Prognostic Factors for Visual Postsurgical Outcome in Rhegmatogenous Retinal Detachment—A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Demographic Characteristics
4.2. Best Visual Corrected Acuity
4.3. Duration of Symptoms
4.4. Macular Status
4.5. Extent of Retinal Detachment
4.6. Position of the Retinal Break
4.7. Macular Hole
4.8. Proliferative Vitreoretinopathy
4.9. Other Factors
4.10. OCT Biomarkers
4.10.1. Ellipsoid Zone
4.10.2. Epiretinal Membrane
4.10.3. External Limiting Membrane
4.10.4. Other OCT Biomarkers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BCVA | Best corrected visual acuity |
IOP | Intraocular pressure |
CRT | Central retinal thickness |
ERM | Epiretinal membrane |
EZ | Ellipsoid zone |
CME | Cystoid macular edema |
SRF | Subretinal fluid |
IRF | Intraretinal fluid |
ELM | External limiting membrane |
CIZ | cone interdigitation zone |
CST | Central sub-fluid thickness |
RPE | Retinal pigment epithelium |
CFT | Central foveal thickness |
CMT | Central macular thickness |
PVR | Proliferative vitreoretinopathy |
RRD | Rhegmatogenous retinal detachment |
PPV | Pars plana vitrectomy |
SO | Silicon oil |
References
- Nemet, A.; Moshiri, A.; Yiu, G.; Loewenstein, A.; Moisseiev, E. A Review of Innovations in Rhegmatogenous Retinal Detachment Surgical Techniques. J. Ophthalmol. 2017, 2017, 4310643. [Google Scholar] [CrossRef]
- Mitry, D.; Fleck, B.W.; Wright, A.F.; Campbell, H.; Charteris, D.G. Pathogenesis of rhegmatogenous retinal detachment: Predisposing anatomy and cell biology. Retina 2010, 30, 1561–1572. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Q.; Welchowski, T.; Schmid, M.; Holz, F.G.; Finger, R.P. Incidence of Rhegmatogenous Retinal Detachment in Europe—A Systematic Review and Meta-Analysis. Ophthalmologica 2019, 242, 81–86. [Google Scholar] [CrossRef]
- Heimann, H.; Zou, X.; Jandeck, C.; Kellner, U.; Bechrakis, N.E.; Kreusel, K.M.; Helbig, H.; Krause, L.; Schüler, A.; Bornfeld, N.; et al. Primary vitrectomy for rhegmatogenous retinal detachment: An analysis of 512 cases. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 244, 69–78. [Google Scholar] [CrossRef]
- Dugas, B.; Lafontaine, P.O.; Guillaubey, A.; Berrod, J.P.; Hubert, I.; Bron, A.M.; Creuzot-Garcher, C.P. The learning curve for primary vitrectomy without scleral buckling for pseudophakic retinal detachment. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 247, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Lumi, X.; Lužnik, Z.; Petrovski, G.; Petrovski, B.É.; Hawlina, M. Anatomical success rate of pars plana vitrectomy for treatment of complex rhegmatogenous retinal detachment. BMC Ophthalmol. 2016, 16, 216. [Google Scholar] [CrossRef] [PubMed]
- Brandlhuber, U.; Fischer, C.; Wolf, A.; Kampik, A.; Priglinger, S.; Haritoglou, C. Anatomischer Erfolg der Pars-plana-Vitrektomie bei rhegmatogener Netzhautablösung im Rahmen der Umstellung von 20 auf 23 Gauge—Eine Studie an 313 konsekutiven Fällen. Klin. Monbl. Augenheilkd. 2015, 232, 1092–1098. [Google Scholar] [CrossRef]
- Pastor Jimeno, J.C.; Fernández, I.; de la Rodríguez Rúa, E.; Coco, R.; Sanabria-Ruiz Colmenares, M.R.; Sánchez-Chicharro, D.; Martinho, R.; Ruiz Moreno, J.M.; García Arumi, J.; Suárez de Figueroa, M.; et al. Surgical outcomes for primary rhegmatogenous retinal detachments in phakic and pseudophakic patients: The Retina 1 Project—Report 2. Br. J. Ophthalmol. 2008, 92, 378–382. [Google Scholar] [CrossRef]
- Kim, J.D.; Pham, H.H.; Lai, M.M.; Josephson, J.W.; Minarcik, J.R.; Von Fricken, M. Effect of symptom duration on outcomes following vitrectomy repair of primary macula-off retinal detachments. Retina 2013, 33, 1931–1937. [Google Scholar] [CrossRef]
- Gerding, H.; Hersener, A. Anatomical and functional results of primary pars plana vitrectomy in rhegmatogenous retinal detachment. Klin. Monbl. Augenheilkd. 2013, 230, 409–412. [Google Scholar] [CrossRef]
- Suzuki, N.; Kunikata, H.; Aizawa, N.; Abe, T.; Nakazawa, T. Predicting visual outcomes for macula-off rhegmatogenous retinal detachment with optical coherence tomography. J. Ophthalmol. 2014, 2014, 269837. [Google Scholar] [CrossRef] [PubMed]
- Mitry, D.; Awan, M.A.; Borooah, S.; Rehman Siddiqui, M.A.; Brogan, K.; Fleck, B.W.; Wright, A.; Campbell, H.; Singh, J.; Charteris, D.G.; et al. Surgical outcome and risk stratification for primary retinal detachment repair: Results from the Scottish Retinal Detachment study. Br. J. Ophthalmol. 2012, 96, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Safadi, K.; Chowers, I.; Khateb, S. Outcomes of primary rhegmatogenous retinal detachment repair among young adult patients. Acta Ophthalmol. 2021, 99, 892–897. [Google Scholar] [CrossRef]
- Cho, M.; Witmer, M.T.; Favarone, G.; Chan, R.V.P.; D’Amico, D.J.; Kiss, S. Optical coherence tomography predicts visual outcome in macula-involving rhegmatogenous retinal detachment. Clin. Ophthalmol. 2012, 6, 91–96. [Google Scholar]
- Wolfensberger, T.J.; Gonvers, M. Optical coherence tomography in the evaluation of incomplete visual acuity recovery after macula-off retinal detachments. Graefes Arch. Clin. Exp. Oph- Ophthalmol. 2002, 240, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Schocket, L.S.; Witkin, A.J.; Fujimoto, J.G.; Ko, T.H.; Schuman, J.S.; Rogers, A.H.; Baumal, C.; Reichel, E.; Duker, J.S. Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair. Ophthalmology 2006, 113, 666–672. [Google Scholar] [CrossRef]
- Matsui, A.; Toshida, H.; Honda, R.; Seto, T.; Ohta, T.; Murakami, A. Preoperative and postoperative optical coherence tomography findings in patients with rhegmatogenous retinal detachment ınvolving the macular region. ISRN Ophthalmol. 2013, 2013, 426867. [Google Scholar] [CrossRef]
- Hagimura, N.; Suto, K.; Iida, T.; Kishi, S. Optical coherence tomography of the neurosensory retina in rhegmatogenous retinal detachment. Am. J. Ophthalmol. 2000, 129, 186–190. [Google Scholar] [CrossRef]
- Gharbiya, M.; Grandinetti, F.; Scavella, V.; Cecere, M.; Esposito, M.; Segnalini, A.; Gabrieli, C.B. Correlation between spectral-domain optical coherence tomography findings and visual outcome after primary rhegmatogenous retinal detachment repair. Retina 2012, 32, 43–53. [Google Scholar] [CrossRef]
- Benson, S.E.; Schlottmann, P.G.; Bunce, C.; Xing, W.; Charteris, D.G. Optical coherence tomography analysis of the macula after vitrectomy surgery for retinal detachment. Ophthalmology 2006, 113, 1179–1183. [Google Scholar] [CrossRef]
- Kobayashi, M.; Iwase, T.; Yamamoto, K.; Ra, E.; Murotani, K.; Matsui, S.; Terasaki, H. Association between photoreceptor regeneration and visual acuity follow- ing surgery for rhegmatogenous retinal detachment. Investig. Ophthalmol. Vis. Sci. 2016, 57, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Telander, D.G.; Zawadzki, R.J.; Choi, S.S.; Morse, L.S.; Werner, J.S.; Park, S.S. High-resolution Fourier-domain optical coherence tomography and microperimetric findings after macula-off retinal detachment repair. Ophthalmology 2008, 115, 1923–1929. [Google Scholar] [CrossRef]
- MKobayashi; Iwase, T.; Yamamoto, K.; Ra, E.; Hirata, N.; Terasaki, H. Influence of submacular fluid on recovery of retinal function and structure after successful rhegmatogenous retinal reattachment. PLoS ONE 2019, 14, e0218216. [Google Scholar]
- Karacorlu, M.; Sayman Muslubas, I.; Hocaoglu, M.; Arf, S.; Ersoz, M.G. Correlation between morphological changes and functional outcomes of recent-onset macula-off rhegmatogenous retinal detachment: Prognostic factors in rhegmatogenous retinal detachment. Int. Ophthalmol. 2018, 38, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Zaletel Benda, P.; Vratanar, B.; Petrovski, G.; Gavrić, A.U.; Matović, K.; Gornik, A.; Vergot, K.; Lumi, A.; Lumi, X. Prognostic factor analysis of visual outcome after vitrectomy for rhegmatogenous retinal detachment. J. Clin. Med. 2020, 9, 3251. [Google Scholar] [CrossRef]
- Chatziralli, I.; Chatzirallis, A.; Kazantzis, D.; Dimitriou, E.; Machairoudia, G.; Theodossiadis, G.; Parikakis, E.; Theodossiadis, P. Predictive factors for long-term postoperative visual outcome in patients with macula-off rhegmatogenous retinal detachment treated with vitrectomy. Ophthalmologica 2021, 244, 213–217. [Google Scholar] [CrossRef]
- Altındal, E.U. Evaluation of the factors affecting visual outcome after successful pars Plana vitrectomy surgery for rhegmatogenous retinal detachment. Eur. Eye Res. 2022, 8, 54–61. [Google Scholar] [CrossRef]
- Guner, M.E.; Guner, M.K.; Cebeci, Z.; Kır, N. Preoperative and postoperative factors affecting functional success in anatomically successful retinal detachment surgery. Korean J. Ophthalmol. 2022, 36, 477–485. [Google Scholar] [CrossRef]
- Barequet, D.; Shemesh, R.; Zvi, D.; Cohen, R.; Trivizki, O.; Schwartz, S.; Barak, A.; Loewenstein, A.; Rabina, G. Functional and anatomical outcomes of fovea on, fovea off, and fovea-splitting rhegmatogenous retinal detachment. Arbeitsphysiologie 2023, 261, 3187–3192. [Google Scholar] [CrossRef]
- Kang, H.M.; Lee, S.C.; Lee, C.S. Association of spectral-domain optical coherence tomography findings with visual outcome of macula-off rhegmatogenous retinal detachment surgery. Ophthalmologica 2015, 234, 83–90. [Google Scholar] [CrossRef]
- Park, D.H.; Choi, K.S.; Sun, H.J.; Lee, S.J. Factors associated with visual outcome after macula-off rhegmatogenous retinal detachment surgery. Retina 2018, 38, 137–147. [Google Scholar] [CrossRef]
- Hirata, N.; Iwase, T.; Kobayashi, M.; Yamamoto, K.; Ra, E.; Terasaki, H. Correlation between preoperative factors and final visual acuity after successful rhegmatogenous retinal reattachment. Sci. Rep. 2019, 9, 3217. [Google Scholar] [CrossRef]
- Poulsen, C.D.; Green, A.; Grauslund, J.; Peto, T. Long-term outcome of patients operated with pars Plana vitrectomy for primary rhegmatogenous retinal detachment. Ophthalmic Res. 2020, 63, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Murtagh, P.J.; Stephenson, K.A.; Rhatigan, M.; McElnea, E.M.; Connell, P.P.; Keegan, D.J. Rhegmatogenous retinal detachments: Primary reattachment rates and visual outcomes over a 4-year period. Ir. J. Med. Sci. 2020, 189, 355–363. [Google Scholar] [CrossRef]
- Geiger, M.; Smith, J.M.; Lynch, A.; Patnaik, J.L.; Oliver, S.C.N.; Dixon, J.A.; Mandava, N.; Palestine, A.G.; on behalf of The University of Colorado Retina Research Group. Predictors for recovery of macular function after surgery for primary macula-off rhegmatogenous retinal detachment. Int. Ophthalmol. 2020, 40, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.T.; Lampen, S.I.R.; Wong, T.P.; Major, J.C., Jr.; Wykoff, C.C. Fovea-sparing rhegmatogenous retinal detachments: Impact of clinical factors including time to surgery on visual and anatomic outcomes. Arbeitsphysiologie 2019, 257, 883–889. [Google Scholar] [CrossRef]
- Zgolli, H.; Mabrouk, S.; Khayrallah, O.; Fekih, O.; Zeghal, I.; Nacef, L. Prognostic factors for visual recovery in idiopathic rhegmatogenous retinal detachment: A prospective study of 90 patients. Tunis. Med. 2021, 99, 972–979. [Google Scholar] [PubMed]
- Baba, T.; Kawasaki, R.; Yamakiri, K.; Koto, T.; Nishitsuka, K.; Yamamoto, S.; Sakamoto, T. Visual outcomes after surgery for primary rhegmatogenous retinal detachment in era of microincision vitrectomy: Japan-Retinal Detachment Registry Report, I.V. Br. J. Ophthalmol. 2021, 105, 227–232. [Google Scholar] [CrossRef]
- Sung, J.-Y.; Lee, M.-W.; Won, Y.-K.; Lim, H.-B.; Kim, J.-Y. Clinical characteristics and prognosis of Total Rhegmatogenous retinal detachment: A matched case-control study. BMC Ophthalmol. 2020, 20, 286. [Google Scholar] [CrossRef]
- Hostovsky, A.; Trussart, R.; AlAli, A.; Kertes, P.J.; Eng, K.T. Pre-operative optical coherence tomography findings in macula-off retinal detachments and visual outcome. Eye 2021, 35, 3285–3291. [Google Scholar] [CrossRef]
- Baudin, F.; Deschasse, C.; Gabrielle, P.-H.; Berrod, J.P.; Le Mer, Y.; Arndt, C.; Tadayoni, R.; Delyfer, M.N.; Weber, M.; Gaucher, D.; et al. Functional and anatomical outcomes after successful repair of macula-off retinal detachment: A 12-month follow-up of the DOREFA study. Acta Ophthalmol. 2021, 99, e1190–e1197. [Google Scholar] [CrossRef] [PubMed]
- Gopal, A.; Starr, M.; Obeid, A.; Ryan, E.; Ryan, C.; Ammar, M.; Patel, L.; Forbes, N.; Capone, A., Jr.; Emerson, G.; et al. Predictors of vision loss after surgery for macula-sparing rhegmatogenous retinal detachment. Curr. Eye Res. 2022, 47, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Kwon, H.J.; Byon, I.S.; Lee, J.E.; Oum, B.S. Impact of age on scleral buckling surgery for rhegmatogenous retinal detachment. Korean J. Ophthalmol. (KJO) 2017, 31, 328. [Google Scholar] [CrossRef]
- Yang, C.H.; Lin, H.Y.; Huang, J.S.; Ho, T.C.; Lin, C.P.; Chen, M.S.; Yang, C.M. Visual outcome in primary macula-off rhegmatogenous retinal detachment treated with scleral buckling. J. Formos. Med. Assoc. 2004, 103, 212–217. [Google Scholar]
- Liu, F.; Meyer, C.H.; Mennel, S.; Hoerle, S.; Kroll, P. Visual recovery after scleral buckling surgery in macula-off rhegmatogenous retinal detachment. Ophthalmologica 2006, 220, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Lecleire-Collet, A.; Muraine, M.; Menard, J.F.; Brasseur, G. Predictive visual outcome after macula–off retina detachment surgery using optical coherence tomography. Retina 2005, 25, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.P.; Charteris, D.G.; Sethi, C.S.; Fisher, S.K. Animal models of retinal detachment and reattachment: Identifying cellular events that may affect visual recovery. Eye 2002, 16, 375–387. [Google Scholar] [CrossRef]
- Arroyo, J.G.; Yang, L.; Bula, D.; Chen, D.F. Photoreceptor apoptosis in human retinal detachment. Am. J. Ophthalmol. 2005, 139, 605–610. [Google Scholar] [CrossRef]
- Sothivannan, A.; Eshtiaghi, A.; Dhoot, A.S.; Popovic, M.M.; Garg, S.J.; Kertes, P.J.; Muni, R.H. Impact of the time to surgery on visual outcomes for rhegmatogenous retinal detachment repair: A meta-analysis. Am. J. Ophthalmol. 2022, 244, 19–29. [Google Scholar] [CrossRef]
- Lee, C.S.; Shaver, K.; Yun, S.H.; Kim, D.; Wen, S.; Ghorayeb, G. Comparison of the visual outcome between macula-on and macula-off rhegmatogenous retinal detachment based on the duration of macular detachment. BMJ Open Ophthalmol. 2021, 6, e000615. [Google Scholar] [CrossRef]
- Chang, C.J. Apoptotic Photoreceptor cell death after traumatic retinal detachment in humans. Arch. Ophthalmol. 1995, 113, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Notomi, S.; Hisatomi, T.; Nakazawa, T.; Ishibashi, T.; Miller, J.W.; Vavvas, D.G. Photoreceptor cell death and rescue in retinal detachment and degenerations. Prog. Retin. Eye Res. 2013, 37, 114–140. [Google Scholar] [CrossRef]
- Di Lauro, S.; Castrejon, M.; Fernandez, I.; Rojas, J.; Coco, R.M.; Sanabria, M.R.; Rodriguez de la Rua, E.; Pastor, J.C. Loss of visual acuity after successful surgery for macula-on rhegmatogenous retinal detachment in a prospective multicentre study. J. Ophthalmol. 2015, 2015, 821864. [Google Scholar] [CrossRef]
- Ross, W.H.; Kozy, D.W. Visual recovery in mac- ula-off rhegmatogenous retinal detachments. Ophthalmology 1998, 105, 2149–2153. [Google Scholar] [CrossRef] [PubMed]
- Wykoff, C.C.; Smiddy, W.E.; Mathen, T.; Schwartz, S.G.; Flynn, H.W.; Jr Shi, W. Fovea-sparing retinal detachments: Time to surgery and visual outcomes. Am. J. Ophthalmol. 2010, 150, 205–210.e2. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, C.P. Visual results following scleral buckling for retinal detachments sparing the macula. Retina 1981, 1, 113–116. [Google Scholar] [CrossRef]
- Williamson, T.H.; Shunmugam, M.; Rodrigues, I.; Dogramaci, M.; Lee, E. Characteristics of rhegmatogenous retinal detachment and their relationship to visual outcome. Eye 2013, 27, 1063–1069. [Google Scholar] [CrossRef]
- Haugstad, M.; Moosmayer, S.; Bragadóttir, R. Primary rhegmatogenous retinal detachment- surgical methods and anatomical outcome. Acta Ophthalmol. 2017, 95, 247–251. [Google Scholar] [CrossRef]
- Pollreisz, A.; Sacu, S.; Eibenberger, K.; Funk, M.; Kivaranovic, D.; Zlabinger, G.J.; Georgopoulos, M.; Schmidt-Erfurth, U. Extent of Detached Retina and Lens Status Influence Intravitreal Protein Expression in Rhegmatogenous Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5493–5502. [Google Scholar] [CrossRef]
- Chung, H.; Lee, J.H. Clinical analysis of retinal detachment. J. Korean Ophthalmol. Soc. 1978, 19, 429–439. [Google Scholar]
- Ehrlich, R.; Niederer, R.L.; Ahmad, N.; Polkinghorne, P. Timing of acute macula-on rhegmatogenous retinal detachment repair. Retina 2013, 33, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, H.; Shinagawa, K.; Mochizuki, M. Risk factors for proliferative vitreoretinopathy. Prog. Retin. Eye Res. 1998, 17, 77–98. [Google Scholar] [CrossRef]
- Pastor, J.C. Proliferative vitreoretinopathy: An overview. Surv. Ophthalmol. 1998, 43, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Pastor, J.C.; de la Rúa, E.R.; Martín, F. Proliferative vitreoretinopathy: Risk factors and pathobiology. Prog. Retin. Eye Res. 2002, 21, 127–144. [Google Scholar] [CrossRef]
- Nakanishi, H.; Hangai, M.; Unoki, N.; Sakamoto, A.; Tsujikawa, A.; Kita, M.; Yoshimura, N. Spectral- domain optical coherence tomography imaging of the detached macula in rhegmatogenous retinal detachment. Retina 2009, 29, 232–242. [Google Scholar] [CrossRef]
- Sheth, S.; Dabir, S.; Natarajan, S.; Mhatre, A.; Labauri, N. Spectral domain-optical coherence tomography study of retinas with a normal foveal contour and thickness after retinal detachment surgery. Retina 2010, 30, 724–732. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Oshima, Y.; Fujimoto, H.; Yoko Murakami, M.D.; Hirokazu Sakaguchi, M.D.; Sunji Kusaka, M.D.; Yasuo Tano, M.D. Foveal microstructure and visual acuity after retinal detachment repair. Ophthalmology 2009, 116, 519–528. [Google Scholar] [CrossRef]
- Shimoda, Y.; Sano, M.; Hashimoto, H.; Yokota, Y.; Kishi, S. Restoration of photoreceptor outer segment after vitrectomy for retinal detachment. Am. J. Ophthalmol. 2010, 149, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, T.; Fujiwara, M.; Sakaguchi, H.; Kusaka, S.; Oshima, Y. Foveal microstructure and visual acuity in surgically closed macular holes: Spectral-domain optical coherence tomographic analysis. Ophthalmology 2010, 117, 1815–1824. [Google Scholar] [CrossRef]
- Fisher, S.K.; Lewis, G.P. Müller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: A review and reconsideration of recent data. Vision. Res. 2003, 43, 887–897. [Google Scholar] [CrossRef]
- Hoang, Q.V.; Linsenmeier, R.A.; Chung, C.K.; Curcio, C.A. Photorecep- tor inner segments in monkey and human retina: Mitochondrial density, optics, and regional variation. Vis. Neurosci. 2002, 19, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Lecleire-Collet, A.; Muraine, M.; Menard, J.F.; Brasseur, G. Evaluation of macular changes before and after successful retinal detachment surgery using stratus-optical coherence tomography. Am. J. Ophthalmol. 2006, 142, 176–179. [Google Scholar] [CrossRef] [PubMed]
Year | Type of Study | Type of Surgery | Endo-tamponade | Macula Status | No. of Eyes Treated | Follow Up | Prognostic Factors Analysed | Correlation Between Prognostic Factors and Postoperative BVCA | Surgical Success of Initial Surgery |
---|---|---|---|---|---|---|---|---|---|
2017, Karacorlu et al. [24] | Retrospective | PPV 23G | SO, Gas | Macula-off | 44 | 12–36 months | BVCA, age, sex, refractive error, IOP, lens status, type, number and size of tears, number of quadrants, status of macula, time between vision loss and surgery, and OCT parameters. | High correlation between a shorter period of symptoms and a better postoperative VA. Significant correlation between epiretinal membrane formation and postoperative VA. | The primary anatomical success rate after surgery was not mentioned. |
2020, Benda et al. [25] | Retrospective | PPV 23G, 25G | SO, Gas (C3F8, SF6) | Macula-on/off | 88 | 6 months | BVCA, age, axial length, duration of symptoms, lens status, macula status, PVR, OCT parameters (CRT, ERM, EZ, and CME), and type of surgery. | Significant statistical correlation between preoperative BVCA, duration of symptoms, integrity of EZ, and postoperative BVCA. | The primary anatomical success rate after surgery was 93%. |
2021, Chatziralli et al. [26] | Prospective | PPV 23G | Gas (C3F8, SF6) | Macula-off | 86 | 24 months | BVCA, age, sex, duration of symptoms, PVR, lens status, retinal breaks, OCT biomarkers (CRT, SRF, IRF, EZ, and ELM). | Statistical correlation between age, duration of the symptoms, PVR, CRT, and disruption of EZ and ELM and postoperative BVCA. | The primary anatomical success rate after surgery was not mentioned. |
2022, Altindal et al. [27] | Retrospective | PPV 23G,25G | SO, Gas (C3F8, SF6) | Macula-on/off | 41 | 6 months | BVCA, age, sex, duration of symptoms IOP, lens status, status of macula, topography of RD, retinal breaks (size, number, and location), and endotamponade: gas or SO, PVR, and OCT biomarkers (IS/OS junction, ERM). | Significant correlation between preoperative BVCA and postoperative BVCA. Better BVCA in patients with macula-on RRD. | The primary anatomical success rate after surgery was 100%. |
2022, Guner et al. [28] | Retrospective | PPV 23G | SO, Gas (C3F8, SF6) | Macula-off | 75 | 14–72 months | BVCA, age, sex, duration of symptoms and surgery, status of macula, extent of detachment, PVR, type of surgery, and OCT biomarkers (CMT, SRF, ELM, and EZ CIZ). | Significant correlation between the extent of the retinal detachment and postoperative BVCA. Statistical correlation between duration of symptoms, integrity of outer retina layers, and postoperative BVCA. | The primary anatomical success rate after surgery was not mentioned. |
2023, Barequet et al. [29] | Retrospective | PPV 23G | SO, Gas(C3F8) | Macula-on/off | 152 | 6 months | Age, sex, duration of symptoms, lens status, status of macula, preoperative BCVA, and OCT biomarkers (CST, SRF, IRF, RPE, and ERM). | Significant correlation between macula- off and a poor visual outcome. Correlation between a shorter duration of symptoms and a better postoperative BCVA. | The primary anatomical success rate after surgery was not mentioned. |
2015, Kang et al. [30] | Retrospective | PPV (23G) + SB | SO,Gas(C3F8) | Macula-off | 27 | 12 months | Age, sex, axial length, duration of symptoms, lens status, status of macula, presence of PVR, number, size of retinal breaks, preoperative BCVA, and OCT biomarkers (CST, SRF, IRF, RPE, ERM, CFT, and ELM). | Cystic cavities in INL or ONL do not have a significant impact on visual outcome. Significant correlation between integrity of ELM and the photoreceptors layers (postoperative) and visual outcome. | The primary anatomical success rate after surgery was not mentioned. |
2018, Park et al. [31] | Retrospective | PPV + SB | Gas (C3F8, SF6) | Macula-off | 180 | 12 months | Age, sex, BCVA, axial length, duration of symptoms, lens status, status of macula, presence of PVR, refractive error, extent of the detachment, and OCT biomarkers (CMT, SRF and ELM integrity). | Significant correlation between large detachment, macula-off duration more than 7 days and disruption of ELM, and a poor postoperative BCVA. Correlation between preoperative BVCA and the final postoperative BVCA. | The primary anatomical success rate after surgery was not mentioned. |
2019, Hirata et al. [32] | Retrospective | PPV (23–25G) + SB | Gas (SF6) | Macula-off | 69 | 12 months | Age, sex, axial length, presence of PVR duration of detachment, presence of cystoid cavity, and OCT biomarkers: length of photoreceptor, height of subretinal fluid integrity of foveal ELM, and EZ. | Lengths of preoperative photoreceptor and the preoperative BCVA were significant and independent factors associated with the postoperative BCVA. | The primary anatomical success rate after surgery was not mentioned. |
2019, Poulsen et al. [33] | Prospective | PPV (25G) + SB | SO, Gas (SF6) | Macula-on/off | 84 | 30 months | BVCA, age, sex, axial length, IOP, status of lens, presence of PVR, location of RD, size and number of retinal breaks, and type of tamponade. | Factors significantly associated with a poor final BCVA were poor baseline BCVA, female gender, retinal detachment >6 clock hours, and SO used as tamponade. | The primary anatomical success rate after surgery was not mentioned. |
2019, Murtagh et al. [34] | Retrospective | PPV (20–23G) + SB | SO, Gas, (C3F8, SF6) Air | Macula-on/off | 613 | 6 months | BVCA, age, sex, axial length, duration of symptoms, status of lens, macular status, location of RD, size and number of retinal breaks, type of tamponade, and type of procedure. | Correlation between macula-on and better final BVCA. Significant correlation between BVCA at presentation and final visual outcome. | The primary anatomical success rate after surgery was 88.58%. |
2019, Geiger et al. [35] | Retrospective | PPV + SB | SO, Gas, (C3F8, SF6) Air | Macula-off | 131 | 6 months | BVCA, age, sex, duration of symptoms, status of lens, macular status, location of RD, size and number of retinal breaks, type of tamponade, and type of procedure. | Significant correlation between BVCA at presentation and final visual outcome. A higher number of retinal breaks is associated with a poor final BCVA. | The primary anatomical success rate after surgery was 93%. |
2019, Lee et al. [36] | Retrospective | PPV + SB + PR | No data | Macula-on | 423 | 12 months | Lens status, duration of symptoms, number of quadrants involved, RRD posterior extent, RRD extent closest to the fovea, number of retinal breaks, and quadrants with retinal breaks. | This study identified two positive prognostic factors (preoperative BCVA and single-operation anatomic success). Three clinical factors correlated significantly with a shorter time from presentation to surgery (shorter symptom duration, superior RRD location, and extension of subretinal fluid into the macula). | The primary anatomical success rate after surgery was 81%. |
2020, Zgolli et al. [37] | Prospective | PPV (23G) + SB | No data | Macula-off | 90 | 6–12 months | BVCA, age, type, number, and size of tears, number of quadrants, status of macula, PVR, time between vision loss and | Statistical correlation between preoperative BVCA, PVR, number of quadrants detached, macula status, duration of symptoms and | The primary anatomical success rate after surgery was not mentioned. |
2020, Baba et al. [38] | Prospective | PPV (23G,25G,27G) + SB | SO | Macula-on/off | 2192 | 6 months | BVCA, time to surgery, IOP, refractive error, lens status, type, size, location of tears, macular status, choroidal detachment, PVR, and type of procedure. | correlation between multiple quadrants of detachment (especially superior breaks), macula-off, long time between first symptoms and surgery, and a poor postoperative BVCA. | The primary anatomical success rate after surgery was 91.8%. |
2020, Sung et al. [39] | Retrospective | PPV (23G) + SB | SO, Gas (C3F8, SF6) | Macula-off | 132 | 6 months | BVCA, age, sex, status of lens, IOP, axial length, type, location, and extent of retinal breaks. | Pseudophakic eyes and macular holes are prognostic factors for a poor visual outcome in total RRD. | The primary anatomical success rate after surgery was 96.6% for partial RRD and 75% for total RRD. |
2021, Hostovsky et al. [40] | Retrospective | PPV + SB | No data | Macula-off | 44 | 6 months | BVCA, lens status, IOP, location, extent and number of retinal breaks, duration of retinal detachment, and OCT biomarkers (RD height, epiretinal membrane, macular hole, and subretinal depositions). | Correlations between visual acuity at presentation, height of the detachment and duration of symptoms, and final postoperative BCVA. Statistically significant correlations between presence of macular hole or epiretinal membrane and a poorer final postoperative BCVA. | The primary anatomical success rate after surgery was 93%. |
2021, Baudin et al. [41] | Prospective | PPV + SB | Gas | Macula-off | 115 | 12 months | BVCA, age, sex, status of lens, duration of symptoms, IOP, axial length, type, location, extent of retinal breaks, type of intervention and tamponament, and OCT biomarkers (ELM, EZ, SRF, CME, and ERM). | Presence of ERM at 3 months, low BVCA at 3 months postoperative, and a longer time to surgery were the main predictors for worse final BCVA. | The primary anatomical success rate after surgery was 100%. |
2022, Gopal et al. [42] | Retrospective | PPV + SB | SO, Gas (C3F8, SF6) Air | Macula-on | 646 | 6 months | Age, sex, BVCA, status of lens, duration of symptoms, type, location, number of retinal breaks, and type of intervention and tamponament. | Prognostic factors associated with loss of vision were preoperative BCVA, lens status, extent of retinal detachment, and need for additional surgery. | The primary anatomical success rate after surgery was 88.7%. |
Prognostic Factor | Statistical Correlation Between Prognostic Factors and Postoperative BCVA | No Statistical Correlation Between Prognostic Factors and Postoperative BCVA | Not Included in Statistical Analysis |
---|---|---|---|
Age | [26,38,39] | [24,25,29,32,33,40,41,42] | [27,28,30,31,34,35,36,37] |
Sex | [33] | [24,26,29,32,40,41] | [25,27,28,30,31,34,35,36,37,38,39,42] |
BCVA at presentation | [25,27,29,31,32,33,35,36,37,38,39,40,41,42] | [24,28,30] | [26,34] |
Duration of Symptoms | Preoperative BVCA | Follow up 1 Month * | Follow up 6 Months * | Follow up 12 Months * |
---|---|---|---|---|
Duration of symptoms <7 days before surgery | logMAR 1.22 ± 1.2 | logMAR 0.68 ± 0.5 | logMAR 0.55 ± 0.5 | logMAR 0.53 ± 0.5 |
Duration of symptoms ≥7 days before surgery | logMAR 1.50 ± 1.3 | logMAR 0.91 ± 0.4 | logMAR 0.87 ± 0.5 | logMAR 0.81 ± 0.5 |
Authors | Macula-On | Macula-Off | ||
---|---|---|---|---|
Altindal et al. [27] | Preoperative BVCA | logMAR 0.55 (median 0.7; range, 0–1) | logMAR 1.73 (median 1.8; range, 0.52–2.10) | p < 0.001 |
Postoperative BVCA | logMAR 0.08 (median 0; range, 0–0.4) | logMAR 0.48 (median 0.3; range, 0–2.10) | p = 0.002 | |
Barequet et al. [29] | Preoperative BVCA | logMAR 0.19 ± 0.20 | logMAR 1.32 ± 0.58 | p < 0.001 |
Postoperative BVCA | logMAR 0.24 ± 0.20 | logMAR 0.54 ± 0.79 | p < 0.001 |
Statistical Correlation Between Prognostic Factors and Postoperative BCVA | No Statistical Correlation Between Prognostic Factors and Postoperative BCVA | Not Included in Statistical Analysis | |
---|---|---|---|
PVR | [26,28,31,37,39] | [25,33,38,42] | [24,27,29,30,32,34,35,36,40,41] |
Lens status | [39,42] | [24,25,26,31,33,34,35,37,40,41] | [27,28,29,30,32,36,38] |
Intraocular pressure | [38] | [24] | [25,26,27,28,29,30,31,32,33,34,35,36,37,39,40,41,42] |
Refractive error | [38] | [25,30,31,32,33,37,39,41] | [24,26,27,28,29,34,35,36,40,42] |
Axial length | - | [25,30,31,32,37,38,39,41] | [24,26,27,28,29,33,34,35,36,40,42] |
Type of endotamponament (gas-SO) | [31,33,38] | [26,35,39,42] | [24,25,27,28,29,30,32,34,36,37,40,41] |
OCT Biomarker | Statistical Correlation Between OCT Biomarkers and Postoperative BCVA | No statistical Correlation Between OCT Biomarkers and Postoperative BCVA | Not Included in Statistical Analysis |
---|---|---|---|
Ellipsoid zone | [24,25,26,30,31,32,37] | [28] | [27,29,33,34,35,36,38,39,40,41,42] |
Epiretinal membrane | [24,40,41] | [25] | [26,27,28,29,30,31,32,33,34,35,36,37,38,39,42] |
External limiting membrane | [26,28,30,31,32,37] | [24,25] | [27,29,33,34,35,36,38,39,40,41,42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chereji, G.; Samoilă, O.; Nicoară, S.D. Prognostic Factors for Visual Postsurgical Outcome in Rhegmatogenous Retinal Detachment—A Systematic Review. J. Clin. Med. 2025, 14, 2016. https://doi.org/10.3390/jcm14062016
Chereji G, Samoilă O, Nicoară SD. Prognostic Factors for Visual Postsurgical Outcome in Rhegmatogenous Retinal Detachment—A Systematic Review. Journal of Clinical Medicine. 2025; 14(6):2016. https://doi.org/10.3390/jcm14062016
Chicago/Turabian StyleChereji, George, Ovidiu Samoilă, and Simona Delia Nicoară. 2025. "Prognostic Factors for Visual Postsurgical Outcome in Rhegmatogenous Retinal Detachment—A Systematic Review" Journal of Clinical Medicine 14, no. 6: 2016. https://doi.org/10.3390/jcm14062016
APA StyleChereji, G., Samoilă, O., & Nicoară, S. D. (2025). Prognostic Factors for Visual Postsurgical Outcome in Rhegmatogenous Retinal Detachment—A Systematic Review. Journal of Clinical Medicine, 14(6), 2016. https://doi.org/10.3390/jcm14062016