Ki-67 as a Prognostic Marker in Squamous Cell Carcinomas of the Vulva: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Outcomes
2.4. Study Selection and Data Extraction
2.5. Assessment of Study Quality and Risk of Bias
2.6. Data Synthesis
3. Results
3.1. Interpretation of Positive Ki-67 Staining and Its Respective Cut-Off Values
3.2. Association of Ki-67 with Lymph Node Metastasis
3.3. Association of Ki-67 with Survival Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerdes, J.; Schwab, U.; Lemke, H.; Stein, H. Production of a Mouse Monoclonal Antibody Reactive with a Human Nuclear Antigen Associated with Cell Proliferation. Int. J. Cancer 1983, 31, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Scholzen, T.; Gerdes, J. The Ki-67 Protein: From the Known and the Unknown. J. Cell Physiol. 2000, 182, 311–322. [Google Scholar] [CrossRef]
- Kleer, C.G.; Giordano, T.J.; Braun, T.; Oberman, H.A. Pathologic, Immunohistochemical, and Molecular Features of Benign and Malignant Phyllodes Tumors of the Breast. Mod. Pathol. 2001, 14, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Pirog, E.C.; Quint, K.D.; Yantiss, R.K. P16/CDKN2A and Ki-67 Enhance the Detection of Anal Intraepithelial Neoplasia and Condyloma and Correlate with Human Papillomavirus Detection by Polymerase Chain Reaction. Am. J. Surg. Pathol. 2010, 34, 1449–1455. [Google Scholar] [CrossRef]
- Vang, R.; Barner, R.; Wheeler, D.T.; Strauss, B.L. Immunohistochemical Staining for Ki-67 and P53 Helps Distinguish Endometrial Arias-Stella Reaction from High-Grade Carcinoma, Including Clear Cell Carcinoma. Int. J. Gynecol. Pathol. 2004, 23, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Kolles, H.; Niedermayer, I.; Schmitt, C.; Henn, W.; Feld, R.; Steudel, W.I.; Zang, K.D.; Feiden, W. Triple Approach for Diagnosis and Grading of Meningiomas: Histology, Morphometry of Ki-67/Feulgen Stainings, and Cytogenetics. Acta Neurochir. 1995, 137, 174–181. [Google Scholar] [CrossRef]
- Tao, Z.; Xue, R.; Wei, Z.; Qin, L.; Bai, R.; Liu, N.; Wang, J.; Wang, C. The Assessment of Ki-67 for Prognosis of Gastroenteropancreatic Neuroendocrine Neoplasm Patients: A Systematic Review and Meta-Analysis. Transl. Cancer Res. 2023, 12, 1980–1991. [Google Scholar] [CrossRef]
- Nahed, A.S.; Shaimaa, M.Y. Ki-67 as a Prognostic Marker According to Breast Cancer Molecular Subtype. Cancer Biol. Med. 2016, 13, 496. [Google Scholar] [CrossRef]
- Gluz, O.; Nitz, U.; Christgen, M.; Braun, M.; Luedtke-Heckenkamp, K.; Darsow, M.; Forstbauer, H.; Potenberg, J.; Uleer, C.; Grischke, E.-M.; et al. Prognostic Impact of Recurrence Score, Endocrine Response and Clinical-Pathological Factors in High-Risk Luminal Breast Cancer: Results from the WSG-ADAPT HR+/HER2- Chemotherapy Trial. J. Clin. Oncol. 2021, 39, 504. [Google Scholar] [CrossRef]
- Nielsen, T.O.; Leung, S.C.Y.; Rimm, D.L.; Dodson, A.; Acs, B.; Badve, S.; Denkert, C.; Ellis, M.J.; Fineberg, S.; Flowers, M.; et al. Assessment of Ki67 in Breast Cancer: Updated Recommendations from the International Ki67 in Breast Cancer Working Group. JNCI J. Natl. Cancer Inst. 2021, 113, 808–819. [Google Scholar] [CrossRef]
- Ayhan, A.; Velipasaoglu, M.; Salman, M.C.; Guven, S.; Gultekin, M.; Bayraktar, O. Prognostic Factors for Recurrence and Survival in Primary Vulvar Squamous Cell Cancer. Acta Obs. Gynecol. Scand. 2008, 87, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Fons, G.; Burger, M.P.; ten Kate, F.J.; van der Velden, J. Identification of Potential Prognostic Markers for Vulvar Cancer Using Immunohistochemical Staining of Tissue Microarrays. Int. J. Gynecol. Pathol. 2007, 26, 188–193. [Google Scholar] [CrossRef]
- Oonk, M.H.M.; Planchamp, F.; Baldwin, P.; Mahner, S.; Mirza, M.R.; Fischerová, D.; Creutzberg, C.L.; Guillot, E.; Garganese, G.; Lax, S.; et al. European Society of Gynaecological Oncology Guidelines for the Management of Patients with Vulvar Cancer—Update 2023. Int. J. Gynecol. Cancer 2023, 33, 1023–1043. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S. The Well-Built Clinical Question: A Key to Evidence-Based Decisions. ACP J. Club 1995, 123, A12-3. [Google Scholar] [CrossRef]
- Eriksen, M.B.; Frandsen, T.F. The Impact of Patient, Intervention, Comparison, Outcome (PICO) as a Search Strategy Tool on Literature Search Quality: A Systematic Review. J. Med. Libr. Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Wortman, P.M. Judging Research Quality. In The Handbook of Research Synthesis; Cooper, H., Hedges, L., Eds.; Russll Sage Foundation: New York, NY, USA, 1994; pp. 97–109. [Google Scholar]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological Index for Non-randomized Studies (MINORS): Development and Validation of a New Instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef]
- Hayden, J.A.; Côté, P.; Bombardier, C. Evaluation of the Quality of Prognosis Studies in Systematic Reviews. Ann. Intern. Med. 2006, 144, 427. [Google Scholar] [CrossRef]
- Stewart, C.J.R.; Crook, M.L. Fascin and Cyclin D1 Immunoreactivity in Non-Neoplastic Vulvar Squamous Epithelium, Vulvar Intraepithelial Neoplasia and Invasive Squamous Carcinoma: Correlation with Ki67 and P16 Protein Expression. J. Clin. Pathol. 2014, 67, 319–325. [Google Scholar] [CrossRef]
- Cereceda, K.; Bravo, N.; Jorquera, R.; González-Stegmaier, R.; Villarroel-Espíndola, F. Simultaneous and Spatially-Resolved Analysis of T-Lymphocytes, Macrophages and PD-L1 Immune Checkpoint in Rare Cancers. Cancers 2022, 14, 2815. [Google Scholar] [CrossRef] [PubMed]
- Gualco, M.; Bonin, S.; Foglia, G.; Fulcheri, E.; Odicino, F.; Prefumo, F.; Stanta, G.; Ragni, N. Morphologic and Biologic Studies on Ten Cases of Verrucous Carcinoma of the Vulva Supporting the Theory of a Discrete Clinico-Pathologic Entity. Int. J. Gynecol. Cancer 2003, 13, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Lewy-Trenda, I.; Wierzchniewska-Ławska, A.; Papierz, W. Expression of Vascular Endothelial Growth Factor (VEGF) in Vulvar Squamous Cancer and VIN. Pol. J. Pathol. 2005, 56, 5–8. [Google Scholar]
- Zannoni, G.F.; Prisco, M.G.; Vellone, V.G.; De Stefano, I.; Scambia, G.; Gallo, D. Changes in the Expression of Oestrogen Receptors and E-Cadherin as Molecular Markers of Progression from Normal Epithelium to Invasive Cancer in Elderly Patients with Vulvar Squamous Cell Carcinoma. Histopathology 2011, 58, 265–275. [Google Scholar] [CrossRef]
- Okon, K.; Basta, A.; Stachura, J. Morphometry Separates Squamous Cell Carcinoma of the Vulva into Two Distinct Groups. Pol. J. Pathol. 1998, 49, 293–295. [Google Scholar] [PubMed]
- Choschzick, M.; Alyahiaoui, M.; Ciritsis, A.; Rossi, C.; Gut, A.; Hejduk, P.; Boss, A. Deep Learning for the Standardized Classification of Ki-67 in Vulva Carcinoma: A Feasibility Study. Heliyon 2021, 7, e07577. [Google Scholar] [CrossRef]
- Mayer, A.; Schmidt, M.; Seeger, A.; Serras, A.F.; Vaupel, P.; Schmidberger, H. GLUT-1 Expression Is Largely Unrelated to Both Hypoxia and the Warburg Phenotype in Squamous Cell Carcinomas of the Vulva. BMC Cancer 2014, 14, 760. [Google Scholar] [CrossRef]
- Zannoni, G.F.; Prisco, M.G.; Vellone, V.G.; de Stefano, I.; Vizzielli, G.; Tortorella, L.; Fagotti, A.; Scambia, G.; Gallo, D. Cytoplasmic Expression of Oestrogen Receptor Beta (ERβ) as a Prognostic Factor in Vulvar Squamous Cell Carcinoma in Elderly Women. Histopathology 2011, 59, 909–917. [Google Scholar] [CrossRef]
- Fons, G.; Van Der Velden, J.; Burger, M.; Ten Kate, F. Validation of Tissue Microarray Technology in Vulvar Cancer. Int. J. Gynecol. Pathol. 2009, 28, 76–82. [Google Scholar] [CrossRef]
- Brustmann, H. Epidermal Growth Factor Receptor Is Involved in the Development of an Invasive Phenotype in Vulvar Squamous Lesions, but Is Not Related to MIB-1 Immunoreactivity. Int. J. Gynecol. Pathol. 2007, 26, 481–489. [Google Scholar] [CrossRef]
- Nola, M.; Blažanovíc, A.; Dotlić, S.; Morović, A.; Tomičić, I.; Jukić, S. Invasive Squamous Cell Carcinoma of Vulva: Prognostic Significance of Clinicopathologic Parameters. Croat. Med. J. 2005, 46, 436–442. [Google Scholar] [PubMed]
- Koyamatsu, Y.; Yokoyama, M.; Nakao, Y.; Fukuda, K.; Saito, T.; Matsukuma, K.; Iwasaka, T. A Comparative Analysis of Human Papillomavirus Types 16 and 18 and Expression of P53 Gene and Ki-67 in Cervical, Vaginal, and Vulvar Carcinomas. Gynecol. Oncol. 2003, 90, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Biatta, C.M.; Paudice, M.; Scaglione, G.; Baldelli, I.; Fulcheri, E.; Ferrero, S.; Cozzani, E.; Parodi, A.; Vellone, V.G. Molecular Markers Expression in the Transition from Normal Epithelium to Invasive Cancer in Vulvar Squamous Cell Carcinoma. J. Dermatol. Nurses’ Assoc. 2020, 12, 1–2. [Google Scholar]
- Sznurkowski, J.; Zawrocki, A.; Sznurkowska, K.; Biernat, W. Ki67 and CD44 indices depends on P16 status of vulvar cancer tissue. High index of CD44 positive cancer cells predicts worse outcome of patients. Int. J. Gynecol. Cancer 2017, 27 MA-E, 2024. [Google Scholar]
- Stefansson, K.; Oda, H.; Öfverman, C.; Lundin, E.; Hedman, H.; Lindquist, D. LRIG Protein Expression and HPV Prevalence in Vulvar Cancer Patients in Northern Sweden. Int. J. Gynecol. Cancer 2015, 25, 684. [Google Scholar] [CrossRef]
- Novikova, E.; Chulkova, O.; Filonenko, E. P53 and KI-67 Expression in a Premalignant Lesions and Cancer of Vulva. Int. J. Gynecol. Cancer 2012, 22, E825. [Google Scholar] [CrossRef]
- Novikova, E.G.; Chulkova, O.V.; Filonenko, E.V.; Murshudova, S.K. P53 and KI-67 Expression in Vulvar Carcinoma, Vulvar Intraepithelial Neoplasia, Squamous Cell Hiperplasia and Lichen Sclerosus. Int. J. Gynecol. Cancer 2011, 21, S938. [Google Scholar] [CrossRef]
- Hampl, M.; Panyatopoulos, D.; Roos, J.; Petry, H.U.; Dürst, M.; von Knebel Döberitz, M.; Reuschenbach, M. The Small Vulvar Cancer of the Anterior Fourchette: A Specific Tumor Entity? Arch. Gynecol. Obs. 2010, 282, S121. [Google Scholar] [CrossRef]
- Carlson, J.A.; Ambros, R.; Malfetano, J.; Ross, J.; Grabowski, R.; Lamb, P.; Figge, H.; Mihm, M.C., Jr. Vulvar Lichen Sclerosus and Squamous Cell Carcinoma: A Cohort, Case Control, and Investigational Study with Historical Perspective; Implications for Chronic Inflammation and Sclerosis in the Development of Neoplasia. Hum. Pathol. 1998, 29, 932–948. [Google Scholar] [CrossRef]
- Drew, P.A.; Malik, S.N.; Wilkinson, E.J. Laminin, Bcl-2 Protein and Ki-67 Expression in Vulvar Carcinoma. Mod. Pathol. 1998, 11, 103A. [Google Scholar]
- Scurry, J.; Beshay, V.; Cohen, C.; Allen, D. Ki67 Expression in Lichen Sclerosus of Vulva in Patients with and without Associated Squamous Cell Carcinoma. Histopathology 1998, 32, 399–404. [Google Scholar] [CrossRef]
- Ben-Hur, H.; Ashkenazi, M.; Huszar, M.; Gurevich, P.; Zusman, I. Lymphoid Elements and Apoptosis-Related Proteins (Fas, Fas Ligand, P53 and Bcl-2) in Lichen Sclerosus and Carcinoma of the Vulva. Eur. J. Gynaecol. Oncol. 2001, 22, 104–109. [Google Scholar]
- Al-Ghamdi, A.; Freedman, D.; Miller, D.; Poh, C.; Rosin, M.; Zhang, L.; Gilks, C.B. Vulvar Squamous Cell Carcinoma in Young Women: A Clinicopathologic Study of 21 Cases. Gynecol. Oncol. 2002, 84, 94–101. [Google Scholar] [CrossRef]
- Carlson, J.A.; Amin, S.; Malfetano, J.; Tien, A.T.; Selkin, B.; Hou, J.; Goncharuk, V.; Wilson, V.L.; Rohwedder, A.; Ambros, R.; et al. Concordant P53 and Mdm-2 Protein Expression in Vulvar Squamous Cell Carcinoma and Adjacent Lichen Sclerosus. Appl. Immunohistochem. Mol. Morphol. 2001, 9, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Tessier-Cloutier, B.; Asleh-Aburaya, K.; Shah, V.; McCluggage, W.G.; Tinker, A.; Gilks, C.B. Molecular Subtyping of Mammary-like Adenocarcinoma of the Vulva Shows Molecular Similarity to Breast Carcinomas. Histopathology 2017, 71, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.-B.; Pu, D.-M.; Yin, L. Relationship between DNA ploidy and cell proliferation of keratinizing vulvar squamous cell carcinomas and non-neoplastic epithelial disorders. Chin. J. Cancer Prev. Treat. 2008, 15, 378–380. [Google Scholar]
- Takacs, F.Z.; Radosa, J.C.; Bochen, F.; Juhasz-Böss, I.; Solomayer, E.-F.; Bohle, R.M.; Breitbach, G.-P.; Schick, B.; Linxweiler, M. Sec62/Ki67 and P16/Ki67 Dual-Staining Immunocytochemistry in Vulvar Cytology for the Identification of Vulvar Intraepithelial Neoplasia and Vulvar Cancer: A Pilot Study. Arch. Gynecol. Obstet. 2019, 299, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, J.B.; Wilkinson, E.J.; Kubilis, P.; Drew, P.; Blaydes, S.M.; Munakata, S. Ki-67 Expression in Vulvar Carcinoma. Int. J. Gynecol. Pathol. 1994, 13, 205–210. [Google Scholar] [CrossRef]
- Weikel, W.; Beck, T.; Moll, R.; Brutnm, C.; Knapstein, P.G. Prognostic evaluation of vulvar carcinomas: Histological, immunohistochemical, and flow-cytometric investigations. Gynakol. Geburtshilfliche Rundsch. 1995, 35, 11–14. [Google Scholar] [CrossRef]
- Emanuels, A.G.; Burger, M.P.M.; Hollema, H.; Koudstaal, J. Quantitation of Proliferation-Associated Markers Ag-NOR and Ki-67 Does Not Contribute to the Prediction of Lymph Node Metastases in Squamous Cell Carcinoma of the Vulva. Hum. Pathol. 1996, 27, 807–811. [Google Scholar] [CrossRef]
- Marchetti, M.; Salmaso, R.; Polonio, S.; Perin, D.; Salviato, T.; Onnis, A. Ki-67 Expression in Vulvar Carcinoma. Preliminary Results. Eur. J. Gynaecol. Oncol. 1996, 17, 361–364. [Google Scholar] [PubMed]
- Modesitt, S.C.; Groben, P.A.; Walton, L.A.; Fowler, W.C., Jr.; Van Le, L. Expression of Ki-67 in Vulvar Carcinoma and Vulvar Intraepithelial Neoplasia III: Correlation with Clinical Prognostic Factors. Gynecol. Oncol. 2000, 76, 51–55. [Google Scholar] [CrossRef]
- Salmaso, R.; Zen, T.; Zannol, M.; Perin, D.; Marchiori, S.; Marchetti, M. Prognostic Value of Protein P53 and Ki-67 in Invasive Vulvar Squamous Cell Carcinoma. Eur. J. Gynaecol. Oncol. 2000, 21, 479–483. [Google Scholar]
- Carlson, J.A.; Healy, K.; Tran, T.A.; Malfetano, J.; Wilson, V.L.; Rohwedder, A.; Ross, J.S. Chromosome 17 Aneusomy Detected by Fluorescence in Situ Hybridization in Vulvar Squamous Cell Carcinomas and Synchronous Vulvar Skin. Am. J. Pathol. 2000, 157, 973–983. [Google Scholar] [CrossRef] [PubMed]
- Hantschmann, P.; Lampe, B.; Beysiegel, S.; Kurzl, R. Tumor Proliferation in Squamous Cell Carcinoma of the Vulva. Int. J. Gynecol. Pathol. 2000, 19, 361–368. [Google Scholar] [CrossRef]
- Brustmann, H.; Naudé, S. Expression of Topoisomerase IIα, Ki-67, Proliferating Cell Nuclear Antigen, P53, and Argyrophilic Nucleolar Organizer Regions in Vulvar Squamous Lesions. Gynecol. Oncol. 2002, 86, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Fons, G.; Burger, M.P.M.; Ten Kate, F.J.W.; Van Der Velden, J. Assessment of Promising Protein Markers for Vulva Cancer. Int. J. Gynecol. Cancer 2009, 19, 756–760. [Google Scholar] [CrossRef]
- Brambs, C.E.; Horn, L.-C.; Mende, M.; Höckel, M.; Eckey, C.; Hiller, G.G.R.; Höhn, A.K. Epithelial–Mesenchymal Transition (EMT) in Vulvar Cancer with and without Inguinal Lymph Node Involvement. J. Cancer Res. Clin. Oncol. 2022, 148, 1183–1193. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, Y.; Luo, J.; Li, J.; Niu, S.; Chen, H.; Zhou, F. An Integrated Model for Prognosis in Vulvar Squamous Cell Carcinoma. BMC Cancer 2023, 23, 534. [Google Scholar] [CrossRef]
- Dongre, H.N.; Elnour, R.; Tornaas, S.; Fromreide, S.; Thomsen, L.C.V.; Kolseth, I.B.M.; Nginamau, E.S.; Johannessen, A.C.; Vintermyr, O.K.; Costea, D.E.; et al. TP53 Mutation and Human Papilloma Virus Status as Independent Prognostic Factors in a Norwegian Cohort of Vulva Squamous Cell Carcinoma. Acta Obstet. Gynecol. Scand. 2023, 103, 165–175. [Google Scholar] [CrossRef]
- Fontana, D.; Bellina, M.; Gubetta, L.; Fasolis, G.; Rolle, L.; Scoffone, C.; Porpiglia, F.; Colombo, M.; Tarabuzzi, R.; Leonardo, E. Monoclonal Antibody Ki-67 in the Study of the Proliferative Activity of Bladder Carcinoma. J. Urol. 1992, 148, 1149–1151. [Google Scholar] [CrossRef]
- Hantschmann, P.; Beysiegel, S.; Kürzl, R. Squamous Cell Carcinoma of the Vulva. Expression of Tumor Proteases Cathepsin-D and pro-Cathepsin-L. J. Reprod. Med. 1998, 43, 933–942. [Google Scholar] [PubMed]
- Stankiewicz, E.; Ng, M.; Cuzick, J.; Mesher, D.; Watkin, N.; Lam, W.; Corbishley, C.; Berney, D.M. The Prognostic Value of Ki-67 Expression in Penile Squamous Cell Carcinoma. J. Clin. Pathol. 2012, 65, 534–537. [Google Scholar] [CrossRef]
- Lindboe, C.F.; Torp, S.H. Comparison of Ki-67 Equivalent Antibodies. J. Clin. Pathol. 2002, 55, 467–471. [Google Scholar] [CrossRef]
- Geread, R.S.; Morreale, P.; Dony, R.D.; Brouwer, E.; Wood, G.A.; Androutsos, D.; Khademi, A. IHC Color Histograms for Unsupervised Ki67 Proliferation Index Calculation. Front. Bioeng. Biotechnol. 2019, 7, 226. [Google Scholar] [CrossRef] [PubMed]
- Emanuels, A.; Hollema, H.; Suurmeyer, A.; Koudstaal, J. A Modified Method for Antigen Retrieval MIB-1 Staining of Vulvar Carcinoma. Eur. J. Morphol. 1994, 32, 335–337. [Google Scholar] [PubMed]
- Abrao, F.S.; Baracat, E.C.; Marques, A.F.; Abrao, M.S.; Torloni, H.; Coelho, F.R.G.; Alves, A.C.; De Lima, G.R. Carcinoma of the Vulva: Clinicopathologic Factors Involved in Inguinal and Pelvic Lymph Node Metastasis. Proc. J. Reprod. Med. Obstet. Gynecol. 1990, 35, 1113–1116. [Google Scholar]
- Hoffmann, G.; Casper, F.; Weikel, W.; Kümmerle, T.; Pollow, B.; Schaffrath, M.; Hofmann, M.; Pollow, K. Prognostic value of p53, UPA, PAI-1 and Ki-67 in vulvar carcinoma. Zentralbl Gynakol. 1999, 121, 473–478. [Google Scholar]
- Lokuhetty, D.; White, V.A.; Watanabe, R. Female Genital Tumours. In WHO Classification of Tumours, 5th ed.; Internal Agency for Research on Cancer (IARC): Lyon, France, 2020; ISBN 978-92-832-4504-9. [Google Scholar]
- Kortekaas, K.E.; Bastiaannet, E.; van Doorn, H.C.; de Vos van Steenwijk, P.J.; Ewing-Graham, P.C.; Creutzberg, C.L.; Akdeniz, K.; Nooij, L.S.; van der Burg, S.H.; Bosse, T.; et al. Vulvar Cancer Subclassification by HPV and P53 Status Results in Three Clinically Distinct Subtypes. Gynecol. Oncol. 2020, 159, 649–656. [Google Scholar] [CrossRef]
- Shui, R.; Yu, B.; Bi, R.; Yang, F.; Yang, W. An Interobserver Reproducibility Analysis of Ki67 Visual Assessment in Breast Cancer. PLoS ONE 2015, 10, e0125131. [Google Scholar] [CrossRef]
- Phan, T.-C.; Huu, H.N. Enhancing Breast Cancer Detection with Advanced Deep Learning Techniques for Ki-67 Nuclear Protein Analysis. SN Comput. Sci. 2024, 5, 663. [Google Scholar] [CrossRef]
- Martino, F.; Ilardi, G.; Varricchio, S.; Russo, D.; Di Crescenzo, R.M.; Staibano, S.; Merolla, F. A Deep Learning Model to Predict Ki-67 Positivity in Oral Squamous Cell Carcinoma. J. Pathol. Inform. 2024, 15, 100354. [Google Scholar] [CrossRef]
- Sheikhzadeh, F.; Ward, R.K.; van Niekerk, D.; Guillaud, M. Automatic Labeling of Molecular Biomarkers of Immunohistochemistry Images Using Fully Convolutional Networks. PLoS ONE 2018, 13, e0190783. [Google Scholar] [CrossRef]
- Garganese, G.; Inzani, F.; Fragomeni, S.M.; Mantovani, G.; Della Corte, L.; Piermattei, A.; Santoro, A.; Angelico, G.; Giacò, L.; Corrado, G.; et al. The Vulvar Immunohistochemical Panel (VIP) Project: Molecular Profiles of Vulvar Squamous Cell Carcinoma. Cancers 2021, 13, 6373. [Google Scholar] [CrossRef] [PubMed]
- Woelber, L.; Prieske, K.; Eulenburg, C.; Oliveira-Ferrer, L.; de Gregorio, N.; Klapdor, R.; Kalder, M.; Braicu, I.; Fuerst, S.; Klar, M.; et al. P53 and P16 Expression Profiles in Vulvar Cancer: A Translational Analysis by the Arbeitsgemeinschaft Gynäkologische Onkologie Chemo and Radiotherapy in Epithelial Vulvar Cancer Study Group. Am. J. Obs. Gynecol. 2021, 224, 595.e1–595.e11. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, I.S.; Lavorato-Rocha, A.M.; de M Maia, B.; Stiepcich, M.M.A.; de Carvalho, F.M.; Baiocchi, G.; Soares, F.A.; Rocha, R.M. Epithelial-Mesenchymal Transition-like Events in Vulvar Cancer and Its Relation with HPV. Br. J. Cancer 2013, 109, 184–194. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Jeong, H.S.; Chung, T.; Kim, M.; Lee, J.H.; Jung, W.H.; Koo, J.S. The Value of Phosphohistone H3 as a Proliferation Marker for Evaluating Invasive Breast Cancers: A Comparative Study with Ki67. Oncotarget 2017, 8, 65064–65076. [Google Scholar] [CrossRef]
- Elmaci, İ.; Altinoz, M.A.; Sari, R.; Bolukbasi, F.H. Phosphorylated Histone H3 (PHH3) as a Novel Cell Proliferation Marker and Prognosticator for Meningeal Tumors: A Short Review. Appl. Immunohistochem. Mol. Morphol. 2018, 26, 627–631. [Google Scholar] [CrossRef]
- Klamminger, G.G.; Nigdelis, M. Ki-67 as a Prognostic Marker in Squamous Cell Carcinoma of the Vulva. 2024. Available online: https://osf.io/9n5es/ (accessed on 20 December 2024).
Author (Year) and Number of Cases (n) | Method of Ki-67 Evaluation and Individual Cut-Off Value | Statistical Analysis | Results |
---|---|---|---|
Hendricks et al. (1994) [49]; n = 17 | pattern: diffuse / localized positive nuclear area (PNA, quantification by automatic image analysis) | independent sample t-test | no association between lymph node status and ki-67 pattern (p = 963) |
Emanuels et al. (1996) [51]; n = 145 | Ki-67 index: positive nuclei per total number of nuclei (evaluation of 10 high-power fields) | Mann–Whitney U test | no relation between proliferation and lymph node metastases |
Marchetti et al. (1996) [52]; n = 73 | pattern: diffuse / localized (0.2–6% positivity / 7–9% positivity) pattern (hereby, ki-67 number of positive nuclei / 2000 neoplastic cells) | Fischer’s test | lymph node status is proposed to be correlated to ki-67 distribution (no statistical details provided) |
Modesitt et al. (2000) [53]; n = 31 | pattern: diffuse / localized | x2 and Fisher exact tests (required p was < 0.05) | no correlation between pattern and lymph node affect (not significant) |
Salmaso et al. (2000) [54]; n = 129 | pattern: diffuse / localized | Spearman’s Rho and Cox Model | bivariate data analysis: significant association between ki-67 and OS with lymph node involvement (rho = 0.388, p = 0.0001) |
Carlson et al. (2000) [55]; n = 16 | ki-67 labeling index: positive cells / 100 basal keratinocytes | ki-67 labeling index: positive cells / 100 basal keratinocytes x2 test: dichotomous variables t-test: continuous variables (equal variance) Mann–Whitney U test: continuous variables (unequal variance) correlation: linear regression analysis. | Elevated ki-67 was not associated with lymph node metastasis (p > 0.3) |
Hantschmann et al. (2000) [56]; n = 74 | pattern: diffuse type / infiltrating type / basal type Proliferative index: <10% / 11 to 50% / >50% (positive nuclei per 200 cells / 2) | X2-test (significance level of alpha = 0.05) | no association between ki-67 and lymph node metastases: basal type compared to diffuse and infiltrating types (p = 0.053) |
Brustmann et al. (2002) [57]; n = 22 | labeling indices: positive nuclei / 1000 epithelial cells | unpaired t-test and Pearson correlation (p < 0.05 was considered significant) | no association between ki-67 and development of lymph node metastases |
Brambs et al. (2022) [59]; n = 32 | pattern: low-grade / intermediate / high-grade | Mann–Whitney U test (2 groups) and Kruskal–Wallis test (>2 groups) | no significant association between ki-67 and lymph node metastases (p = 0.5) |
Zhang et al. (2023) [60]; n = 69 | ki-67 high vs. ki-67 low (cut-off value < or > 50% positive nuclei) | two-sided Fisher’s exact / Chi-square test as well as Cox regression (p < 0.05 was considered significant), Kaplan–Meier curves | no significant association between ki-67 and lymph node metastases (p = 0.672) |
Author (Year) and Number of Cases (n) | Method of Ki-67 Evaluation and Individual Cut-Off Value | Statistical Analysis | Results: Overall/Disease-Specific Survival | Results: Progression-Free/Disease-Free Survival |
---|---|---|---|---|
Hendricks et al. (1994) [49]; n = 17 | pattern: diffuse / localized with their respective positive nuclear area (PNA, quantification by automatic image analysis) | Log-rank statistic to compare Kaplan–Meier survival curves | no association of ki-67 PNA (high vs. low p = 0.4193) with survival data | n.a. |
Weikel et al. (1995) [50]; n = 147 | MIB-1 <25% / >25% | univariate regression analysis | no statistically significant result for ki-67 staining (chi2 p = 0.11) | not distinctly reported |
Marchetti et al. (1996) [52]; n = 73 | pattern: diffuse / localized (0.2–6% positivity / 7–9% positivity) pattern (hereby, ki-67 number of positive nuclei / 2000 neoplastic cells) | Fischer’s test | correlation of ki-67 patterns diffuse / local to survival after 3 years (p = 10−8) and 5 years (p = 5 × 10−8), but also difference in survival (localized low vs. localized high) at 3 years (p = 0.0025) and 5 years (0.00004) | n.a. |
Salmaso et al. (2000) [54]; n = 129 | pattern: diffuse / localized | Spearman’s Rho and Cox Model (multivariate) | After 5 years, 17% with a diffuse pattern were alive and 85% with a local pattern of staining were alive (Wilcoxon test, p = 0.001). Multivariate analysis by Cox regression determines a higher risk of death for ki-67- and p53-positive tumors vs. ki-67- and p53-negative tumors (RR: 4.29, 95% CI: 2.19–8.39, p = 0.00001) | n.a. |
Carlson et al. (2000) [55]; n = 16 | ki-67 labeling index: positive cells / 100 basal keratinocytes | survival analysis: Cox proportional hazards model | no association between ki-67 and survival (all p > 0.3) | n.a. |
Hantschmann et al. (2000) [56]; n = 74 | pattern: diffuse type / infiltrating type / basal type Proliferative index: < 10% / 11 to 50% / > 50% (positive nuclei per 200 cells / 2) | Kaplan–Meier-analysis (log-rank-test and x2-test) and Cox regression for multivariate proportional analysis | Overall survival rates in the diffuse and infiltrating types were statistically significantly reduced (p = 0.02), with MIB-1 staining pattern as most valuable characteristic in multivariate analysis (odds ratio: 4.73, p = 0.046). The proliferation index analysis did not yield statistically significant results. | Diffuse and infiltrating types exhibited only a clinical tendency toward shorter disease-free survival (p = 0.076). The proliferation index analysis did not yield statistically significant results. |
Fons et al. (2009) [58]; n = 80 | negative (<10%), weak positive (10–50%), strong positive (>50%) staining | Kaplan–Meier product-limit method and Cox proportional hazard model as well as multivariate r/ univariate regression analysis | univariate analysis: Ki-67 >50% and disease-specific survival (p = 0.870, 95%CI = 0.30–2.73) | univariate analysis: Ki-67 >50% and disease-free survival (p = 0.297, 95%CI = 0.15–1.76) |
Zhang et al. (2023) [60]; n = 69 | ki-67 high vs. ki-67 low (cut-off value < or > 50% positive nuclei) | two-sided Fisher’s exact / Chi-square test as well as Cox regression (p < 0.05 was considered significant), Kaplan–Meier curves | univariate analysis: no association of ki-67 with overall survival (p = 0.448) multivariate analysis: ki-67 high (p = 0.006, HR: 7.899) was significantly associated with decreased overall survival | univariate analysis: no association of ki-67 with progression-free survival (p = 0.826) multivariate analysis: ki-67 high (p = 0.042, HR: 3.680) was significantly associated with decreased progression-free survival |
Dongre et al. (2023) [61]; n = 123 | ki-67 expression was dichotomized based on positive cells / 1000 tumor cells (percentage); cut-off was established by receiver operating curve (ROC) | Log-rank test and Kaplan–Meier curves, as well as Cox regression model | univariate analysis: statistically significant association between ki-67 and disease specific survival (p = 0.041) multivariate analysis: no impact of ki-67 on disease specific survival (p = 0.207) | univariate analysis: significant association of ki-67 and progression-free survival (p = 0.004) multivariate analysis: no association of ki-67 with progression-free survival (p = 0.158) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klamminger, G.G.; Eltze, E.; Bitterlich, A.; Degirmenci, Y.; Hasenburg, A.; Wagner, M.; Nigdelis, M.P. Ki-67 as a Prognostic Marker in Squamous Cell Carcinomas of the Vulva: A Systematic Review. J. Clin. Med. 2025, 14, 2045. https://doi.org/10.3390/jcm14062045
Klamminger GG, Eltze E, Bitterlich A, Degirmenci Y, Hasenburg A, Wagner M, Nigdelis MP. Ki-67 as a Prognostic Marker in Squamous Cell Carcinomas of the Vulva: A Systematic Review. Journal of Clinical Medicine. 2025; 14(6):2045. https://doi.org/10.3390/jcm14062045
Chicago/Turabian StyleKlamminger, Gilbert Georg, Elke Eltze, Annick Bitterlich, Yaman Degirmenci, Annette Hasenburg, Mathias Wagner, and Meletios P. Nigdelis. 2025. "Ki-67 as a Prognostic Marker in Squamous Cell Carcinomas of the Vulva: A Systematic Review" Journal of Clinical Medicine 14, no. 6: 2045. https://doi.org/10.3390/jcm14062045
APA StyleKlamminger, G. G., Eltze, E., Bitterlich, A., Degirmenci, Y., Hasenburg, A., Wagner, M., & Nigdelis, M. P. (2025). Ki-67 as a Prognostic Marker in Squamous Cell Carcinomas of the Vulva: A Systematic Review. Journal of Clinical Medicine, 14(6), 2045. https://doi.org/10.3390/jcm14062045