Kakar, S.; Chan, J.S.K.; Bayatpoor, Y.; Harky, A. Advances in pharmacotherapy for heart failure and reduced ejection fraction: What’s new in 2024? Expert Opin. Pharmacother. 2024, 25, 1887–1902. [Google Scholar] [CrossRef]
- Sapna, F.; Raveena, F.; Chandio, M.; Bai, K.; Sayyar, M.; Varrassi, G.; Khatri, M.; Kumar, S.; Mohamad, T. Advancements in Heart Failure Management: A Comprehensive Narrative Review of Emerging Therapies. Cureus 2023, 15, e46486. [Google Scholar] [CrossRef]
- Basile, P.; Guaricci, A.I.; Piazzolla, G.; Volpe, S.; Vozza, A.; Benedetto, M.; Carella, M.C.; Santoro, D.; Monitillo, F.; Baggiano, A.; et al. Improvement of Left Ventricular Global Longitudinal Strain after 6-Month Therapy with GLP-1RAs Semaglutide and Dulaglutide in Type 2 Diabetes Mellitus: A Pilot Study. J. Clin. Med. 2023, 12, 1586. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Simonneau, G.; Corris, P.A.; Ghofrani, H.A.; Klinger, J.R.; Langleben, D.; Naeije, R.; Jansa, P.; Rosenkranz, S.; Scelsi, L.; et al. RESPITE: Switching to riociguat in pulmonary arterial hypertension patients with inadequate response to phosphodiesterase-5 inhibitors. Eur. Respir. J. 2017, 50, 1602425. [Google Scholar] [CrossRef]
- Makowski, C.T.; Rissmiller, R.W.; Bullington, W.M. Riociguat: A novel new drug for treatment of pulmonary hypertension. Pharmacotherapy 2015, 35, 502–519. [Google Scholar] [CrossRef]
- Jais, X.; Brenot, P.; Bouvaist, H.; Jevnikar, M.; Canuet, M.; Chabanne, C.; Chaouat, A.; Cottin, V.; De Groote, P.; Favrolt, N.; et al. Balloon pulmonary angioplasty versus riociguat for the treatment of inoperable chronic thromboembolic pulmonary hypertension (RACE): A multicentre, phase 3, open-label, randomised controlled trial and ancillary follow-up study. Lancet Respir. Med. 2022, 10, 961–971. [Google Scholar] [CrossRef]
- Wiedenroth, C.B.; Ghofrani, H.A.; Adameit, M.S.D.; Breithecker, A.; Haas, M.; Kriechbaum, S.; Rieth, A.; Hamm, C.W.; Mayer, E.; Guth, S.; et al. Sequential treatment with riociguat and balloon pulmonary angioplasty for patients with inoperable chronic thromboembolic pulmonary hypertension. Pulm. Circ. 2018, 8, 2045894018783996. [Google Scholar] [CrossRef]
- Triposkiadis, F.; Xanthopoulos, A.; Skoularigis, J.; Starling, R.C. Therapeutic augmentation of NO-sGC-cGMP signalling: Lessons learned from pulmonary arterial hypertension and heart failure. Heart Fail. Rev. 2022, 27, 1991–2003. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Pieske, B.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; Butler, J.; Lam, C.S.P.; Ponikowski, P.; Voors, A.A.; Jia, G.; et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2020, 382, 1883–1893. [Google Scholar] [CrossRef]
- Shoji, S.; Mentz, R.J. Beyond quadruple therapy: The potential roles for ivabradine, vericiguat, and omecamtiv mecarbil in the therapeutic armamentarium. Heart Fail. Rev. 2024, 29, 949–955. [Google Scholar] [CrossRef]
- Teerlink, J.R.; Felker, G.M.; McMurray, J.J.; Solomon, S.D.; Adams, K.F., Jr.; Cleland, J.G.; Ezekowitz, J.A.; Goudev, A.; Macdonald, P.; Metra, M.; et al. Chronic Oral Study of Myosin Activation to Increase Contractility in Heart Failure (COSMIC-HF): A phase 2, pharmacokinetic, randomised, placebo-controlled trial. Lancet 2016, 388, 2895–2903. [Google Scholar] [CrossRef]
- Harrington, J.; Sun, J.L.; Fonarow, G.C.; Heitner, S.B.; Divanji, P.H.; Allen, L.A.; Alhanti, B.; Yancy, C.W.; Albert, N.M.; DeVore, A.D.; et al. Potential Applicability of Omecamtiv Mecarbil to Patients Hospitalized for Worsening Heart Failure. Am. J. Cardiol. 2023, 205, 524–526. [Google Scholar] [CrossRef] [PubMed]
- Malik, F.I.; Hartman, J.J.; Elias, K.A.; Morgan, B.P.; Rodriguez, H.; Brejc, K.; Anderson, R.L.; Sueoka, S.H.; Lee, K.H.; Finer, J.T.; et al. Cardiac myosin activation: A potential therapeutic approach for systolic heart failure. Science 2011, 331, 1439–1443. [Google Scholar] [CrossRef] [PubMed]
- Teerlink, J.R.; Diaz, R.; Felker, G.M.; McMurray, J.J.V.; Metra, M.; Solomon, S.D.; Adams, K.F.; Anand, I.; Arias-Mendoza, A.; Biering-Sorensen, T.; et al. Cardiac Myosin Activation with Omecamtiv Mecarbil in Systolic Heart Failure. N. Engl. J. Med. 2021, 384, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Galvan Ruiz, M.; Fernandez de Sanmamed Giron, M.; del Val Groba Marco, M.; Rojo Jorge, L.; Pena Saavedra, C.; Martin Bou, E.; Andrade Guerra, R.; Caballero Dorta, E.; Garcia Quintana, A. Clinical profile, associated events and safety of vericiguat in a real-world cohort: The VERITA study. ESC Heart Fail. 2024, 11, 4222–4230. [Google Scholar] [CrossRef]
- Hashimoto, T.; Yoshitake, T.; Suenaga, T.; Yamamoto, S.; Fujino, T.; Shinohara, K.; Matsushima, S.; Ide, T.; Kinugawa, S.; Abe, K. Effectiveness of Vericiguat on right ventricle to pulmonary artery uncoupling associated with heart failure with reduced ejection fraction. Int. J. Cardiol. 2024, 415, 132441. [Google Scholar] [CrossRef]
- Vannuccini, F.; Campora, A.; Barilli, M.; Palazzuoli, A. Vericiguat in Heart Failure: Characteristics, Scientific Evidence and Potential Clinical Applications. Biomedicines 2022, 10, 2471. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Marti, C.N.; Sabbah, H.N.; Roessig, L.; Greene, S.J.; Bohm, M.; Burnett, J.C.; Campia, U.; Cleland, J.G.; Collins, S.P.; et al. Soluble guanylate cyclase: A potential therapeutic target for heart failure. Heart Fail. Rev. 2013, 18, 123–134. [Google Scholar] [CrossRef]
- Hulot, J.S.; Trochu, J.N.; Donal, E.; Galinier, M.; Logeart, D.; De Groote, P.; Juilliere, Y. Vericiguat for the treatment of heart failure: Mechanism of action and pharmacological properties compared with other emerging therapeutic options. Expert Opin. Pharmacother. 2021, 22, 1847–1855. [Google Scholar] [CrossRef]
- Sandner, P. From molecules to patients: Exploring the therapeutic role of soluble guanylate cyclase stimulators. Biol. Chem. 2018, 399, 679–690. [Google Scholar] [CrossRef]
- Russo, P.; Vitiello, L.; Milani, F.; Volterrani, M.; Rosano, G.M.C.; Tomino, C.; Bonassi, S. New Therapeutics for Heart Failure Worsening: Focus on Vericiguat. J. Clin. Med. 2024, 13, 4209. [Google Scholar] [CrossRef]
- Emdin, M.; Aimo, A.; Castiglione, V.; Vergaro, G.; Georgiopoulos, G.; Saccaro, L.F.; Lombardi, C.M.; Passino, C.; Cerbai, E.; Metra, M.; et al. Targeting Cyclic Guanosine Monophosphate to Treat Heart Failure: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2020, 76, 1795–1807. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.V.; Lindberg, F.; Benson, L.; Ferrannini, G.; Imbalzano, E.; Mol, P.G.M.; Dahlstrom, U.; Rosano, G.M.C.; Ezekowitz, J.; Butler, J.; et al. Eligibility for vericiguat in a real-world heart failure population according to trial, guideline and label criteria: Data from the Swedish Heart Failure Registry. Eur. J. Heart Fail. 2023, 25, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Lee, C.J.; Park, J.J.; Lee, S.E.; Kim, M.S.; Cho, H.J.; Choi, J.O.; Lee, H.Y.; Hwang, K.K.; Kim, K.H.; et al. Real-world eligibility for vericiguat in decompensated heart failure with reduced ejection fraction. ESC Heart Fail. 2022, 9, 1492–1495. [Google Scholar] [CrossRef]
- Moghaddam, N.; Hawkins, N.M.; McKelvie, R.; Poon, S.; Joncas, S.X.; MacFadyen, J.; Honos, G.; Wang, J.; Rojas-Fernandez, C.; Kok, M.; et al. Patient Eligibility for Established and Novel Guideline-Directed Medical Therapies After Acute Heart Failure Hospitalization. JACC Heart Fail. 2023, 11, 596–606. [Google Scholar] [CrossRef]
- Lahoz, R.; Fagan, A.; McSharry, M.; Proudfoot, C.; Corda, S.; Studer, R. Recurrent heart failure hospitalizations are associated with increased cardiovascular mortality in patients with heart failure in Clinical Practice Research Datalink. ESC Heart Fail. 2020, 7, 1688–1699. [Google Scholar] [CrossRef]
- Gheorghiade, M.; Vaduganathan, M.; Fonarow, G.C.; Bonow, R.O. Rehospitalization for heart failure: Problems and perspectives. J. Am. Coll. Cardiol. 2013, 61, 391–403. [Google Scholar] [CrossRef]
- Setoguchi, S.; Stevenson, L.W.; Schneeweiss, S. Repeated hospitalizations predict mortality in the community population with heart failure. Am. Heart J. 2007, 154, 260–266. [Google Scholar] [CrossRef]
- Solomon, S.D.; Dobson, J.; Pocock, S.; Skali, H.; McMurray, J.J.; Granger, C.B.; Yusuf, S.; Swedberg, K.; Young, J.B.; Michelson, E.L.; et al. Influence of nonfatal hospitalization for heart failure on subsequent mortality in patients with chronic heart failure. Circulation 2007, 116, 1482–1487. [Google Scholar] [CrossRef]
- Cardoso, R.; Graffunder, F.P.; Ternes, C.M.P.; Fernandes, A.; Rocha, A.V.; Fernandes, G.; Bhatt, D.L. SGLT2 inhibitors decrease cardiovascular death and heart failure hospitalizations in patients with heart failure: A systematic review and meta-analysis. EClinicalMedicine 2021, 36, 100933. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Butler, J.; Anstrom, K.J.; Blaustein, R.O.; Bonaca, M.P.; Corda, S.; Ezekowitz, J.A.; Lam, C.S.P.; Lewis, E.F.; Lindenfeld, J.; et al. Vericiguat Global Study in Participants with Chronic Heart Failure: Design of the VICTOR trial. Eur. J. Heart Fail. 2025, 27, 209–218. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, Y.; Huang, X.; Wu, C.; Porszasz, R. Omecamtiv Mecarbil in the treatment of heart failure: The past, the present, and the future. Front. Cardiovasc. Med. 2024, 11, 1337154. [Google Scholar] [CrossRef] [PubMed]
- Planelles-Herrero, V.J.; Hartman, J.J.; Robert-Paganin, J.; Malik, F.I.; Houdusse, A. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat. Commun. 2017, 8, 190. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.C.; Dorhout, B.; van der Meer, P.; Teerlink, J.R.; Voors, A.A. Omecamtiv mecarbil: A new cardiac myosin activator for the treatment of heart failure. Expert Opin. Investig. Drugs 2016, 25, 117–127. [Google Scholar] [CrossRef]
- Scellini, B.; Piroddi, N.; Dente, M.; Pioner, J.M.; Ferrantini, C.; Poggesi, C.; Tesi, C. Myosin Isoform-Dependent Effect of Omecamtiv Mecarbil on the Regulation of Force Generation in Human Cardiac Muscle. Int. J. Mol. Sci. 2024, 25, 9784. [Google Scholar] [CrossRef]
- Steinberg, B.A.; Zhao, X.; Heidenreich, P.A.; Peterson, E.D.; Bhatt, D.L.; Cannon, C.P.; Hernandez, A.F.; Fonarow, G.C. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: Prevalence, therapies, and outcomes. Circulation 2012, 126, 65–75. [Google Scholar] [CrossRef]
- Ambrosy, A.P.; Fonarow, G.C.; Butler, J.; Chioncel, O.; Greene, S.J.; Vaduganathan, M.; Nodari, S.; Lam, C.S.P.; Sato, N.; Shah, A.N.; et al. The global health and economic burden of hospitalizations for heart failure: Lessons learned from hospitalized heart failure registries. J. Am. Coll. Cardiol. 2014, 63, 1123–1133. [Google Scholar] [CrossRef]
- Yancy, C.W.; Lopatin, M.; Stevenson, L.W.; De Marco, T.; Fonarow, G.C.; ADHERE Scientific Advisory Committee and Investigators. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: A report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J. Am. Coll. Cardiol. 2006, 47, 76–84. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Lam, C.S.P.; Anstrom, K.J.; Ezekowitz, J.; Hernandez, A.F.; O’Connor, C.M.; Pieske, B.; Ponikowski, P.; Shah, S.J.; Solomon, S.D.; et al. Effect of Vericiguat vs Placebo on Quality of Life in Patients With Heart Failure and Preserved Ejection Fraction: The VITALITY-HFpEF Randomized Clinical Trial. JAMA 2020, 324, 1512–1521. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Y.; Yong, Y.; Wang, L.; Liu, J. Vericiguat combined with “new quadruple” therapy enhances cardiac function and life quality in patients with heart failure: A single-center prospective study. Front. Cardiovasc. Med. 2024, 11, 1476976. [Google Scholar] [CrossRef]
- Pieske, B.; Maggioni, A.P.; Lam, C.S.P.; Pieske-Kraigher, E.; Filippatos, G.; Butler, J.; Ponikowski, P.; Shah, S.J.; Solomon, S.D.; Scalise, A.V.; et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: Results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur. Heart J. 2017, 38, 1119–1127. [Google Scholar] [CrossRef]
- Lavalle, C.; Mariani, M.V.; Severino, P.; Palombi, M.; Trivigno, S.; D’Amato, A.; Silvetti, G.; Pierucci, N.; Di Lullo, L.; Chimenti, C.; et al. Efficacy of Modern Therapies for Heart Failure with Reduced Ejection Fraction in Specific Population Subgroups: A Systematic Review and Network Meta-Analysis. Cardiorenal Med. 2024, 14, 570–580. [Google Scholar] [CrossRef]
Baseline Parameters | Total (n = 350) | Eligible for Vericiguat (n = 7) | Non-Eligible for Vericiguat (n = 343) | p-Value | Eligible for Omecamtiv (n = 13) | Non-Eligible for Omecamtiv (n = 337) | p-Value |
---|---|---|---|---|---|---|---|
Age, median [IQR] | 67 [17] | 72 [16] | 67 [17] | 0.485 | 72 [17] | 67 [17] | 0.383 |
Sex male, n (%) | 270 (77.1) | 6 (85.7) | 264 (77.0) | 0.585 | 11 (84.6) | 259 (76.9) | 0.513 |
Family history of CVD, n (%) | 94 (26.9) | 1 (14.3) | 93 (27.2) | 0.446 | 3 (23.1) | 91 (27.1) | 0.749 |
Arterial hypertension, n (%) | 232 (66.5) | 4 (57.1) | 228 (66.7) | 0.691 | 6 (46.2) | 226 (67.3) | 0.114 |
Dyslipidemia, n (%) | 220 (63.2) | 3 (42.9) | 217 (63.6) | 0.267 | 6 (46.2) | 214 (63.9) | 0.193 |
Diabetes Mellitus, n (%) | 111 (32.1) | 3 (42.9) | 108 (31.9) | 0.685 | 4 (30.8) | 107 (32.1) | 0.918 |
Smoking habit, n (%) | 163 (46.7) | 3 (42.9) | 160 (46.8) | 1.000 | 6 (46.2) | 157 (46.7) | 0.968 |
Obesity, n (%) | 116 (33.3) | 2 (28.6) | 114 (33.4) | 1.000 | 3 (23.1) | 113 (33.7) | 0.424 |
Ischemic etiology, n (%) | 137 (39.1) | 4 (57.1) | 133 (38.8) | 0.439 | 9 (69.2) | 128 (38.0) | 0.024 |
Alcohol/drugs abuse, n (%) | 9 (2.6) | 0 (0.0) | 9 (2.6) | 0.664 | 0 (0.0) | 9 (2.6) | 0.890 |
Chronic Kidney Disease, n (%) | 123 (35.2) | 3 (42.9) | 120 (35.1) | 0.701 | 7 (53.8) | 116 (34.5) | 0.152 |
Chronic dialysis, n (%) | 5 (1.4) | 0 (0.0) | 5 (1.5) | 1.000 | 0 (0.0) | 5 (1.5) | 1.000 |
Hepatic insufficiency, n (%) | 3 (0.9) | 0 (0.0) | 3 (0.9) | 1.000 | 0 (0.0) | 3 (0.9) | 1.000 |
Interstitial Lung Disease, (%) | 22 (6.3) | 0 (0.0) | 22 (6.3) | 0.488 | 0 (0.0) | 22 (6.5) | 0.341 |
ACS/PCI/CABG/STROKE/TIA, n (%) | 149 (42.7) | 3 (42.9) | 146 (42.7) | 1.000 | 8 (61.5) | 141 (42.0) | 0.162 |
Active cancer, n (%) | 16 (4.6) | 0 (0.0) | 16 (4.7) | 0.558 | 0 (0.0) | 16 (4.8) | 0.421 |
Enrolment in transplant list, n (%) | 17 (4.9) | 0 (0.0) | 17 (4.9) | 0.546 | 0 (0.0) | 17 (4.9) | 0.483 |
OHT, n (%) | 9 (2.6) | 0 (0.0) | 9 (2.6) | 0.664 | 0 (0.0) | 9 (2.6) | 0.551 |
GDMT | |||||||
| 294 (84.2) | 7 (100) | 287 (83.9) | 0.248 | 13 (100) | 281 (95.6) | 0.112 |
| 324 (92.8) | 7 (100) | 317 (97.8) | 0.458 | 13 (100) | 311 (96.0) | 0.307 |
| 235 (67.5) | 6 (85.7) | 229 (67.2) | 0.435 | 12 (92.3) | 223 (66.6) | 0.052 |
| 193 (55.8) | 6 (85.7) | 187 (55.2) | 0.139 | 11 (84.6) | 182 (54.7) | 0.033 |
| 242 (69.5) | 7 (100) | 235 (68.9) | 0.106 | 12 (92.3) | 230 (68.7) | 0.069 |
Diuretics daily dose (mg/die), median [IQR] | 25 [50] | 50 [75] | 25 [25] | 0.502 | 62.5 [75] | 25 [25] | 0.128 |
Long-acting nitrates, n (%) | 1 (0.3) | 0 (0.0) | 1 (0.3) | 1.000 | 0 (0.0) | 1 (0.3) | 1.000 |
PDE5 inhibitors, n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | - | 0 (0.0) | 0 (0.0) | - |
IV infusion of inotrope, n (%) | 3 (0.9) | 0 (0.0) | 3 (0.9) | 1.000 | 0 (0.0) | 3 (0.9) | 1.000 |
Oxygen therapy, n (%) | 2 (0.6) | 0 (0.0) | 2 (0.6) | 1.000 | 0 (0.0) | 2 (0.6) | 1.000 |
Lipid lowering therapy, n (%) | 265 (75.9) | 5 (71.4) | 260 (76.0) | 0.778 | 11 (84.6) | 254 (75.6) | 0.455 |
Anticoagulants, n (%) | 188 (53.9) | 4 (57.1) | 184 (53.8) | 1.000 | 9 (4.8) | 179 (53.3) | 0.257 |
Anti-arrhythmic drugs, n (%) | 125 (35.8) | 1 (14.3) | 124 (36.3) | 0.429 | 5 (38.5) | 120 (35.7) | 0.839 |
CIED, n (%) | 264 (75.9) | 6 (85.7) | 258 (75.7) | 0.538 | 13 (100) | 251 (74.9) | 0.038 |
Recent HHF, n (%) | 45 (12.9) vericiguat—64 (18.3) OM | 7 (100) | 38 (11.1) | <0.001 | 13 (100) | 51 (15.1) | <0.001 |
Clinical parameters | |||||||
BMI (Kg/m2), median [IQR] | 27.0 [6.9] | 26.0 [8.0] | 27.0 [6.9] | 0.327 | 24.0 [5.0] | 28.0 [6.0] | 0.010 |
NYHA class, n (%) | 0.635 | 0.229 | |||||
I | 60 (17.2) | 0 (0.0) | 60 (17.5) | 0 (0.0) | 60 (17.9) | ||
II | 166 (47.6) | 4 (57.1) | 162 (47.4) | 6 (46.2) | 160 (47.6) | ||
III | 116 (33.2) | 3 (42.9) | 113 (33.0) | 7 (53.8) | 109 (32.4) | ||
IV | 7 (2.0) | 0 (0.0) | 7 (2.0) | 0 (0.0) | 7 (2.1) | ||
Pulmonary congestion, n (%) | 36 (10.3) | 0 (0.0) | 36 (10.3) | 0.631 | 1 (7.7) | 35 (10.4) | 0.876 |
Jugular turgor, n (%) | 14 (4.0) | 0 (0.0) | 14 (4.1) | 0.583 | 0 (0.0) | 14 (4.2) | 0.450 |
Peripheral oedema, n (%) | 70 (20.2) | 2 (28.6) | 68 (20.1) | 0.579 | 7 (53.8) | 63 (18.9) | 0.002 |
Hepatomegaly, n (%) | 14 (4.0) | 0 (0.0) | 14 (4.1) | 0.583 | 1 (7.7) | 13 (3.9) | 0.490 |
Cold extremities, n (%) | 1 (0.3) | 0 (0.0) | 1 (0.3) | 1.000 | 0 (0.0) | 1 (0.3) | 1.000 |
Recent diuretic dose increase, n (%) | 23 (6.7) | 1 (14.3) | 22 (6.5) | 0.418 | 6 (46.2) | 86 (25.7) | 0.100 |
Signs of vascular congestion, n (%) | 92 (26.4) | 2 (28.6) | 90 (25.9) | 0.897 | 2 (15.4) | 21 (6.4) | 0.202 |
HR (bpm), median (IQR) | 67 [15] | 60 [6] | 67 [15] | 0.153 | 60 [9] | 67 [15] | 0.103 |
SBP (mmHg), median [IQR] | 110 [20] | 110 [45] | 110 [20] | 0.525 | 100 [23] | 110 [20] | 0.438 |
DBP (mmHg), median [IQR] | 70 [15] | 80 [20] | 70 [10] | 0.322 | 60 [20] | 70 [15] | 0.697 |
Atrial fibrillation, n (%) | 166 (47.6) | 1 (14.3) | 165 (48.2) | 0.124 | 6 (46.2) | 160 (47.6) | 0.917 |
Laboratory parameters | |||||||
Creatinine (mg/dl), median [IQR] | 1.1 [0.5] | 1.0 [0.5] | 1.3 [0.5] | 0.573 | 1.3 [0.9] | 1.1 [0.5] | 0.527 |
eGFR (ml/min/m2), median [IQR] | 64.7 [38.0] | 70.0 [30.0] | 64.5 [38.0] | 0.638 | 53.0 [37.7] | 65.0 [38.0] | 0.524 |
Bilirubin (mg/dl), median [IQR] | 0.70 [0.44] | 1.20 [0.00] | 0.69 [0.45] | 0.174 | 0.92 [0.96] | 0.70 [0.44] | 0.529 |
AST (UI), median [IQR] | 22 [10] | 25 [15] | 22 [10] | 0.603 | 29 [12] | 21 [10] | 0.172 |
ALT (UI), median [IQR] | 20 [15] | 30 [0] | 20 [15] | 0.319 | 31 [0] | 20 [15] | 0.260 |
BNP (pg/mL), median [IQR] | 79 [105] | - | 79 [105] | - | - | 79 [105] | - |
NTproBNP (pg/mL), median [IQR] | 1115 [2354] | 2202 [6095] | 1023 [2310] | 0.012 | 2721 [5884] | 930 [2236] | 0.001 |
Echocardiographic parameters | |||||||
IVS (mm), median (IQR) | 11 [3] | 10 [4] | 11 [3] | 0.221 | 10 [3] | 11 [3] | 0.002 |
LVEDD (mm), median (IQR) | 55 [12] | 55 [18] | 55 [12] | 0.193 | 63 [15] | 55 [11] | 0.002 |
LVEDV (mL), median (IQR) | 127 [62] | 173 [150] | 127 [62] | 0.175 | 217 [156] | 125 [61] | 0.001 |
LVESV (mL), median (IQR) | 73 [55] | 133 [120] | 73 [54] | 0.035 | 177 [139] | 73 [51] | <0.001 |
LVEF (%), median (IQR) | 41 [19] | 25 [8] | 41 [18] | 0.002 | 23 [18] | 41 [18] | <0.001 |
LAAPD (mm), median (IQR) | 44 [10] | 46 [7] | 44 [10] | 0.844 | 47 [9] | 44 [10] | 0.128 |
E/A > 2, n (%) | 29 (11.4) | 2 (33.3) | 27 (10.8) | 0.086 | 2 (20.0) | 27 (11.0) | 0.381 |
E/E’, median [IQR] | 9.5 [4.9] | 8.5 [11.8] | 9.5 [4.9] | 0.825 | 10.5 [11.8] | 9.5 [4.9] | 0.379 |
SPAP (mmHg), median [IQR] | 29 [10] | 35 [27] | 29 [10] | 0.456 | 35 [14] | 29 [10] | 0.039 |
TAPSE (mm), median [IQR] | 19 [5] | 18 [8] | 19 [5] | 0.526 | 19 [6] | 19 [5] | 0.557 |
S’ tricuspidal, median [IQR] | 10.7 [3.0] | 9.7 [4.0] | 10.7 [3.0] | 0.531 | 11.5 [3.2] | 10.6 [3.0] | 0.783 |
IVC diameter (mm), median [IQR] | 16 [4] | 17 [4] | 16 [4] | 0.442 | 16 [6] | 16 [4] | 0.618 |
IVC collapse, n (%) | 294 (87.5) | 6 (85.7) | 288 (87.5) | 0.885 | 11 (84.6) | 283 (87.6) | 0.748 |
MR moderate or more, n (%) | 81 (23.6) | 2 (28.6) | 79 (23.6) | 0.318 | 6 (46.2) | 75 (22.7) | 0.080 |
TR moderate or more, n (%) | 72 (21.0) | 3 (42.9) | 69 (20.6) | 0.517 | 6 (46.2) | 66 (19.9) | 0.082 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basile, P.; Falagario, A.; Carella, M.C.; Dicorato, M.M.; Monitillo, F.; Santoro, D.; Naccarati, M.L.; Pontone, G.; Ciccone, M.M.; Santobuono, V.E.; et al. Eligibility of Outpatients with Chronic Heart Failure for Vericiguat and Omecamtiv Mecarbil: From Clinical Trials to the Real-World Practice. J. Clin. Med. 2025, 14, 1951. https://doi.org/10.3390/jcm14061951
Basile P, Falagario A, Carella MC, Dicorato MM, Monitillo F, Santoro D, Naccarati ML, Pontone G, Ciccone MM, Santobuono VE, et al. Eligibility of Outpatients with Chronic Heart Failure for Vericiguat and Omecamtiv Mecarbil: From Clinical Trials to the Real-World Practice. Journal of Clinical Medicine. 2025; 14(6):1951. https://doi.org/10.3390/jcm14061951
Chicago/Turabian StyleBasile, Paolo, Alessio Falagario, Maria Cristina Carella, Marco Maria Dicorato, Francesco Monitillo, Daniela Santoro, Maria Ludovica Naccarati, Gianluca Pontone, Marco Matteo Ciccone, Vincenzo Ezio Santobuono, and et al. 2025. "Eligibility of Outpatients with Chronic Heart Failure for Vericiguat and Omecamtiv Mecarbil: From Clinical Trials to the Real-World Practice" Journal of Clinical Medicine 14, no. 6: 1951. https://doi.org/10.3390/jcm14061951
APA StyleBasile, P., Falagario, A., Carella, M. C., Dicorato, M. M., Monitillo, F., Santoro, D., Naccarati, M. L., Pontone, G., Ciccone, M. M., Santobuono, V. E., & Guaricci, A. I. (2025). Eligibility of Outpatients with Chronic Heart Failure for Vericiguat and Omecamtiv Mecarbil: From Clinical Trials to the Real-World Practice. Journal of Clinical Medicine, 14(6), 1951. https://doi.org/10.3390/jcm14061951