Ventriculoperitoneal Shunt Infections: Causative Pathogens and Associated Outcomes from Multiple Hospitals in Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Setting and Study Population
2.2. Data Collection and Analysis
2.3. Ethical Approval
3. Results
3.1. Demographics
3.2. Rate of VPS Infections
3.3. Pathogens and Antibiotic Sensitivity Profiles
3.4. Clinical Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soler, G.J.; Bao, M.; Jaiswal, D.; Zaveri, H.P.; DiLuna, M.L.; Grant, R.A.; Hoshino, K. A Review of Cerebral Shunts, Current Technologies, and Future Endeavors. Yale J. Biol. Med. 2018, 91, 313–321. [Google Scholar]
- Wright, Z.; Larrew, T.W.; Eskandari, R. Pediatric Hydrocephalus: Current State of Diagnosis and Treatment. Pediatr. Rev. 2016, 37, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Rekate, H.L. Hydrocephalus in infants: The unique biomechanics and why they matter. Childs Nerv. Syst. 2020, 36, 1713–1728. [Google Scholar] [CrossRef]
- Zhang, J.; Williams, M.A.; Rigamonti, D. Genetics of human hydrocephalus. J. Neurol. 2006, 253, 1255–1266. [Google Scholar] [CrossRef]
- Tamber, M.S. Insights into the epidemiology of infant hydrocephalus. Childs Nerv. Syst. 2021, 37, 3305–3311. [Google Scholar] [CrossRef] [PubMed]
- Jesuyajolu, D.A.; Zubair, A.; Nicholas, A.K.; Moti, T.; Osarobomwen, O.E.; Anyahaebizi, I.; Okeke, C.; Davis, S.O. Endoscopic third ventriculostomy versus ventriculoperitoneal shunt insertion for the management of pediatric hydrocephalus in African centers—A systematic review and meta-analysis. Surg. Neurol. Int. 2022, 13, 467–469. [Google Scholar] [CrossRef]
- Yakut, N.; Soysal, A.; Kepenekli Kadayifci, E.; Dalgic, N.; Yılmaz Ciftdogan, D.; Karaaslan, A.; Akkoc, G.; Ocal Demir, S.; Cagan, E.; Celikboya, E.; et al. Ventriculoperitoneal shunt infections and re-infections in children: A multicentre retrospective study. Br. J. Neurosurg. 2018, 32, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Clemen, R.; Backous, D.D. Intracranial pressure concerns in lateral skull base surgery. Otolaryngol. Clin. N. Am. 2007, 40, 455–462. [Google Scholar] [CrossRef]
- Altwejri, I.S.; AlRaddadi, K.K.; Alsager, G.A.; Abobotain, A.H.; Al Abdulsalam, H.K.; AlQazlan, S.M.; Almujaiwel, N.A. Patterns and prognosis of ventriculoperitoneal shunt malfunction among pediatrics in Saudi Arabia. Neurosciences 2020, 25, 356–361. [Google Scholar] [CrossRef]
- Kim, M.; Choi, J.H.; Park, J.C.; Ahn, J.S.; Kwun, B.D.; Park, W. Ventriculoperitoneal shunt infection and malfunction in adult patients: Incidence, risk factors, and long-term follow-up of single institution experience. Neurosurg. Rev. 2024, 47, 269. [Google Scholar] [CrossRef]
- Di Rocco, C.; Conforti, G.; Caldarelli, M. The Current Minor Perception of V-S Complication. World Neurosurg. 2014, 81, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.J.; Walker, C.T.; Jacobson, M.; Phillips, V.; Silberstein, H.J. Revision rate of pediatric ventriculoperitoneal shunts after 15 years. J. Neurosurg. Pediatr. 2013, 11, 15–19. [Google Scholar] [CrossRef]
- McGirt, M.J.; Zaas, A.; Fuchs, H.E.; George, T.M.; Kaye, K.; Sexton, D.J. Risk factors for pediatric ventriculoperitoneal shunt infection and predictors of infectious pathogens. Clin. Infect. Dis. 2003, 36, 858–862. [Google Scholar] [CrossRef] [PubMed]
- Bue, E.L.; Morello, A.; Bellomo, J.; Bradaschia, L.; Lacatena, F.; Colonna, S.; Fiumefreddo, A.; Stieglitz, L.; Regli, L.; Lanotte, M.M.; et al. Ventriculoatrial shunt remains a safe surgical alternative for hydrocephalus: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 1–9. [Google Scholar] [CrossRef]
- Akram Asif, A.; Mahmood, K.; Riaz, S.; McHugh, T.; Sultan, S. Bacterial ventriculoperitoneal shunt infections: Changing trends in antimicrobial susceptibility, a 7-year retrospective study from Pakistan. Antimicrob. Resist. Infect. Control. 2023, 12, 75. [Google Scholar] [CrossRef]
- Prusseit, J.; Simon, M.; von der Brelie, C.; Heep, A.; Molitor, E.; Volz, S.; Simon, A. Epidemiology, prevention and management of ventriculoperitoneal shunt infections in children. Pediatr. Neurosurg. 2009, 45, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Stevens, N.T.; Greene, C.M.; O’Gara, J.P.; Bayston, R.; Sattar, M.T.A.; Farrell, M.; Humphreys, H. Ventriculoperitoneal shunt-related infections caused by Staphylococcus epidermidis: Pathogenesis and implications for treatment. Br. J. Neurosurg. 2012, 26, 792–797. [Google Scholar] [CrossRef]
- Bayston, R. Infections in CSF Shunts and External Ventricular Drainage. In Cerebrospinal Fluid; Bektaşoğlu, P.K., Gürer, B., Eds.; IntechOpen: London, UK, 2021; p. e1. [Google Scholar]
- Venkataramana, N.K. Hydrocephalus Indian scenario—A review. J. Pediatr. Neurosci. 2011, 6, S11–S22. [Google Scholar] [CrossRef]
- Lee, M.J.; Pottinger, P.S.; Butler-Wu, S.; Bumgarner, R.E.; Russ, S.M.; Matsen, F.A. Propionibacterium persists in the skin despite standard surgical preparation. J. Bone Jt. Surg. Am. 2014, 96, 1447–1450. [Google Scholar] [CrossRef]
- Farber, S.H.; Parker, S.L.; Adogwa, O.; McGirt, M.J.; Rigamonti, D. Effect of antibiotic-impregnated shunts on infection rate in adult hydrocephalus: A single institution’s experience. Neurosurgery 2011, 69, 625–629. [Google Scholar] [CrossRef]
- Attenello, F.J.; Garces-Ambrossi, G.L.; Zaidi, H.A.; Sciubba, D.M.; Jallo, G.I. Hospital costs associated with shunt infections in patients receiving antibiotic-impregnated shunt catheters versus standard shunt catheters. Neurosurgery 2010, 66, 284–289. [Google Scholar] [CrossRef]
- Patwardhan, R.V.; Nanda, A. Implanted ventricular shunts in the United States: The billion-dollar-a-year cost of hydrocephalus treatment. Neurosurgery 2005, 56, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Affairs, M.O.N.G.H. Overview of MNGHA. Available online: https://ngha.med.sa/english/aboutngha/pages/default.aspx (accessed on 26 January 2025).
- Oi, S. Classification of hydrocephalus: Critical analysis of classification categories and advantages of “Multi-categorical Hydrocephalus Classification” (Mc HC). Child’s Nerv. Syst. 2011, 27, 1523–1533. [Google Scholar] [CrossRef]
- Holwerda, J.C.; Lindert, E.J.; Buis, D.R.; Hoving, E.W. Surgical intervention for hydrocephalus in infancy; etiology, age and treatment data in a Dutch cohort. Child’s Nerv. Syst. 2019, 36, 577–582. [Google Scholar] [CrossRef]
- Albehair, M.A.; Alosail, M.A.; Albulwi, N.M.; AlAssiry, A.; Alzahrani, F.A.; Bukhamsin, A.; Ammar, A. A Retrospective Study on the Avoidability of Ventriculoperitoneal Shunt Infections in a University Hospital in Al-Khobar, Saudi Arabia. Cureus 2021, 13, e13135-8. [Google Scholar] [CrossRef]
- Al-Sharydah, A.M.; Abu Melha, Y.A.; Al-Suhibani, S.S.; Alojan, A.A.; Al-Taei, T.H.; Alfawaz, I.I.; AlShammari, L.T.; Al-Jubran, S.A.; Ammar, A.S. Rates of cerebrospinal fluid infection and the causative organisms following shunt procedures in Saudi Arabia. A retrospective study based on radiological findings. Saudi Med. J. 2020, 41, 607–613. [Google Scholar] [CrossRef]
- Alomar, S.A.; Saiedi, R.J.; Albukhari, S.M.; Ahmad, M.M.; Sindi, G.; Kadi, M.; Baeesa, S.S. Programmable Versus Differential Pressure Ventriculoperitoneal Shunts for Pediatric Hydrocephalus: A 20-Year Single-Center Experience from Saudi Arabia. Cureus 2023, 15, e43369. [Google Scholar] [CrossRef]
- Albugami, S.M.; Alwadi, K.W.; Alrugaib, A.K.; Alsuwailim, A.M.; Aljared, T. Prevalence and characteristics of shunt malfunction without ventricular size change at King Abdulaziz Medical City in Riyadh. Neurosciences 2021, 26, 31–35. [Google Scholar] [CrossRef]
- Bokhary, M.A.; Kamal, H. Ventriculo-peritoneal shunt infections in infants and children. Libyan J. Med. 2008, 3, 20–22. [Google Scholar] [CrossRef]
- Grace, N.; Mbabazi, E.; Mukunya, D.; Tumuhamye, J.; Okechi, H.; Wegoye, E.; Olupot-Olupot, P.; Matovu, J.K.; Hopp, L.; Napyo, A. High burden of wasting among children under-five with hydrocephalus receiving care at CURE children’s hospital in Uganda: A cross-sectional study. BMC Nutr. 2024, 10, 10–14. [Google Scholar] [CrossRef]
- Shoji, H.; Hirano, T.; Watanabe, K.; Ohashi, M.; Mizouchi, T.; Endo, N. Risk factors for surgical site infection following spinal instrumentation surgery. J. Orthop. Sci. 2018, 23, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Sciubba, D.M.; Nelson, C.; Gok, B.; McGirt, M.J.; McLoughlin, G.S.; Noggle, J.C.; Wolinsky, J.P.; Witham, T.F.; Bydon, A.; Gokaslan, Z.L. Evaluation of factors associated with postoperative infection following sacral tumor resection. J. Neurosurg. Spine 2008, 9, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Skeie, E.; Koch, A.M.; Harthug, S.; Fosse, U.; Sygnestveit, K.; Nilsen, R.M.; Tangvik, R.J. A positive association between nutritional risk and the incidence of surgical site infections: A hospital-based register study. PLoS ONE 2018, 13, e0197344-10. [Google Scholar] [CrossRef]
- Tsantes, A.G.; Papadopoulos, D.V.; Lytras, T.; Tsantes, A.E.; Mavrogenis, A.F.; Korompilias, A.V.; Gelalis, I.D.; Tsantes, C.G.; Bonovas, S. Association of malnutrition with periprosthetic joint and surgical site infections after total joint arthroplasty: A systematic review and meta-analysis. J. Hosp. Infect. 2019, 103, 69–77. [Google Scholar] [CrossRef]
- Tsantes, A.G.; Papadopoulos, D.V.; Lytras, T.; Argyrios, E.; Tsantes, A.P.; Andreas, F.; Mavrogenis, A.P.; Panagiotis Koulouvaris, A.P.; Ioannis, D.; Gelalis, A.P.; et al. Association of malnutrition with surgical site infections following spinal surgeries: Systematic review and meta-analysis. J. Hosp. Infect. 2019, 104, 111–119. [Google Scholar] [CrossRef]
- Cies, J.J.; Chan, S.; Hossain, J.; Brenn, B.R.; Di Pentima, M.C. Influence of body mass index and antibiotic dose on the risk of surgical site infections in pediatric clean orthopedic surgery. Surg. Infect. 2012, 13, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.K.; Bollam, P.; Caldito, G. Long-term outcomes of ventriculoperitoneal shunt surgery in patients with hydrocephalus. World Neurosurg. 2014, 81, 404–410. [Google Scholar] [CrossRef]
- Reddy, G.K.; Bollam, P.; Caldito, G. Ventriculoperitoneal shunt surgery and the risk of shunt infection in patients with hydrocephalus: Long-term single institution experience. World Neurosurg. 2012, 78, 155–163. [Google Scholar] [CrossRef]
- Korinek, A.-M.; Fulla-Oller, L.; Boch, A.-L.; Golmard, J.-L.; Hadiji, B.; Puybasset, L. Morbidity of ventricular cerebrospinal fluid shunt surgery in adults: An 8-year study. Neurosurgery 2011, 68, 985–995. [Google Scholar] [CrossRef]
- Khan, F.; Rehman, A.; Shamim, M.S.; Bari, M.E. Factors affecting ventriculoperitoneal shunt survival in adult patients. Surg. Neurol. Int. 2015, 6, 25–28. [Google Scholar]
- O′Kelly, C.J.; Kulkarni, A.V.; Austin, P.C.; Urbach, D.; Wallace, M.C. Shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage: Incidence, predictors, and revision rates. Clinical article. J. Neurosurg. 2009, 111, 1029–1035. [Google Scholar] [CrossRef]
- Wu, Y.; Green, N.L.; Wrensch, M.R.; Zhao, S.; Gupta, N. Ventriculoperitoneal shunt complications in California: 1990 to 2000. Neurosurgery 2007, 61, 557–563. [Google Scholar] [CrossRef]
- Merkler, A.E.; Ch’ang, J.; Parker, W.E.; Murthy, S.B.; Kamel, H. The Rate of Complications after Ventriculoperitoneal Shunt Surgery. World Neurosurg. 2017, 98, 654–658. [Google Scholar] [CrossRef]
- Freire-Archer, M.; Sarraj, M.; Koziarz, A.; Thornley, P.; Alshaalan, F.; Alnemari, H.; Kachur, E.; Bhandari, M.; Oitment, C. Incidence and Recurrence of Deep Spine Surgical Site Infections: A Systematic Review and Meta-analysis. Spine 2023, 48, E269–E285. [Google Scholar] [CrossRef]
- Hrynyshyn, A.; Simões, M.; Borges, A. Biofilms in Surgical Site Infections: Recent Advances and Novel Prevention and Eradication Strategies. Antibiotics 2022, 11, 69. [Google Scholar] [CrossRef]
- Han, H.-C.; Wang, J.; Birnie, D.H.; Alings, M.; Philippon, F.; Parkash, R.; Manlucu, J.; Angaran, P.; Rinne, C.; Coutu, B.; et al. Association of the Timing and Extent of Cardiac Implantable Electronic Device Infections With Mortality. JAMA Cardiol. 2023, 8, 484–491. [Google Scholar] [CrossRef]
- Conen, A.; Walti, L.N.; Merlo, A.; Fluckiger, U.; Battegay, M.; Trampuz, A. Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: A retrospective analysis over an 11-year period. Clin. Infect. Dis. 2008, 47, 73–82. [Google Scholar] [CrossRef]
- Ochieng, N.; Okechi, H.; Ferson, S.; Albright, A.L. Bacteria causing ventriculoperitoneal shunt infections in a Kenyan population. J. Neurosurg. Pediatr. 2015, 15, 150–155. [Google Scholar] [CrossRef]
- Pimenta, F.G.; de Castro Romanelli, R.M.; Mourão, P.H.O.; Braga, M.L.B.; de Almeida Sanches, S.R.; Giannetti, A.V.; Clemente, W.T. Risk Factors for Surgical Site Infection Following Ventriculoperitoneal Shunting. J. Infect. Dis. Epidemiol. 2021, 7, 1–8. [Google Scholar] [CrossRef]
- Gutiérrez-González, R.; Boto, G.R.; Pérez-Zamarrón, A. Cerebrospinal fluid diversion devices and infection. A comprehensive review. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 889–897. [Google Scholar] [CrossRef]
- Vinchon, M.; Dhellemmes, P. Cerebrospinal fluid shunt infection: Risk factors and long-term follow-up. Childs Nerv. Syst. 2006, 22, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Woelber, E.; Schrick, E.J.; Gessner, B.D.; Evans, H.L. Proportion of Surgical Site Infections Occurring after Hospital Discharge: A Systematic Review. Surg. Infect. 2016, 17, 510–519. [Google Scholar] [CrossRef]
- Garvey, M. Medical Device-Associated Healthcare Infections: Sterilization and the Potential of Novel Biological Approaches to Ensure Patient Safety. Int. J. Mol. Sci. 2023, 25, 201. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-W.; Chang, W.-N.; Shih, T.-Y.; Huang, C.-R.; Tsai, N.-W.; Chang, C.-S.; Chuang, Y.-C.; Liliang, P.-C.; Su, T.-M.; Rau, C.-S.; et al. Infection of cerebrospinal fluid shunts: Causative pathogens, clinical features, and outcomes. Jpn. J. Infect. Dis. 2004, 57, 44–48. [Google Scholar] [PubMed]
- Schade, R.P.; Schinkel, J.; Visser, L.G.; Van Dijk, J.M.C.; Voormolen, J.H.C.; Kuijper, E.J. Bacterial meningitis caused by the use of ventricular or lumbar cerebrospinal fluid catheters. J. Neurosurg. 2005, 102, 229–234. [Google Scholar] [CrossRef]
- Kestle, J.R.W.; Garton, H.J.L.; Whitehead, W.E.; Drake, J.M.; Kulkarni, A.V.; Cochrane, D.D.; Muszynski, C.; Walker, M.L. Management of shunt infections: A multicenter pilot study. J. Neurosurg. 2006, 105, 177–181. [Google Scholar] [CrossRef]
- Nguyen, K.N.; Freeman, L.M.; Ung, T.H.; Ojemann, S.; Grassia, F. Immunocompetent isolated cerebral mucormycosis presenting with obstructive hydrocephalus: Illustrative case. J. Neurosurg. Case Lessons 2024, 7, CASE23672. [Google Scholar] [CrossRef]
- Hamdan, N.; Billon Grand, R.; Moreau, J.; Thines, L. Cryptococcal meningitis in an immunocompetent patient with obstructive hydrocephalus: A case report. Neurochirurgie 2018, 64, 324–326. [Google Scholar] [CrossRef]
- Archibald, L.K.; Quisling, R.G. Central Nervous System Infections. In Neurointensive Care; Springer: London, UK, 2013; Volume 7, pp. 427–517. [Google Scholar]
- World Health Organization Bacterial Priority Pathogens List for R&D of New Antibiotics; WHO: Geneva, Switzerland, 2024; pp. 1–72.
- Clark, D.E.; Ryan, L.M. Concurrent prediction of hospital mortality and length of stay from risk factors on admission. Health Serv. Res. 2002, 37, 631–645. [Google Scholar] [CrossRef]
- Stewart, S.; Robertson, C.; Pan, J.; Kennedy, S.; Haahr, L.; Manoukian, S.; Mason, H.; Kavanagh, K.; Graves, N.; Dancer, S.J.; et al. Impact of healthcare-associated infection on length of stay. J. Hosp. Infect. 2021, 114, 23–31. [Google Scholar] [CrossRef]
- Healy, G.L.; Stuart, C.M.; Dyas, A.R.; Bronsert, M.R.; Meguid, R.A.; Anioke, T.; Hider, A.M.; Schulick, R.D.; Henderson, W.G. Association between postoperative complications and hospital length of stay: A large-scale observational study of 4,495,582 patients in the American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) registry. Patient Saf. Surg. 2024, 18, 11–29. [Google Scholar] [CrossRef]
- Totty, J.P.; Moss, J.W.E.; Barker, E.; Mealing, S.J.; Posnett, J.W.; Chetter, I.C.; Smith, G.E. The impact of surgical site infection on hospitalisation, treatment costs, and health-related quality of life after vascular surgery. Int. Wound J. 2021, 18, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Stewart, L.M.; Spangler, E.L.; Sutzko, D.C.; Pearce, B.J.; McFarland, G.E.; Passman, M.A.; Patterson, M.A.; Haverstock, B.; Unger, K.; Novak, Z.; et al. The association between preoperative length of stay and surgical site infection after lower extremity bypass for chronic limb-threatening ischemia. J. Vasc. Surg. 2021, 73, 1340–1349.e2. [Google Scholar] [CrossRef] [PubMed]
- Mujagic, E.; Marti, W.R.; Coslovsky, M.; Soysal, S.D.; Mechera, R.; von Strauss, M.; Zeindler, J.; Saxer, F.; Mueller, A.; Fux, C.A.; et al. Associations of Hospital Length of Stay with Surgical Site Infections. World J. Surg. 2018, 42, 3888–3896. [Google Scholar] [CrossRef]
- Rattanaumpawan, P.; Thamlikitkul, V. Epidemiology and economic impact of health care-associated infections and cost-effectiveness of infection control measures at a Thai university hospital. Am. J. Infect. Control. 2017, 45, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Mauldin, P.D.; Salgado, C.D.; Hansen, I.S.; Durup, D.T.; Bosso, J.A. Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob. Agents Chemother. 2010, 54, 109–115. [Google Scholar] [CrossRef]
- Esposito, S.; Leone, S. Antimicrobial treatment for Intensive Care Unit (ICU) infections including the role of the infectious disease specialist. Int. J. Antimicrob. Agents 2007, 29, 494–500. [Google Scholar] [CrossRef]
- McFee, R.B. Nosocomial or hospital-acquired infections: An overview. Dis. Mon. 2009, 55, 422–438. [Google Scholar] [CrossRef]
- Alothman, A.; Al Thaqafi, A.; Al Ansary, A.; Zikri, A.; Fayed, A.; Khamis, F.; Al Salman, J.; Al Dabal, L.; Khalife, N.; AlMusawi, T.; et al. Prevalence of infections and antimicrobial use in the acute-care hospital setting in the Middle East: Results from the first point-prevalence survey in the region. Int. J. Infect. Dis. 2020, 101, 249–258. [Google Scholar] [CrossRef]
- National Nosocomial Infections Surveillance System National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control. 2004, 32, 470–485. [CrossRef]
- European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals 2022–2023; ECDC: Stockholm, Sweden, 2024; pp. 1–192. [Google Scholar]
- Raoofi, S.; Pashazadeh Kan, F.; Rafiei, S.; Hosseinipalangi, Z.; Noorani Mejareh, Z.; Khani, S.; Abdollahi, B.; Seyghalani Talab, F.; Sanaei, M.; Zarabi, F.; et al. Global prevalence of nosocomial infection: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0274248. [Google Scholar] [CrossRef] [PubMed]
- Sax, H.; Pittet, D. Swiss-NOSO Network Interhospital differences in nosocomial infection rates: Importance of case-mix adjustment. Arch. Intern. Med. 2002, 162, 2437–2442. [Google Scholar] [CrossRef] [PubMed]
Hospital | Region | City | Capacity |
---|---|---|---|
King Fahad Hospital (KFH) | Central | Riyadh | 1973 beds |
King Abdullah Specialist Children Hospital (KASCH) | Central | Riyadh | 346 beds |
King Khalid Hospital (KKH) | Western | Jeddah | 756 beds |
Prince Mohammed Bin Abdulaziz Hospital (PMBAH) | Western | Madinah | 215 beds |
King Abdulaziz Hospital (KAH) | Eastern | Al Ahsa | 300–400 beds |
Imam Abdulrahman Bin Faisal Hospital (IABFH) | Eastern | Dammam | 108 beds |
Demographic Data | Frequency (N = 317) | Percentage | |
---|---|---|---|
Sex | Male | 151 | 47.63% |
Female | 166 | 52.36% | |
Average BMI | <18.5 | 165 | 52.05% |
18.5–24.9 | 53 | 16.72% | |
25–29.9 | 41 | 12.93% | |
30–34.9 | 34 | 10.73% | |
≥35 | 11 | 3.47% | |
N/A | 13 | 4.10% | |
Birth condition | Full term (38–42 weeks) | 31 | 9.78% |
Pre-term (≤37 week) | 43 | 13.56% | |
Not specified | 243 | 76.66% | |
Age at 1st VPS Procedure | 0–4 weeks | 29 | 9.15% |
1–2 months | 28 | 8.83% | |
3–6 months | 30 | 9.46% | |
7–12 months | 11 | 3.47% | |
1–2 years | 33 | 10.41% | |
3–16 years | 74 | 23.34% | |
17–30 years | 21 | 6.62% | |
31–65 years | 60 | 18.93% | |
>65 years | 31 | 9.78% | |
Frequency of VPS Procedures | 1 | 248 | 78.23% |
2 | 51 | 16.09% | |
3 | 13 | 4.10% | |
4 | 5 | 1.58% | |
Hospital | KFH, Riyadh | 133 | 41.96% |
KASCH, Riyadh | 54 | 17.03% | |
KKH, Jeddah | 109 | 34.38% | |
KAH, Al Ahsa | 13 | 4.10% | |
IABFH, Dammam | 4 | 1.26% | |
PMBAH, Madinah | 4 | 1.26% |
Clinical Diagnosis 1 | Frequency (N = 317) | Percentage |
---|---|---|
Communicating hydrocephalus, unspecified etiology | 24 | 7.57% |
Congenital hydrocephalus, unspecified class | 18 | 5.68% |
Hydrocephalus associated with other diseases, unspecified class | 22 | 6.94% |
Hydrocephalus in neoplastic disease, unspecified class | 31 | 9.78% |
Normal pressure hydrocephalus, unspecified etiology | 18 | 5.68% |
Obstructive hydrocephalus, spina bifida myelomeningocele/meningocele | 4 | 1.26% |
Obstructive hydrocephalus, unspecified etiology | 38 | 11.99% |
Post-traumatic hydrocephalus, unspecified class | 4 | 1.26% |
Post-hemorrhage hydrocephalus, unspecified class | 11 | 3.47% |
Postinfectious hydrocephalus, unspecified class | 7 | 2.21% |
Non-specified class/etiology | 140 | 44.16% |
Variable | Frequency (Total Number) | Percentage | |
---|---|---|---|
Number of post-VPS infections per patient | 0 | 294 (317) | 92.74% |
1 | 16 (317) | 5.05% | |
2 | 6 (317) | 1.89% | |
3 | 1 (317) | 0.32% | |
Post-VPS infection interval | 1–3 days | 11 (31) | 35.48% |
4–14 days | 7 (31) | 22.58% | |
2–4 weeks | 3 (31) | 9.68% | |
1–3 months | 4 (31) | 12.90% | |
>3 months | 6 (31) | 19.35% | |
Average BMI of patients who experience post-VPS infections | <18.5 | 17 (23) | 73.91% |
18.5–24.9 | 3 (23) | 13.04% | |
25–29.9 | 1 (23) | 4.35% | |
30–34.9 | 1 (23) | 4.35% | |
≥35 | 0 (23) | 0.00% | |
N/A | 1 (23) | 4.35% | |
Rates of patients who experience post-VPS infections by hospital | KFH, Riyadh | 6 (23) | 26.09% |
KASCH, Riyadh | 6 (23) | 26.09% | |
KKH, Jeddah | 11 (23) | 47.83% | |
KAH, Al Ahsa | 0 (23) | 0.00% | |
IABFH, Dammam | 0 (23) | 0.00% | |
PMBAH, Madinah | 0 (23) | 0.00% | |
Causative Agents | Bacterial | 29 (31) | 93.55% |
Fungal | 2 (31) | 6.45% |
Pathogen | Infection Rates | Susceptibility Findings 1 |
---|---|---|
Coagulase-negative Staphylococcus | 8 (25.81%) | Van (S), Tmp/Sul (S), Oxa (R) |
Van (S), Oxa (S) | ||
Van (S), Oxa (R) | ||
Van (S), Tet (R), Tmp/Sul (R), Oxa (R), Gen (R), Ery (R), Cli (R), Cipf (R) | ||
Van (S), Oxa (S), Ben (R) | ||
Van (S), Oxa (R), Gen (R), Ery (R), Cli (R), Cipf (R) | ||
Van (S), Trimth (R), Oxa (R) | ||
Van (S), Oxa (R), Gen (R), Ery (R), Cli (R), Cipf (R) | ||
Staphylococcus aureus | 4 (12.90%) | Van (S), Oxa (S) |
Van (S), Oxa (S) | ||
Van (S), Tmp/Sul (S), Oxa (R), Lin (S) | ||
Van (S), Oxa (S), Gen (S) | ||
Klebsiella pneumoniae | 2 (6.45%) | Tmp/Sul (S), Pip/Taz (S), Gen (S), Cipf (I), Cftx (R), Amp (R) |
Amk (R), Tmp/Sul (R), Pip/Taz (R), Mer (R), Imp (R), Gen (R), Cipf (R), Cftx (R), Ceaz (R), Cfox (R), Cefp (R), Amp (R), Gen (R), Ert (R), Tgc (R), Cefp (R), Ceaz/Avi (S) | ||
Escherichia coli | 2 (6.45%) | Tmp/Sul (S), Pip/Taz (S), Gen (S), Cipf (S), Cftx (S) |
Amk (S), Tmp/Sul (R), Mer (S), Imp (S), Gen (S), Cipf (R), Cftx (R), Amp (R), Tgc (S), Col (I) | ||
Enterococcus faecalis | 2 (6.45%) | Amp (S), Gen (S) |
Amp (S), Gen (S) | ||
Enterobacter cloacae | 2 (6.45%) | Mer (S), Gen (S), Cefp (S), Gen (R) |
Mer (S), Cefp (S), Gen (R) | ||
Pseudomonas aeruginosa | 1 (3.23%) | Amk (S), Tob (S), Pip/Taz (R), Mer (R), Imp (R), Gen (S), Cipf (R), Ceaz (R), Col (S), Ceaz/Avi (S), Cefp (R), Lev (R), Tgc (R) |
Acinetobacter ursingii | 1 (3.23%) | Mer (R), Cef (R), Amp/Sul (R) |
Enterococcus faecium | 1 (3.23%) | Van (R), Amp (R), Lin (S) |
Micrococcus luteus | 1 (3.23%) | Van (S), Oxa (R), Ben (R) |
Serratia marcescens | 1 (3.23%) | Mer (S), Gen (S), Cipf (S), Cefp (S) |
Stenotrophomonas maltophilia | 1 (3.23%) | Tmp/Sul (S), Lev (S) |
Streptococcus viridans group | 1 (3.23%) | Van (S), Pen (S), Ctx (S) |
Bacillus species | 1 (3.23%) | Ben (S) |
Mix growth of Moraxella catarrhalis and Lactococcus garvieae | 1 (3.23%) | N/A |
Candida parapsilosis | 1 (3.23%) | Flc (S), Cspf (S), Mcf (S), Flz (S) |
Cryptococcus neoformans | 1 (3.23%) | Amph (S), Flc (R), Anf (R), Vor (S), Flz (S) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqasmi, M.; Kariri, Y.A.; Alenazy, R.; Thabet, M.; Fallata, G.; Alqurainy, N. Ventriculoperitoneal Shunt Infections: Causative Pathogens and Associated Outcomes from Multiple Hospitals in Saudi Arabia. J. Clin. Med. 2025, 14, 2006. https://doi.org/10.3390/jcm14062006
Alqasmi M, Kariri YA, Alenazy R, Thabet M, Fallata G, Alqurainy N. Ventriculoperitoneal Shunt Infections: Causative Pathogens and Associated Outcomes from Multiple Hospitals in Saudi Arabia. Journal of Clinical Medicine. 2025; 14(6):2006. https://doi.org/10.3390/jcm14062006
Chicago/Turabian StyleAlqasmi, Mohammed, Yousif A. Kariri, Rawaf Alenazy, Mohammed Thabet, Ghaith Fallata, and Nasser Alqurainy. 2025. "Ventriculoperitoneal Shunt Infections: Causative Pathogens and Associated Outcomes from Multiple Hospitals in Saudi Arabia" Journal of Clinical Medicine 14, no. 6: 2006. https://doi.org/10.3390/jcm14062006
APA StyleAlqasmi, M., Kariri, Y. A., Alenazy, R., Thabet, M., Fallata, G., & Alqurainy, N. (2025). Ventriculoperitoneal Shunt Infections: Causative Pathogens and Associated Outcomes from Multiple Hospitals in Saudi Arabia. Journal of Clinical Medicine, 14(6), 2006. https://doi.org/10.3390/jcm14062006