The Evolving Landscape of Infective Endocarditis: Difficult-to-Treat Resistance Bacteria and Novel Diagnostics at the Foreground
Abstract
:1. Introduction
2. Emerging Microbiology in IE
2.1. Antimicrobial Therapy
2.2. DTR Gram-Positive IE
2.2.1. Methicillin-Resistant S. aureus (MRSA)
2.2.2. Vancomycin-Resistant Enterococci (VRE)
2.3. DTR Gram-Negative IE
2.3.1. P. aeruginosa
2.3.2. Enterobacterales
E. coli
K. pneumoniae
Treatment of Enterobacterales Endocarditis
2.3.3. A. baumannii–A. calcoaceticus Complex
3. Novel Diagnostic Tools
3.1. Magnetic Resonance Imaging (MRI)
3.2. PET; Computed Tomography Angiography (CTA) and Leucocyte Scintigraphy with Single Photon Emission Computed Tomography (SPECT)
3.3. Molecular Identification of Causative Agent in IE
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holland, T.L.; Baddour, L.M.; Bayer, A.S.; Hoen, B.; Miro, J.M.; Fowler, V.G., Jr. Infective endocarditis. Nat. Rev. Dis. Primers 2016, 2, 16059. [Google Scholar] [CrossRef] [PubMed]
- Cahill, T.J.; Prendergast, B.D. Infective endocarditis. Lancet 2016, 387, 882–893. [Google Scholar] [CrossRef]
- Chen, H.; Zhan, Y.; Zhang, K.; Gao, Y.; Chen, L.; Zhan, J.; Chen, Z.; Zeng, Z. The Global, Regional, and National Burden and Trends of Infective Endocarditis From 1990 to 2019: Results From the Global Burden of Disease Study 2019. Front. Med. 2022, 9, 774224. [Google Scholar] [CrossRef]
- Alkhouli, M.; Alqahtani, F.; Alhajji, M.; Berzingi, C.O.; Sohail, M.R. Clinical and Economic Burden of Hospitalizations for Infective Endocarditis in the United States. Mayo Clin. Proc. 2020, 95, 858–866. [Google Scholar] [CrossRef]
- Ambrosioni, J.; Hernandez-Meneses, M.; Téllez, A.; Pericàs, J.; Falces, C.; Tolosana, J.M.; Vidal, B.; Almela, M.; Quintana, E.; Llopis, J.; et al. The Changing Epidemiology of Infective Endocarditis in the Twenty-First Century. Curr. Infect. Dis. Rep. 2017, 19, 21. [Google Scholar] [CrossRef]
- Musci, T.; Grubitzsch, H. Healthcare-Associated Infective Endocarditis-Surgical Perspectives. J. Clin. Med. 2022, 11, 4957. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, D.R.; Corey, G.R.; Hoenm, B.; Miró, J.M.; Fowler, V.G., Jr.; Bayer, A.S.; Karchmer, A.W.; Olaison, L.; Pappas, P.A.; Moreillon, P.; et al. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: The International Collaboration on Endocarditis-Prospective Cohort Study. Arch. Intern. Med. 2009, 169, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Delgado, V.; Ajmone Marsan, N.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the management of endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar]
- Del Val, D.; Panagides, V.; Mestres, C.A.; Miró, J.M.; Rodés-Cabau, J. Infective Endocarditis after Transcatheter Aortic Valve Replacement: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 81, 394–412. [Google Scholar] [CrossRef]
- Strange, J.E.; Østergaard, L.; Køber, L.; Bundgaard, H.; Iversen, K.; Voldstedlund, M.; Gislason, G.H.; Olesen, J.B.; Fosbøl, E.L. Patient Characteristics, Microbiology, and Mortality of Infective Endocarditis After Transcatheter Aortic Valve Implantation. Clin. Infect. Dis. 2023, 77, 1617–1625. [Google Scholar] [CrossRef]
- DeSimone, D.C.; Lahr, B.D.; Anavekar, N.S.; Sohail, M.R.; Tleyjeh, I.M.; Wilson, W.R.; Baddour, L.M. Temporal Trends of Infective Endocarditis in Olmsted County, Minnesota, between 1970 and 2018: A Population-Based Analysis. Open Forum Infect. Dis. 2021, 8, ofab038. [Google Scholar] [CrossRef] [PubMed]
- Østergaard, L.; Lauridsen, T.K.; Iversen, K.; Bundgaard, H.; Søndergaard, L.; Ihlemann, N.; Moser, C.; Fosbøl, E. Infective endocarditis in patients who have undergone transcatheter aortic valve implantation: A review. Clin. Microbiol. Infect. 2020, 26, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Antimicrobial Resistance in the EU/EEA (EARS-Net)-Annual Epidemiological Report for 2023. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/antimicrobial-resistance-annual-epidemiological-report-EARS-Net-2023.pdf (accessed on 10 March 2025).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Kadri, S.S.; Adjemian, J.; Lai, Y.L.; Spaulding, A.B.; Ricotta, E.; Prevots, D.R.; Palmore, T.N.; Rhee, C.; Klompas, M.; Dekker, J.P.; et al. Difficult-to-Treat Resistance in Gram-negative Bacteremia at 173 US Hospitals: Retrospective Cohort Analysis of Prevalence, Predictors, and Outcome of Resistance to All First-line Agents. Clin. Infect. Dis. 2018, 67, 1803–1814. [Google Scholar] [CrossRef]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications: A Scientific Statement for Healthcare Professionals From the American Heart Association. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef]
- Muñoz, P.; Kestler, M.; De Alarcon, A.; Miro, J.M.; Bermejo, J.; Rodríguez-Abella, H.; Fariñas, M.C.; Cobo Belaustegui, M.; Mestres, C.; Llinares, P.; et al. Current Epidemiology and Outcome of Infective Endocarditis: A Multicenter, Prospective, Cohort Study. Medicine 2015, 94, e1816. [Google Scholar] [CrossRef]
- Pericàs, J.M.; Nathavitharana, R.; Garcia-de-la-Mària, C.; Falces, C.; Ambrosioni, J.; Almela, M.; García-González, J.; Quintana, E.; Marco, F.; Moreno, A.; et al. Endocarditis Caused by Highly Penicillin-Resistant Viridans Group Streptococci: Still Room for Vancomycin-Based Regimens. Antimicrob. Agents Chemother. 2019, 63, e00516-19. [Google Scholar] [CrossRef]
- Sader, H.S.; Carvalhaes, C.G.; Mendes, R.E. Ceftaroline activity against Staphylococcus aureus isolated from patients with infective endocarditis, worldwide (2010–2019). Int. J. Infect. Dis. 2021, 102, 524–528. [Google Scholar] [CrossRef]
- Zasowski, E.J.; Trinh, T.D.; Claeys, K.C.; Lagnf, A.M.; Bhatia, S.; Klinker, K.P.; Veve, M.P.; Estrada, S.J.; Johns, S.T.; Sawyer, A.J.; et al. Multicenter Cohort Study of Ceftaroline Versus Daptomycin for Treatment of Methicillin-Resistant Staphylococcus aureus Bloodstream Infection. Open Forum Infect. Dis. 2021, 9, ofab606. [Google Scholar] [CrossRef]
- Nigo, M.; Munita, J.M.; Arias, C.A.; Murray, B.E. What’s New in the Treatment of Enterococcal Endocarditis? Curr. Infect. Dis. Rep. 2014, 16, 431. [Google Scholar] [CrossRef]
- Yucel, E.; Bearnot, B.; Paras, M.L.; Zern, E.K.; Dudzinski, D.M.; Soong, C.P.; Jassar, A.S.; Rosenfield, K.; Lira, J.; Lambert, E.; et al. Diagnosis and Management of Infective Endocarditis in People Who Inject Drugs: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 2037–2057. [Google Scholar] [CrossRef] [PubMed]
- Ambrosioni, J.; Hernández-Meneses, M.; Durante-Mangoni, E.; Tattevin, P.; Olaison, L.; Freiberger, T.; Hurley, J.; Hannan, M.M.; Chu, V.; Hoen, B.; et al. Epidemiological Changes and Improvement in Outcomes of Infective Endocarditis in Europe in the Twenty-First Century: An International Collaboration on Endocarditis (ICE) Prospective Cohort Study (2000–2012). Infect. Dis. Ther. 2023, 12, 1083–1101. [Google Scholar] [CrossRef]
- Giannitsioti, E.; Pefanis, A.; Gogos, C.; Lekkou, A.; Dalekos, G.N.; Gatselis, N.; Georgiadou, S.; Nikou, P.; Vrettou, A.; Rigopoulos, A.; et al. Evolution of epidemiological characteristics of infective endocarditis in Greece. Int. J. Infect. Dis. 2021, 106, 213–220. [Google Scholar] [CrossRef]
- Zaqout, A.; Mohammed, S.; Thapur, M.; Al-Soub, H.; Al-Maslamani, M.A.; Al-Khal, A.; Omrani, A.S. Clinical characteristics, microbiology, and outcomes of infective endocarditis in Qatar. Qatar Med. J. 2020, 2020, 24. [Google Scholar] [CrossRef]
- Fernández-Hidalgo, N.; Ribera, A.; Larrosa, M.N.; Viedma, E.; Origüen, J.; de Alarcón, A.; Fariñas, M.C.; Sáez, C.; Peña, C.; Múñez, E.; et al. Impact of Staphylococcus aureus phenotype and genotype on the clinical characteristics and outcome of infective endocarditis. A multicentre, longitudinal, prospective, observational study. Clin. Microbiol. Infect. 2018, 24, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Diego-Yagüe, I.; Ramos-Martínez, A.; Muñoz, P.; Martínez-Sellés, M.; Machado, M.; de Alarcón, A.; Miró, J.M.; Rodríguez-Gacía, R.; Gutierrez-Díez, J.F.; Hidalgo-Tenorio, C.; et al. Clinical features and prognosis of prosthetic valve endocarditis due to Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 1989–2000. [Google Scholar] [CrossRef]
- Hidalgo-Tenorio, C.; Gálvez, J.; Martínez-Marcos, F.J.; Plata-Ciezar, A.; De La Torre-Lima, J.; López-Cortés, L.E.; Noureddine, M.; Reguera, J.M.; Vinuesa, D.; García, M.V.; et al. Clinical and prognostic differences between methicillin-resistant and methicillin-susceptible Staphylococcus aureus infective endocarditis. BMC Infect. Dis. 2020, 20, 160. [Google Scholar] [CrossRef]
- Selton-Suty, C.; Célard, M.; Le Moing, V.; Doco-Lecompte, T.; Chirouze, C.; Iung, B.; Strady, C.; Revest, M.; Vandenesch, F.; Bouvet, A.; et al. Preeminence of Staphylococcus aureus in infective endocarditis: A 1-year population-based survey. Clin. Infect. Dis. 2012, 54, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, W.; Palaiodimos, L.; Li, W.; Karamanis, D.; Tahir, A.; Tzoumas, A.; Nagraj, S.; Tiwari, N.; Grushko, M.; Kokkinidis, D.; et al. Epidemiologic and clinical characteristics of infective endocarditis: A single-center retrospective study in the Bronx, New York. Infection 2022, 50, 1349–1361. [Google Scholar] [CrossRef]
- Fowler, V.G., Jr.; Miro, J.M.; Hoen, B.; Cabell, C.H.; Abrutyn, E.; Rubinstein, E.; Corey, G.R.; Spelman, D.; Bradley, S.F.; Barsic, B.; et al. Staphylococcus aureus endocarditis: A consequence of medical progress. JAMA 2005, 293, 3012–3021. [Google Scholar] [CrossRef] [PubMed]
- Hsu, R.B.; Chu, S.H. Impact of methicillin resistance on clinical features and outcomes of infective endocarditis due to Staphylococcus aureus. Am. J. Med. Sci. 2004, 328, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Choi, J.Y.; Kim, C.O.; Kim, J.M.; Song, Y.G. A comparison of clinical features and mortality among methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus endocarditis. Yonsei Med. J. 2005, 46, 496–502. [Google Scholar] [CrossRef]
- Joo, E.J.; Park, D.A.; Kang, C.I.; Chung, D.R.; Song, J.H.; Lee, S.M.; Peck, K.R. Reevaluation of the impact of methicillin-resistance on outcomes in patients with Staphylococcus aureus bacteremia and endocarditis. Korean J. Intern. Med. 2019, 34, 1347–1362. [Google Scholar] [CrossRef]
- Kanyo, E.C.; Nowacki, A.S.; Gordon, S.M.; Shrestha, N.K. Comparison of mortality, stroke, and relapse for methicillin-resistant versus methicillin-susceptible Staphylococcus aureus infective endocarditis: A retrospective cohort study. Diagn. Microbiol. Infect. Dis. 2021, 100, 115395. [Google Scholar] [CrossRef] [PubMed]
- García de la Mària, C.; Cervera, C.; Pericàs, J.M.; Castañeda, X.; Armero, Y.; Soy, D.; Almela, M.; Ninot, S.; Falces, C.; Mestres, C.A.; et al. Epidemiology and prognosis of coagulase-negative staphylococcal endocarditis: Impact of vancomycin minimum inhibitory concentration. PLoS ONE 2015, 10, e0125818. [Google Scholar]
- Cervera, C.; Castañeda, X.; de la Maria, C.G.; del Rio, A.; Moreno, A.; Soy, D.; Pericas, J.M.; Falces, C.; Armero, Y.; Almela, M.; et al. Effect of vancomycin minimal inhibitory concentration on the outcome of methicillin-susceptible Staphylococcus aureus endocarditis. Clin. Infect. Dis. 2014, 58, 1668–1675. [Google Scholar] [CrossRef]
- Lodise, T.P.; Graves, J.; Evans, A.; Graffunder, E.; Helmecke, M.; Lomaestro, B.M.; Stellrecht, K. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob. Agents Chemother. 2008, 52, 3315–3320. [Google Scholar] [CrossRef]
- Bae, I.G.; Federspiel, J.J.; Miró, J.M.; Woods, C.W.; Park, L.; Rybak, M.J.; Rude, T.H.; Bradley, S.; Bukovski, S.; de la Maria, C.G.; et al. Heterogeneous vancomycin-intermediate susceptibility phenotype in bloodstream methicillin-resistant Staphylococcus aureus isolates from an international cohort of patients with infective endocarditis: Prevalence, genotype, and clinical significance. J. Infect. Dis. 2009, 200, 1355–1366. [Google Scholar] [CrossRef]
- Pericàs, J.M.; Messina, J.A.; Garcia-de-la-Mària, C.; Park, L.; Sharma-Kuinkel, B.K.; Marco, F.; Wray, D.; Kanafani, Z.A.; Carugati, M.; Durante-Mangoni, E.; et al. Influence of vancomycin minimum inhibitory concentration on the outcome of methicillin-susceptible Staphylococcus aureus left-sided infective endocarditis treated with antistaphylococcal beta-lactam antibiotics: A prospective cohort study by the International Collaboration on Endocarditis. Clin. Microbiol. Infect. 2017, 23, 544–549. [Google Scholar]
- Que, Y.A.; Haefliger, J.A.; Piroth, L.; François, P.; Widmer, E.; Entenza, J.M.; Sinha, B.; Herrmann, M.; Francioli, P.; Vaudaux, P.; et al. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J. Exp. Med. 2005, 201, 1627–1635. [Google Scholar] [CrossRef]
- Piroth, L.; Que, Y.A.; Widmer, E.; Panchaud, A.; Piu, S.; Entenza, J.M.; Moreillon, P. The fibrinogen- and fibronectin-binding domains of Staphylococcus aureus fibronectin-binding protein A synergistically promote endothelial invasion and experimental endocarditis. Infect. Immun. 2008, 76, 3824–3831. [Google Scholar] [CrossRef] [PubMed]
- Nappi, F.; Avtaar Singh, S.S. Host-Bacterium Interaction Mechanisms in Staphylococcus aureus Endocarditis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 11068. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Liesenborghs, L.; Meyers, S.; Lox, M.; Criel, M.; Claes, J.; Peetermans, M.; Trenson, S.; Vande Velde, G.; Vanden Berghe, P.; Baatsen, P.; et al. Staphylococcus aureus endocarditis: Distinct mechanisms of bacterial adhesion to damaged and inflamed heart valves. Eur. Heart J. 2019, 40, 3248–3259. [Google Scholar] [CrossRef]
- Chang, F.Y.; MacDonald, B.B.; Peacock, J.E., Jr.; Musher, D.M.; Triplett, P.; Mylotte, J.M.; O’Donnell, A.; Wagener, M.M.; Yu, V.L. A prospective multicenter study of Staphylococcus aureus bacteremia: Incidence of endocarditis, risk factors for mortality, and clinical impact of methicillin resistance. Medicine 2003, 82, 322–332. [Google Scholar] [CrossRef]
- Hill, E.E.; Peetermans, W.E.; Vanderschueren, S.; Claus, P.; Herregods, M.C.; Herijgers, P. Methicillin-resistant versus methicillin-sensitive Staphylococcus aureus infective endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 445–450. [Google Scholar] [CrossRef]
- McDonald, E.G.; Aggrey, G.; Tarik Aslan, A.; Casias, M.; Cortes-Penfield, N.; Dong, M.Q.D.; Egbert, S.; Footer, B.; Isler, B.; King, M.; et al. Guidelines for Diagnosis and Management of Infective Endocarditis in Adults: A WikiGuidelines Group Consensus Statement. JAMA Netw. Open 2023, 6, e2326366. [Google Scholar] [CrossRef]
- McDanel, J.S.; Perencevich, E.N.; Diekema, D.J.; Herwaldt, L.A.; Smith, T.C.; Chrischilles, E.A.; Dawson, J.D.; Jiang, L.; Goto, M.; Schweizer, M.L. Comparative effectiveness of beta-lactams versus vancomycin for treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections among 122 hospitals. Clin. Infect. Dis. 2015, 61, 361–367. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Apostolakis, E.; Marangos, M.; Pasvol, G. Native valve right sided infective endocarditis. Eur. J. Intern. Med. 2013, 24, 510–519. [Google Scholar] [CrossRef]
- Jorgensen, S.C.J.; Spellberg, B.; Shorr, A.F.; Wright, W.F. Should Therapeutic Drug Monitoring Based on the Vancomycin Area Under the Concentration-Time Curve Be Standard for Serious Methicillin-Resistant Staphylococcus aureus Infections?—No. Clin. Infect. Dis. 2021, 72, 1502–1506. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [PubMed]
- García-de-la-Mària, C.; Gasch, O.; Castañeda, X.; García-González, J.; Soy, D.; Cañas, M.A.; Ambrosioni, J.; Almela, M.; Pericàs, J.M.; Téllez, A.; et al. Cloxacillin or fosfomycin plus daptomycin combinations are more active than cloxacillin monotherapy or combined with gentamicin against MSSA in a rabbit model of experimental endocarditis. J. Antimicrob. Chemother. 2020, 75, 3586–3592. [Google Scholar] [CrossRef] [PubMed]
- Pujol, M.; Miró, J.M.; Shaw, E.; Aguado, J.M.; San-Juan, R.; Puig-Asensio, M.; Pigrau, C.; Calbo, E.; Montejo, M.; Rodriguez-Álvarez, R.; et al. Daptomycin Plus Fosfomycin Versus Daptomycin Alone for Methicillin-resistant Staphylococcus aureus Bacteremia and Endocarditis: A Randomized Clinical Trial. Clin. Infect. Dis. 2021, 72, 1517–1525. [Google Scholar] [CrossRef]
- Maraolo, A.E.; Giaccone, A.; Gentile, I.; Saracino, A.; Bavaro, D.F. Daptomycin versus Vancomycin for the Treatment of Methicillin-Resistant Staphylococcus aureus Bloodstream Infection with or without Endocarditis: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 1014. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.L.; Osaki-Kiyan, P.; Haque, N.Z.; Perri, M.B.; Donabedian, S.; Zervos, M.J. Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: A case-control study. Clin. Infect. Dis. 2012, 54, 51–58. [Google Scholar] [CrossRef]
- Murray, K.P.; Zhao, J.J.; Davis, S.L.; Kullar, R.; Kaye, K.S.; Lephart, P.; Rybak, M.J. Early use of daptomycin versus vancomycin for methicillin-resistant Staphylococcus aureus bacteremia with vancomycin minimum inhibitory concentration > 1 mg/L: A matched cohort study. Clin. Infect. Dis. 2013, 56, 1562–1569. [Google Scholar] [CrossRef]
- del Río, A.; Gasch, O.; Moreno, A.; Peña, C.; Cuquet, J.; Soy, D.; Mestres, C.A.; Suárez, C.; Pare, J.C.; Tubau, F.; et al. Efficacy and safety of fosfomycin plus imipenem as rescue therapy for complicated bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: A multicenter clinical trial. Clin. Infect. Dis. 2014, 59, 1105–1112. [Google Scholar] [CrossRef]
- Vouillamoz, J.; Entenza, J.M.; Féger, C.; Glauser, M.P.; Moreillon, P. Quinupristin-dalfopristin combined with beta-lactams for treatment of experimental endocarditis due to Staphylococcus aureus constitutively resistant to macrolide-lincosamide-streptogramin B antibiotics. Antimicrob. Agents Chemother. 2000, 44, 1789–1795. [Google Scholar] [CrossRef]
- Jang, H.C.; Kim, S.H.; Kim, K.H.; Kim, C.J.; Lee, S.; Song, K.H.; Jeon, J.H.; Park, W.B.; Kim, H.B.; Park, S.W.; et al. Salvage treatment for persistent methicillin-resistant Staphylococcus aureus bacteremia: Efficacy of linezolid with or without carbapenem. Clin. Infect. Dis. 2009, 49, 395–401. [Google Scholar] [CrossRef]
- Casalta, J.P.; Zaratzian, C.; Hubert, S.; Thuny, F.; Gouriet, F.; Habib, G.; Grisoli, D.; Deharo, J.C.; Raoult, D. Treatment of Staphylococcus aureus endocarditis with high doses of trimethoprim/sulfamethoxazole and clindamycin-Preliminary report. Int. J. Antimicrob. Agents. 2013, 42, 190–191. [Google Scholar] [CrossRef]
- Tissot-Dupont, H.; Gouriet, F.; Oliver, L.; Jamme, M.; Casalta, J.P.; Jimeno, M.T.; Arregle, F.; Lavoute, C.; Hubert, S.; Philip, M.; et al. High-dose trimethoprim-sulfamethoxazole and clindamycin for Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents. 2019, 54, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Périchon, B.; Courvalin, P. Synergism between beta-lactams and glycopeptides against VanA-type methicillin-resistant Staphylococcus aureus and heterologous expression of the vanA operon. Antimicrob. Agents Chemother. 2006, 50, 3622–3630. [Google Scholar] [CrossRef] [PubMed]
- Fazili, T.; Bansal, E.; Garner, D.; Gomez, M.; Stornelli, N. Dalbavancin as sequential therapy for infective endocarditis due to Gram-positive organisms: A review. Int. J. Antimicrob. Agents 2023, 61, 106749. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, P.; Wolff, N.; Mathioudaki, A.; Spanias, C.; Spernovasilis, N.; Kofteridis, D.P. Real-World Data Regarding Dalbavancin Use before and during the COVID-19 Pandemic-A Single-Center Retrospective Study. Antibiotics 2023, 12, 1205. [Google Scholar] [CrossRef]
- Ajaka, L.; Heil, E.; Schmalzle, S. Dalbavancin in the Treatment of Bacteremia and Endocarditis in People with Barriers to Standard Care. Antibiotics 2020, 9, 700. [Google Scholar] [CrossRef]
- Lupia, T.; De Benedetto, I.; Bosio, R.; Shbaklo, N.; De Rosa, F.G.; Corcione, S. Role of Oritavancin in the Treatment of Infective Endocarditis, Catheter- or Device-Related Infections, Bloodstream Infections, and Bone and Prosthetic Joint Infections in Humans: Narrative Review and Possible Developments. Life 2023, 13, 959. [Google Scholar] [CrossRef]
- Habib, G.; Erba, P.A.; Iung, B.; Donal, E.; Cosyns, B.; Laroche, C.; Popescu, B.A.; Prendergast, B.; Tornos, P.; Sadeghpour, A.; et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: A prospective cohort study. Eur. Heart J. 2019, 40, 3222–3232. [Google Scholar] [CrossRef]
- Remadi, J.P.; Habib, G.; Nadji, G.; Brahim, A.; Thuny, F.; Casalta, J.P.; Peltier, M.; Tribouilloy, C. Predictors of death and impact of surgery in Staphylococcus aureus infective endocarditis. Ann. Thorac. Surg. 2007, 83, 1295–1302. [Google Scholar] [CrossRef]
- Wang, A.; Fosbøl, E.L. Current recommendations and uncertainties for surgical treatment of infective endocarditis: A comparison of American and European cardiovascular guidelines. Eur. Heart J. 2022, 43, 1617–1625. [Google Scholar] [CrossRef]
- Mack, M.J.; Lancellotti, P. Early Surgery in Infective Endocarditis: Can it Be Too Early? J. Am. Coll. Cardiol. 2020, 76, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, G.B.; Hussain, S.T. Current AATS guidelines on surgical treatment of infective endocarditis. Ann. Cardiothorac. Surg. 2019, 8, 630–644. [Google Scholar] [CrossRef]
- O’Driscoll, T.; Crank, C.W. Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infect. Drug Resist. 2015, 8, 217–230. [Google Scholar] [PubMed]
- Chirouze, C.; Athan, E.; Alla, F.; Chu, V.H.; Ralph Corey, G.; Selton-Suty, C.; Erpelding, M.L.; Miro, J.M.; Olaison, L.; Hoen, B.; et al. Enterococcal endocarditis in the beginning of the 21st century: Analysis from the International Collaboration on Endocarditis-Prospective Cohort Study. Clin. Microbiol. Infect. 2013, 19, 1140–1147. [Google Scholar] [CrossRef]
- Cattoir, V.; Leclercq, R. Twenty-five years of shared life with vancomycin-resistant enterococci: Is it time to divorce? J. Antimicrob. Chemother. 2013, 68, 731–742. [Google Scholar] [CrossRef]
- Cairns, K.A.; Udy, A.A.; Peel, T.N.; Abbott, I.J.; Dooley, M.J.; Peleg, A.Y. Therapeutics for Vancomycin-Resistant Enterococcal Bloodstream Infections. Clin. Microbiol. Rev. 2023, 36, e0005922. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Cormican, M.; Flamm, R.K.; Mendes, R.E.; Jones, R.N. Temporal and Geographic Variation in Antimicrobial Susceptibility and Resistance Patterns of Enterococci: Results From the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 2019, 6, S54–S62. [Google Scholar] [CrossRef]
- Cetinkaya, Y.; Falk, P.; Mayhall, C.G. Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 2000, 13, 686–707. [Google Scholar] [CrossRef]
- Meschiari, M.; Kaleci, S.; Monte, M.D.; Dessilani, A.; Santoro, A.; Scialpi, F.; Franceschini, E.; Orlando, G.; Cervo, A.; Monica, M.; et al. Vancomycin resistant enterococcus risk factors for hospital colonization in hematological patients: A matched case-control study. Antimicrob. Resist. Infect. Control 2023, 12, 126. [Google Scholar] [CrossRef]
- Randen, I.; Brown, D.; Thompson, K.M.; Hughes-Jones, N.; Pascual, V.; Victor, K.; Capra, J.D.; Førre, O.; Natvig, J.B. Clonally related IgM rheumatoid factors undergo affinity maturation in the rheumatoid synovial tissue. J. Immunol. 1992, 148, 3296–3301. [Google Scholar] [CrossRef]
- Furtado, G.H.; Mendes, R.E.; Pignatari, A.C.; Wey, S.B.; Medeiros, E.A. Risk factors for vancomycin-resistant Enterococcus faecalis bacteremia in hospitalized patients: An analysis of two case-control studies. Am. J. Infect. Control 2006, 34, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou-Olivgeris, M.; Drougka, E.; Fligou, F.; Kolonitsiou, F.; Liakopoulos, A.; Dodou, V.; Anastassiou, E.D.; Petinaki, E.; Marangos, M.; Filos, K.S.; et al. Risk factors for enterococcal infection and colonization by vancomycin-resistant enterococci in critically ill patients. Infection 2014, 42, 1013–1022. [Google Scholar] [CrossRef]
- Zacharioudakis, I.M.; Zervou, F.N.; Ziakas, P.D.; Rice, L.B.; Mylonakis, E. Vancomycin-resistant enterococci colonization among dialysis patients: A meta-analysis of prevalence, risk factors, and significance. Am. J. Kidney Dis. 2015, 65, 88–97. [Google Scholar] [CrossRef]
- Van der Auwera, P.; Pensart, N.; Korten, V.; Murray, B.E.; Leclercq, R. Influence of oral glycopeptides on the fecal flora of human volunteers: Selection of highly glycopeptide-resistant enterococci. J. Infect. Dis. 1996, 173, 1129–1136. [Google Scholar] [CrossRef]
- Fridkin, S.K.; Edwards, J.R.; Courval, J.M.; Hill, H.; Tenover, F.C.; Lawton, R.; Gaynes, R.P.; McGowan, J.E., Jr.; Intensive Care Antimicrobial Resistance Epidemiology (ICARE) Project and the National Nosocomial Infections Surveillance (NNIS) System Hospitals. The effect of vancomycin and third-generation cephalosporins on prevalence of vancomycin-resistant enterococci in 126 U.S. adult intensive care units. Ann. Intern. Med. 2001, 135, 175–183. [Google Scholar] [PubMed]
- Ghanem, G.; Hachem, R.; Jiang, Y.; Chemaly, R.F.; Raad, I. Outcomes for and risk factors associated with vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium bacteremia in cancer patients. Infect. Control Hosp. Epidemiol. 2007, 28, 1054–1059. [Google Scholar] [CrossRef] [PubMed]
- Al-Nassir, W.N.; Sethi, A.K.; Li, Y.; Pultz, M.J.; Riggs, M.M.; Donskey, C.J. Both oral metronidazole and oral vancomycin promote persistent overgrowth of vancomycin-resistant enterococci during treatment of Clostridium difficile-associated disease. Antimicrob. Agents Chemother. 2008, 52, 2403–2406. [Google Scholar] [CrossRef]
- Willems, R.P.J.; van Dijk, K.; Vehreschild, M.J.G.T.; Biehl, L.M.; Ket, J.C.F.; Remmelzwaal, S.; Vandenbroucke-Grauls, C.M.J.E. Incidence of infection with multidrug-resistant Gram-negative bacteria and vancomycin-resistant enterococci in carriers: A systematic review and meta-regression analysis. Lancet Infect. Dis. 2023, 23, 719–731. [Google Scholar] [CrossRef]
- DiazGranados, C.A.; Zimmer, S.M.; Klein, M.; Jernigan, J.A. Comparison of mortality associated with vancomycin-resistant and vancomycin-susceptible enterococcal bloodstream infections: A meta-analysis. Clin. Infect. Dis. 2005, 41, 327–333. [Google Scholar] [CrossRef]
- López-Luis, B.A.; Sifuentes-Osornio, J.; Lambraño-Castillo, D.; Ortiz-Brizuela, E.; Ramírez-Fontes, A.; Tovar-Calderón, Y.E.; Leal-Vega, F.J.; Bobadilla-Del-Valle, M.; Ponce-de-León, A. Risk factors and outcomes associated with vancomycin-resistant Enterococcus faecium and ampicillin-resistant Enterococcus faecalis bacteraemia: A 10-year study in a tertiary-care centre in Mexico City. J. Glob. Antimicrob. Resist. 2021, 24, 198–204. [Google Scholar] [CrossRef]
- Forrest, G.N.; Arnold, R.S.; Gammie, J.S.; Gilliam, B.L. Single center experience of a vancomycin resistant enterococcal endocarditis cohort. J. Infect. 2011, 63, 420–428. [Google Scholar] [CrossRef]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Howden, B.P.; Stinear, T.P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr. Opin. Microbiol. 2018, 41, 76–82. [Google Scholar] [CrossRef]
- Fiore, E.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of Enterococci. Microbiol. Spectr. 2019, 7, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Zwaan, M.; Ahrens, K.H.; Blume, B. Computertomographischer Befund bei der Halsphlegmone [Computerized tomography findings in neck abscess]. Laryngorhinootologie 1990, 69, 483–485. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Chan, S.Y.; Stern, A.; Chen, P.H.; Yang, H.C. Epidemiological profiles and pathogenicity of Vancomycin-resistant Enterococcus faecium clinical isolates in Taiwan. PeerJ. 2023, 11, e14859. [Google Scholar] [CrossRef] [PubMed]
- Fernández Guerrero, M.L.; Goyenechea, A.; Verdejo, C.; Roblas, R.F.; de Górgolas, M. Enterococcal endocarditis on native and prosthetic valves: A review of clinical and prognostic factors with emphasis on hospital-acquired infections as a major determinant of outcome. Medicine 2007, 86, 363–377. [Google Scholar] [CrossRef]
- Stevens, M.P.; Edmond, M.B. Endocarditis due to vancomycin-resistant enterococci: Case report and review of the literature. Clin. Infect. Dis. 2005, 41, 1134–1142. [Google Scholar] [CrossRef]
- Pericàs, J.M.; Corredoira, J.; Moreno, A.; García-País, M.J.; Falces, C.; Rabuñal, R.; Mestres, C.A.; Alonso, M.P.; Marco, F.; Quintana, E.; et al. Relationship Between Enterococcus faecalis Infective Endocarditis and Colorectal Neoplasm: Preliminary Results From a Cohort of 154 Patients. Rev. Esp. Cardiol. 2017, 70, 451–458. [Google Scholar] [CrossRef]
- Pericàs, J.M.; Ambrosioni, J.; Muñoz, P.; de Alarcón, A.; Kestler, M.; Mari-Hualde, A.; Moreno, A.; Goenaga, M.Á.; Fariñas, M.C.; Rodríguez-Álvarez, R.; et al. Prevalence of Colorectal Neoplasms Among Patients with Enterococcus faecalis Endocarditis in the GAMES Cohort (2008–2017). Mayo Clin. Proc. 2021, 96, 132–146. [Google Scholar] [CrossRef]
- Bender, J.K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T.M.; Westh, H.; Hammerum, A.M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updat. 2018, 40, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, I. Linezolid- and vancomycin-resistant Enterococcus faecium endocarditis: Successful treatment with tigecycline and daptomycin. J. Hosp. Med. 2007, 2, 343–344. [Google Scholar] [CrossRef] [PubMed]
- Schutt, A.C.; Bohm, N.M. Multidrug-resistant Enterococcus faecium endocarditis treated with combination tigecycline and high-dose daptomycin. Ann. Pharmacother. 2009, 43, 2108–2112. [Google Scholar] [CrossRef] [PubMed]
- Polidori, M.; Nuccorini, A.; Tascini, C.; Gemignani, G.; Iapoce, R.; Leonildi, A.; Tagliaferri, E.; Menichetti, F. Vancomycin-resistant Enterococcus faecium (VRE) bacteremia in infective endocarditis successfully treated with combination daptomycin and tigecycline. J. Chemother. 2011, 23, 240–241. [Google Scholar] [CrossRef]
- Shah, S.; McManus, D.; Topal, J.E. Combination Therapy of Chloramphenicol and Daptomycin for the Treatment of Infective Endocarditis Secondary to Multidrug Resistant Enterococcus faecium. Hosp. Pharm. 2022, 57, 345–348. [Google Scholar] [CrossRef]
- Safdar, A.; Bryan, C.S.; Stinson, S.; Saunders, D.E. Prosthetic valve endocarditis due to vancomycin-resistant Enterococcus faecium: Treatment with chloramphenicol plus minocycline. Clin. Infect. Dis. 2002, 34, E61–E63. [Google Scholar] [CrossRef]
- Thompson, R.L.; Lavin, B.; Talbot, G.H. Endocarditis due to vancomycin-resistant Enterococcus faecium in an immunocompromised patient: Cure by administering combination therapy with quinupristin/dalfopristin and high-dose ampicillin. South Med. J. 2003, 96, 818–820. [Google Scholar] [CrossRef]
- Johnson, J.A.; Feeney, E.R.; Kubiak, D.W.; Corey, G.R. Prolonged Use of Oritavancin for Vancomycin-Resistant Enterococcus faecium Prosthetic Valve Endocarditis. Open Forum Infect. Dis. 2015, 2, ofv156. [Google Scholar] [CrossRef]
- Lin, T.I.; Huang, Y.F.; Liu, P.Y.; Chou, C.A.; Chen, Y.S.; Chen, Y.Y.; Hsieh, K.S.; Chen, Y.S. Pseudomonas aeruginosa infective endocarditis in patients who do not use intravenous drugs: Analysis of risk factors and treatment outcomes. J. Microbiol. Immunol. Infect. 2016, 49, 516–522. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Durante-Mangoni, E.; Ravasio, V.; Barbaro, F.; Ursi, M.P.; Pasticci, M.B.; Bassetti, M.; Grossi, P.; Venditti, M.; et al. Risk Factors and Outcomes of Endocarditis Due to Non-HACEK Gram-Negative Bacilli: Data from the Prospective Multicenter Italian Endocarditis Study Cohort. Antimicrob. Agents Chemother. 2018, 62, e02208-17. [Google Scholar] [CrossRef]
- Morpeth, S.; Murdoch, D.; Cabell, C.H.; Karchmer, A.W.; Pappas, P.; Levine, D.; Nacinovich, F.; Tattevin, P.; Fernández-Hidalgo, N.; Dickerman, S.; et al. Non-HACEK gram-negative bacillus endocarditis. Ann. Intern. Med. 2007, 147, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Clarke, L.G.; Shields, R.K. Epidemiology and Clinical Outcomes of Non-HACEK Gram-Negative Infective Endocarditis. Open Forum Infect. Dis. 2023, 10, ofad052. [Google Scholar] [CrossRef]
- Lorenz, A.; Sobhanie, M.M.E.; Orzel, L.; Coe, K.; Wardlow, L. Clinical outcomes of combination versus monotherapy for gram negative non-HACEK infective endocarditis. Diagn. Microbiol. Infect. Dis. 2021, 101, 115504. [Google Scholar] [CrossRef]
- Veve, M.P.; McCurry, E.D.; Cooksey, G.E.; Shorman, M.A. Epidemiology and outcomes of non-HACEK infective endocarditis in the southeast United States. PLoS ONE 2020, 15, e0230199. [Google Scholar] [CrossRef] [PubMed]
- Ertugrul Mercan, M.; Arslan, F.; Ozyavuz Alp, S.; Atilla, A.; Seyman, D.; Guliyeva, G.; Kayaaslan, B.; Sari, S.; Mutay Suntur, B.; Isik, B.; et al. Non-HACEK Gram-negative bacillus endocarditis. Med. Mal. Infect. 2019, 49, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Burgos, L.M.; Oses, P.; Iribarren, A.C.; Pennini, M.; Merkt, M.; Vrancic, M.; Camporrotondo, M.; Ronderos, R.; Sucari, A.; Nacinovich, F. Infective endocarditis due to non-HACEK gram-negative bacilli in a Level III cardiovascular center in Argentina (1998–2016). Rev. Argent. Microbiol. 2018, 51, 136–139. [Google Scholar] [PubMed]
- Trifunovic, D.; Vujisic-Tesic, B.; Obrenovic-Kircanski, B.; Ivanovic, B.; Kalimanovska-Ostric, D.; Petrovic, M.; Boricic-Kostic, M.; Matic, S.; Stevanovic, G.; Marinkovic, J.; et al. The relationship between causative microorganisms and cardiac lesions caused by infective endocarditis: New perspectives from the contem-porary cohort of patients. J. Cardiol. 2018, 71, 291–298. [Google Scholar] [CrossRef]
- Loubet, P.; Lescure, F.X.; Lepage, L.; Kirsch, M.; Armand-Lefevre, L.; Bouadma, L.; Lariven, S.; Duval, X.; Yazdanpanah, Y.; Joly, V. Endocarditis due to gram-negative bacilli at a French teaching hospital over a 6-year period: Clinical characteristics and outcome. Infect. Dis. 2015, 47, 889–895. [Google Scholar] [CrossRef]
- Lorson, W.C.; Heidel, R.E.; Shorman, M.A. Microbial Epidemiology of Infectious Endocarditis in the Intravenous Drug Abuse Population: A Retrospective Study. Infect. Dis. Ther. 2019, 8, 113–118. [Google Scholar] [CrossRef]
- Reyes, M.P.; Ali, A.; Mendes, R.E.; Biedenbach, D.J. Resurgence of Pseudomonas endocarditis in Detroit, 2006–2008. Medicine 2009, 88, 294–301. [Google Scholar] [CrossRef]
- Reyes, M.P.; Palutke, W.A.; Wylin, R.F. Pseudomonas endocarditis in the Detroit Medical Center. 1969–1972. Medicine 1973, 52, 173–194. [Google Scholar] [CrossRef] [PubMed]
- Gürtler, N.; Osthoff, M.; Rueter, F.; Wüthrich, D.; Zimmerli, L.; Egli, A.; Bassetti, S. Prosthetic valve endocarditis caused by Pseudomonas aeruginosa with variable antibacterial resistance profiles: A diagnostic challenge. BMC Infect. Dis. 2019, 19, 530. [Google Scholar] [CrossRef]
- Hagiya, H.; Tanaka, T.; Takimoto, K.; Yoshida, H.; Yamamoto, N.; Akeda, Y.; Tomono, K. Non-nosocomial healthcare-associated left-sided Pseudomonas aeruginosa endocarditis: A case report and literature review. BMC Infect. Dis. 2016, 16, 431. [Google Scholar] [CrossRef] [PubMed]
- Dawson, N.L.; Brumble, L.M.; Pritt, B.S.; Yao, J.D.; Echols, J.D.; Alvarez, S. Left-sided Pseudomonas aeruginosa endocarditis in patients without injection drug use. Medicine 2011, 90, 250–255. [Google Scholar] [CrossRef]
- Gouëllo, J.P.; Asfar, P.; Brenet, O.; Kouatchet, A.; Berthelot, G.; Alquier, P. Nosocomial endocarditis in the intensive care unit: An analysis of 22 cases. Crit. Care Med. 2000, 28, 377–382. [Google Scholar] [CrossRef]
- Essien, F.; Patterson, S.; Estrada, F.; Wall, T.; Madden, J.; McGarvey, M. ‘TAVR Infected Pseudomonas Endocarditis’: A case report. Ther. Adv. Infect. Dis. 2022, 9, 20499361221138459. [Google Scholar] [CrossRef]
- Dapás, J.I.; Rivero, C.; Burgos, P.; Vila, A. Pseudomonas aeruginosa Infective Endocarditis Following Aortic Valve Implantation: A Note of Caution. Open Cardiovasc. Med. J. 2016, 10, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Maskarinec, S.A.; Thaden, J.T.; Cyr, D.D.; Ruffin, F.; Souli, M.; Fowler, V.G. The Risk of Cardiac Device-Related Infection in Bacteremic Patients Is Species Specific: Results of a 12-Year Prospective Cohort. Open Forum Infect. Dis. 2017, 4, ofx132. [Google Scholar] [CrossRef]
- Tomoaia, R.; Oprea, A.; Sandu, I.; Danu, V.; Pop, D.; Zdrenghea, D.; Dădârlat-Pop, A.; Minciună, I.A.; Chețan, I.M.; Hada, N.C.; et al. A Rare Case of Successfully Treated Double Valve Infective Endocarditis Caused by Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 11127. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Langendonk, R.F.; Neill, D.R.; Fothergill, J.L. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front. Cell. Infect. Microbiol. 2021, 11, 665759. [Google Scholar] [CrossRef] [PubMed]
- Ciofu, O.; Tolker-Nielsen, T. Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents-How P. aeruginosa Can Escape Antibiotics. Front. Microbiol. 2019, 10, 913. [Google Scholar] [CrossRef]
- Letendre, E.D.; Mantha, R.; Turgeon, P.L. Selection of resistance by piperacillin during Pseudomonas aeruginosa endocarditis. J. Antimicrob. Chemother. 1988, 22, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Domitrovic, T.N.; Hujer, A.M.; Perez, F.; Marshall, S.H.; Hujer, K.M.; Woc-Colburn, L.E.; Parta, M.; Bonomo, R.A. Multidrug Resistant Pseudomonas aeruginosa Causing Prosthetic Valve Endocarditis: A Genetic-Based Chronicle of Evolving Antibiotic Resistance. Open Forum Infect. Dis. 2016, 3, ofw188. [Google Scholar] [CrossRef]
- Aldhaheri, K.; Andany, N.; Eshaghi, A.; Simor, A.E.; Palmay, L.; Patel, S.N.; Lam, P.W. Infective endocarditis of a native aortic valve due to Pseudomonas aeruginosa complicated by progressive multi-drug resistance. J. Assoc. Med. Microbiol. Infect. Dis Can. 2022, 7, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Lesho, E.; Snesrud, E.; Kwak, Y.; Ong, A.; Maybank, R.; Laguio-Vila, M.; Falsey, A.R.; Hinkle, M. Pseudomonas Endocarditis with an unstable phenotype: The challenges of isolate characterization and Carbapenem stewardship with a partial review of the literature. Antimicrob. Resist. Infect. Control 2017, 6, 87. [Google Scholar] [CrossRef]
- Shah, S.; Bremmer, D.N.; Kline, E.G.; Nicolau, D.P.; Shields, R.K. Ceftolozane/tazobactam for refractory P. aeruginosa endocarditis: A case report and pharmacokinetic analysis. J. Infect. Chemother. 2022, 28, 87–90. [Google Scholar] [CrossRef]
- Gould, F.K.; Denning, D.W.; Elliott, T.S.; Foweraker, J.; Perry, J.D.; Prendergast, B.D.; Sandoe, J.A.; Spry, M.J.; Watkin, R.W. Working Party of the British Society for Antimicrobial Chemotherapy. Guidelines for the diagnosis and antibiotic treatment of endocarditis in adults: A report of the Working Party of the British Society for Antimicrobial Chemotherapy. J. Antimicrob. Chemother. 2012, 67, 269–289. [Google Scholar] [CrossRef]
- Safdar, N.; Handelsman, J.; Maki, D.G. Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect. Dis. 2004, 4, 519–527. [Google Scholar] [CrossRef]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef]
- Ramireddy, S.; Gudipati, S.; Zervos, M. Expect the Unexpected: A Rare Case of Pseudomonas aeruginosa Endocarditis. IDCases 2020, 21, e00787. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Delafloxacin. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208610s007,208611s006lbl.pdf (accessed on 12 September 2024).
- Mogle, B.T.; Steele, J.M.; Thomas, S.J.; Bohan, K.H.; Kufel, W.D. Clinical review of delafloxacin: A novel anionic fluoroquinolone. J. Antimicrob. Chemother. 2018, 73, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Nilius, A.M.; Shen, L.L.; Hensey-Rudloff, D.; Almer, L.S.; Beyer, J.M.; Balli, D.J.; Cai, Y.; Flamm, R.K. In vitro antibacterial potency and spectrum of ABT-492, a new fluoroquinolone. Antimicrob. Agents Chemother. 2003, 47, 3260–3269. [Google Scholar] [CrossRef] [PubMed]
- Millar, B.C.; McCaughan, J.; Rendall, J.C.; Moore, J.E. Delafloxacin—A novel fluoroquinolone for the treatment of ciprofloxacin-resistant Pseudomonas aeruginosa in patients with cystic fibrosis. Clin. Respir. J. 2021, 15, 116–120. [Google Scholar] [CrossRef]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit. Care 2019, 23, 104. [Google Scholar]
- Thabit, A.K.; Hobbs, A.L.V.; Guzman, O.E.; Shea, K.M. The Pharmacodynamics of Prolonged Infusion beta-lactams for the Treatment of Pseudomonas aeruginosa Infections: A Systematic Review. Clin. Ther. 2019, 41, 2397–2415.e8. [Google Scholar] [CrossRef]
- Tran, N.N.; Mynatt, R.P.; Kaye, K.S.; Zhao, J.J.; Pogue, J.M. Clinical Outcomes with Extended Versus Intermittent Infusion of Anti-Pseudomonal Beta-Lactams in Patients with Gram-Negative Bacteremia. Open Forum Infect. Dis. 2023, 10, ofad170. [Google Scholar] [CrossRef]
- Meena, D.S.; Kumar, D.; Kumar, B.; Bohra, G.K.; Midha, N.; Garg, M.K. Clinical characteristics and outcomes in pseudomonas endocarditis: A systematic review of individual cases: Systematic review of pseudomonas endocarditis. Infection 2024, 52, 2061–2069. [Google Scholar] [CrossRef]
- Lima, O.; Sousa, A.; Filgueira, A.; Otero, A.; Cabaleiro, A.; Martinez-Lamas, L.; Vasallo, F.; Pérez-Rodríguez, M.T. Successful ceftazidime-avibactam therapy in a patient with multidrug-resistant Pseudomonas aeruginosa infective endocarditis. Infection 2022, 50, 1039–1041. [Google Scholar] [CrossRef]
- Choi, J.J.; McCarthy, M.W. Cefiderocol: A novel siderophore cephalosporin. Expert Opin. Investig. Drugs 2018, 27, 193–197. [Google Scholar] [CrossRef]
- Edgeworth, J.D.; Merante, D.; Patel, S.; Young, C.; Jones, P.; Vithlani, S.; Wyncoll, D.; Roberts, P.; Jones, A.; Den Nagata, T.; et al. Compassionate Use of Cefiderocol as Adjunctive Treatment of Native Aortic Valve Endocarditis Due to Extremely Drug-resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2019, 68, 1932–1934. [Google Scholar] [CrossRef] [PubMed]
- Tascini, C.; Antonelli, A.; Pini, M.; De Vivo, S.; Aiezza, N.; Bernardo, M.; Di Luca, M.; Rossolini, G.M. Infective Endocarditis Associated with Implantable Cardiac Device by Metallo-beta-lactamase-Producing Pseudomonas aeruginosa, Successfully Treated with Source Control and Cefiderocol Plus Imipenem. Antimicrob Agents Chemother. 2023, 67, e0131322. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar]
- MacVane, S.H.; Kuti, J.L.; Nicolau, D.P. Prolonging beta-lactam infusion: A review of the rationale and evidence, and guidance for implementation. Int. J. Antimicrob. Agents 2014, 43, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, P.; Dhakal, S.; Dozois, C.M. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Fayyaz, I.; Rasheed, M.A.; Ashraf, M.; Bukhsh, A.; Wadood, A. Determination of bacterial etiological agents, sensitivity pattern and clinical outcome of patients with bacterial endocarditis at Punjab Institute of Cardiology Lahore. J. Pak. Med. Assoc. 2014, 64, 1384–1388. [Google Scholar]
- Chambers, S.T.; Murdoch, D.; Morris, A.; Holland, D.; Pappas, P.; Almela, M.; Fernández-Hidalgo, N.; Almirante, B.; Bouza, E.; Forno, D.; et al. HACEK infective endocarditis: Characteristics and outcomes from a large, multi-national cohort. PLoS ONE 2013, 8, e63181. [Google Scholar] [CrossRef]
- Micol, R.; Lortholary, O.; Jaureguy, F.; Bonacorsi, S.; Bingen, E.; Lefort, A.; Mémain, N.; Bouchaud, O.; Larroche, C. Escherichia coli native valve endocarditis. Clin. Microbiol. Infect. 2006, 12, 401–403. [Google Scholar] [CrossRef]
- Akuzawa, N.; Kurabayashi, M. Native valve endocarditis due to Escherichia coli infection: A case report and review of the literature. BMC Cardiovasc. Disord. 2018, 18, 195. [Google Scholar] [CrossRef]
- Branger, S.; Casalta, J.P.; Habib, G.; Collard, F.; Raoult, D. Escherichia coli endocarditis: Seven new cases in adults and review of the literature. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 537–541. [Google Scholar] [CrossRef]
- Benaissa, E.; Yasssine, B.L.; Chadli, M.; Maleb, A.; Elouennass, M. Infective endocarditis caused by Escherichia coli of a native mitral valve. IDCases 2021, 24, e01119. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.H.; Cheesman, M.G.; Millar-Craig, M. Echocardiographic demonstration of Escherichia coli endocarditis restricted to the pulmonary valve. Br. Heart J. 1988, 60, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Kulas, T.; Habek, D. Infective puerperal endocarditis caused by Escherichia coli. J. Perinat. Med. 2006, 34, 342–343. [Google Scholar] [CrossRef]
- Foley, J.A.; Augustine, D.; Bond, R.; Boyce, K.; Maciver, D. Lost without Occam’s razor: Escherichia coli tricuspid valve endocarditis in a non-intravenous drug user. BMJ Case Rep. 2010, 2010, bcr0220102769. [Google Scholar] [CrossRef]
- Raymond, N.J.; Robertson, M.D.; Land, S.D. Aortic valve endocarditis due to Escherichia coli. Clin. Infect. Dis. 1992, 15, 749–750. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.S.; Sultan, O.W.; Sohail, M.R. Gram-negative bacterial endocarditis in adults: State-of-the-heart. Expert Rev. Anti Infect. Ther. 2010, 8, 879–885. [Google Scholar] [CrossRef]
- Andrade, N.L.; da Cruz Campos, A.C.; Cabral, A.M.; Damasco, P.H.; Lo-Ten-Foe, J.; Rosa, A.C.P.; Damasco, P.V. Infective endocarditis caused by Enterobacteriaceae: Phenotypic and molecular characterization of Escherichia coli and Klebsiella pneumoniae in Rio de Janeiro, Brazil. Braz. J. Microbiol. 2021, 52, 1887–1896. [Google Scholar] [CrossRef]
- Quiring, R.; Burke, V. Escherichia coli prosthetic valve endocarditis from a non-genitourinary source. IDCases 2021, 26, e01329. [Google Scholar] [CrossRef]
- de Sousa, L.P.; Fortes, C.Q.; Damasco, P.V.; Barbosa, G.I.F.; Golebiovski, W.F.; Weksler, C.; Garrido, R.Q.; Siciliano, R.F.; Lamas, C.D.C. Infective Endocarditis due to Non-HACEK Gram-Negative Bacilli: Clinical Characteristics and Risk Factors from a Prospective Multicenter Brazilian Cohort. Trop. Med. Infect. Dis. 2023, 8, 283. [Google Scholar] [CrossRef]
- Ioannou, P.; Miliara, E.; Baliou, S.; Kofteridis, D.P. Infective endocarditis by Klebsiella species: A systematic review. J. Chemother. 2021, 33, 365–374. [Google Scholar] [CrossRef]
- Rivero, A.; Gomez, E.; Alland, D.; Huang, D.B.; Chiang, T. K2 serotype Klebsiella pneumoniae causing a liver abscess associated with infective endocarditis. J. Clin. Microbiol. 2010, 48, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Zimhony, O.; Chmelnitsky, I.; Bardenstein, R.; Goland, S.; Hammer Muntz, O.; Navon Venezia, S.; Carmeli, Y. Endocarditis caused by extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae: Emergence of resistance to ciprofloxacin and piperacillin-tazobactam during treatment despite initial susceptibility. Antimicrob. Agents Chemother. 2006, 50, 3179–3182. [Google Scholar] [CrossRef] [PubMed]
- del Arco, A.; Olalla, J.; De la Torre, J.; García-Alegría, J. Endocarditis por Klebsiella pneumoniae productora de betalactamasas de espectro extendido [Endocarditis caused by extended spectrum beta lactamase producing Klebsiella]. Rev. Clin. Esp. 2011, 211, 163–164. [Google Scholar] [CrossRef]
- Iacovelli, A.; Spaziante, M.; Al Moghazi, S.; Giordano, A.; Ceccarelli, G.; Venditti, M. A challenging case of carbapenemase-producing Klebsiella pneumoniae septic thrombophlebitis and right mural endocarditis successfully treated with ceftazidime/avibactam. Infection 2018, 46, 721–724. [Google Scholar] [CrossRef]
- Chaari, A.; Mnif, B.; Chtara, K.; Abid, L.; Charfeddine, S.; Baccouche, N.; Bahloul, M.; Hammami, A.; Bouaziz, M. Efficacy of tigecycline-colistin combination in the treatment of carbapenem-resistant Klebsiella pneumoniae endocarditis. J. Glob. Antimicrob. Resist. 2015, 3, 214–216. [Google Scholar] [CrossRef]
- Alghoribi, M.F.; Alqurashi, M.; Okdah, L.; Alalwan, B.; AlHebaishi, Y.S.; Almalki, A.; Alzayer, M.A.; Alswaji, A.A.; Doumith, M.; Barry, M. Successful treatment of infective endocarditis due to pandrug-resistant Klebsiella pneumoniae with ceftazidime-avibactam and aztreonam. Sci. Rep. 2021, 11, 9684. [Google Scholar] [CrossRef]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef]
- Giamarellou, H.; Karaiskos, I. Current and Potential Therapeutic Options for Infections Caused by Difficult-to-Treat and Pandrug Resistant Gram-Negative Bacteria in Critically Ill Patients. Antibiotics 2022, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients with E. coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef]
- Benenson, S.; Navon-Venezia, S.; Carmeli, Y.; Adler, A.; Strahilevitz, J.; Moses, A.E.; Block, C. Carbapenem-resistant Klebsiella pneumoniae endocarditis in a young adult. Successful treatment with gentamicin and colistin. Int. J. Infect. Dis. 2009, 13, e295–e298. [Google Scholar] [CrossRef]
- Betts, J.W.; Phee, L.M.; Hornsey, M.; Woodford, N.; Wareham, D.W. In vitro and in vivo activities of tigecycline-colistin combination therapies against carbapenem-resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2014, 58, 3541–3546. [Google Scholar] [CrossRef]
- Alegro, J.V.; Argentine, S.; Russell, L. 173. Successful Treatment of Carbapenem-Resistant Klebsiella pneumoniae (CR-Kp) Aortic Valve Endocarditis with Ceftazidime–Avibactam. Open Forum Infect. Dis. 2019, 6, S110. [Google Scholar] [CrossRef]
- Biagi, M.; Wu, T.; Lee, M.; Patel, S.; Butler, D.; Wenzler, E. Searching for the Optimal Treatment for Metallo- and Serine-beta-lactamase Producing Enterobacteriaceae: Aztreonam in Combination with Ceftazidime-avibactam or Meropenem-vaborbactam. Antimicrob. Agents Chemother. 2019, 63, e01426-19. [Google Scholar] [CrossRef] [PubMed]
- Almasaudi, S.B. Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi J. Biol. Sci. 2018, 25, 586–596. [Google Scholar] [CrossRef]
- Morris, F.C.; Dexter, C.; Kostoulias, X.; Uddin, M.I.; Peleg, A.Y. The Mechanisms of Disease Caused by Acinetobacter baumannii. Front. Microbiol. 2019, 10, 1601. [Google Scholar] [CrossRef] [PubMed]
- Afeke, I.; Adu-Amankwaah, J.; Nyarko, M.; Bushi, A.; Ablordey, A.S.; Duah, P.A.; Wowui, P.I.; Orish, V.N. Acinetobacterbaumannii-induced infective endocarditis: New insights into pathophysiology and antibiotic resistance mechanisms. Future Microbiol. 2022, 17, 1335–1344. [Google Scholar] [CrossRef]
- Ioannou, P.; Mavrikaki, V.; Kofteridis, D.P. Infective endocarditis by Acinetobacter species: A systematic review. J. Chemother. 2021, 33, 203–215. [Google Scholar] [CrossRef]
- Sturiale, M.; Corpina, C.; Sturiale, L. Endocarditis duo to Acinetobacter baumannii. Int. J. Cardiol. 2016, 209, 161–163. [Google Scholar] [CrossRef]
- Lahmidi, I.; Charmake, D., 3rd; Elouafi, N.; Bazid, Z. Acinetobacter baumannii native valve infective endocarditis: A case report. Cureus 2020, 12, e11527. [Google Scholar] [CrossRef]
- Chen, Q.; Cao, H.; Lu, H.; Qiu, Z.H.; He, J.J. Bioprosthetic tricuspid valve endocarditis caused by Acinetobacter baumannii complex, a case report and brief review of the literature. J. Cardiothorac. Surg. 2015, 10, 149. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Hujer, K.M.; Hujer, A.M.; Hulten, E.A.; Bajaksouzian, S.; Adams, J.M.; Donskey, C.J.; Ecker, D.J.; Massire, C.; Eshoo, M.W.; Sampath, R.; et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob. Agents Chemother. 2006, 50, 4114–4123. [Google Scholar] [CrossRef] [PubMed]
- Bartal, C.; Rolston, K.V.I.; Nesher, L. Carbapenem-resistant Acinetobacter baumannii: Colonization, Infection and Current Treatment Options. Infect. Dis. Ther. 2022, 11, 683–694. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.J.; Jiménez-Mejias, M.E.; Pichardo, C.; Cuberos, L.; García-Curiel, A.; Pachón, J. Colistin efficacy in an experimental model of Acinetobacter baumannii endocarditis. Clin. Microbiol. Infect. 2004, 10, 581–584. [Google Scholar] [CrossRef]
- Tseng, H.W.; Chen, G.J.; Lu, C.C.; Pan, S.C.; Chen, Y.S.; Chang, S.C. Aortic root abscess caused by multidrug-resistant Acinetobacter baumannii and treated with medical therapy only: A case report. J. Microbiol. Immunol. Infect. 2018, 51, 417–418. [Google Scholar] [CrossRef]
- Scudeller, L.; Righi, E.; Chiamenti, M.; Bragantini, D.; Menchinelli, G.; Cattaneo, P.; Giske, C.G.; Lodise, T.; Sanguinetti, M.; Piddock, L.J.V.; et al. Systematic review and meta-analysis of in vitro efficacy of antibiotic combination therapy against carbapenem-resistant Gram-negative bacilli. Int. J. Antimicrob. Agents 2021, 57, 106344. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Piperaki, E.T.; Tzouvelekis, L.S.; Miriagou, V.; Daikos, G.L. Carbapenem-resistant Acinetobacter baumannii: In pursuit of an effective treatment. Clin. Microbiol. Infect. 2019, 25, 951–957. [Google Scholar] [CrossRef]
- Durack, D.T.; Lukes, A.S.; Bright, D.K. New criteria for diagnosis of infective endocarditis: Utilization of specific echocardiographic findings. Duke Endocarditis Service. Am. J. Med. 1994, 96, 200–209. [Google Scholar] [CrossRef]
- Li, J.S.; Sexton, D.J.; Mick, N.; Nettles, R.; Fowler, V.G., Jr.; Ryan, T.; Bashore, T.; Corey, G.R. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin. Infect. Dis. 2000, 30, 633–638. [Google Scholar] [CrossRef]
- Fowler, V.G.; Durack, D.T.; Selton-Suty, C.; Athan, E.; Bayer, A.S.; Chamis, A.L.; Dahl, A.; DiBernardo, L.; Durante-Mangoni, E.; Duval, X.; et al. The 2023 Duke-International Society for Cardiovascular Infectious Diseases Criteria for Infective Endocarditis: Updating the Modified Duke Criteria. Clin. Infect. Dis. 2023, 77, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Cooper, H.A.; Thompson, E.C.; Laureno, R.; Fuisz, A.; Mark, A.S.; Lin, M.; Goldstein, S.A. Subclinical brain embolization in left-sided infective endocarditis: Results from the evaluation by MRI of the brains of patients with left-sided intracardiac solid masses (EMBOLISM) pilot study. Circulation 2009, 120, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Iung, B.; Tubiana, S.; Klein, I.; Messika-Zeitoun, D.; Brochet, E.; Lepage, L.; Al-Attar, N.; Ruimy, R.; Leport, C.; Wolff, M.; et al. Determinants of cerebral lesions in endocarditis on systematic cerebral magnetic resonance imaging: A prospective study. Stroke 2013, 44, 3056–3062. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Joo, L.; Suh, C.H.; Kim, S.; Shim, W.H.; Kim, S.J.; Lee, S.A. Impact of Brain MRI on the Diagnosis of Infective Endocarditis and Treatment Decisions: Systematic Review and Meta-Analysis. AJR Am. J. Roentgenol. 2022, 218, 958–968. [Google Scholar] [CrossRef]
- Champey, J.; Pavese, P.; Bouvaist, H.; Maillet, M.; Kastler, A.; Boussat, B.; Francois, P.; the investigator groups. Is brain angio-MRI useful in infective endocarditis management? Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 2053–2058. [Google Scholar] [CrossRef]
- Duval, X.; Iung, B.; Klein, I.; Brochet, E.; Thabut, G.; Arnoult, F.; Lepage, L.; Laissy, J.P.; Wolff, M.; Leport, C.; et al. Effect of early cerebral magnetic resonance imaging on clinical decisions in infective endocarditis: A prospective study. Ann. Intern. Med. 2010, 152, 497–504, W175. [Google Scholar] [CrossRef]
- Papadimitriou-Olivgeris, M.; Guery, B.; Ianculescu, N.; Dunet, V.; Messaoudi, Y.; Pistocchi, S.; Tozzi, P.; Kirsch, M.; Monney, P. Role of Cerebral Imaging on Diagnosis and Management in Patients with Suspected Infective Endocarditis. Clin. Infect. Dis. 2023, 77, 371–379. [Google Scholar] [CrossRef]
- Chakraborty, T.; Scharf, E.; DeSimone, D.; El Rafei, A.; Brinjikji, W.; Baddour, L.M.; Wilson, W.; Steckelberg, J.M.; Fugate, J.E.; Wijdicks, E.F.M.; et al. Variable Significance of Brain MRI Findings in Infective Endocarditis and Its Effect on Surgical Decisions. Mayo Clin. Proc. 2019, 94, 1024–1032. [Google Scholar] [CrossRef]
- Selton-Suty, C.; Delahaye, F.; Tattevin, P.; Federspiel, C.; Le Moing, V.; Chirouze, C.; Nazeyrollas, P.; Vernet-Garnier, V.; Bernard, Y.; Chocron, S.; et al. Symptomatic and Asymptomatic Neurological Complications of Infective Endocarditis: Impact on Surgical Management and Prognosis. PLoS ONE 2016, 11, e0158522. [Google Scholar] [CrossRef]
- Carbone, A.; Lieu, A.; Mouhat, B.; Santelli, F.; Philip, M.; Bohbot, Y.; Tessonnier, L.; Peugnet, F.; D’Andrea, A.; Cammilleri, S.; et al. Spondylodiscitis complicating infective endocarditis. Heart 2020, 106, 1914–1918. [Google Scholar] [CrossRef]
- Pizzi, M.N.; Roque, A.; Fernández-Hidalgo, N.; Cuéllar-Calabria, H.; Ferreira-González, I.; Gonzàlez-Alujas, M.T.; Oristrell, G.; Gracia-Sánchez, L.; González, J.J.; Rodríguez-Palomares, J.; et al. Improving the Diagnosis of Infective Endocarditis in Prosthetic Valves and Intracardiac Devices with 18F-Fluordeoxyglucose Positron Emission Tomography/Computed Tomography Angiography: Initial Results at an Infective Endocarditis Referral Center. Circulation 2015, 132, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Ten Hove, D.; Slart, R.H.J.A.; Sinha, B.; Glaudemans, A.W.J.M.; Budde, R.P.J. 18F-FDG PET/CT in Infective Endocarditis: Indications and Approaches for Standardization. Curr. Cardiol. Rep. 2021, 23, 130. [Google Scholar] [CrossRef]
- Wang, T.K.M.; Sánchez-Nadales, A.; Igbinomwanhia, E.; Cremer, P.; Griffin, B.; Xu, B. Diagnosis of Infective Endocarditis by Subtype Using 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: A Contemporary Meta-Analysis. Circ. Cardiovasc. Imaging 2020, 13, e010600. [Google Scholar] [CrossRef] [PubMed]
- Anton-Vazquez, V.; Cannata, A.; Amin-Youssef, G.; Watson, S.; Fife, A.; Mulholland, N.; Gunning, M.; Papachristidis, A.; MacCarthy, P.; Baghai, M.; et al. Diagnostic value of 18F-FDG PET/CT in infective endocarditis. Clin. Res. Cardiol. 2022, 111, 673–679. [Google Scholar] [CrossRef]
- Duval, X.; Le Moing, V.; Tubiana, S.; Esposito-Farèse, M.; Ilic-Habensus, E.; Leclercq, F.; Bourdon, A.; Goehringer, F.; Selton-Suty, C.; Chevalier, E.; et al. Impact of Systematic Whole-body 18F-Fluorodeoxyglucose PET/CT on the Management of Patients Suspected of Infective Endocarditis: The Prospective Multicenter TEPvENDO Study. Clin. Infect. Dis. 2021, 73, 393–403. [Google Scholar] [CrossRef] [PubMed]
- El-Dalati, S.; Murthy, V.L.; Owczarczyk, A.B.; Fagan, C.; Riddell, J., 4th; Cinti, S.; Weinberg, R.L. Correlating cardiac F-18 FDG PET/CT results with intra-operative findings in infectious endocarditis. J. Nucl. Cardiol. 2021, 28, 289–294. [Google Scholar] [CrossRef]
- Bonfiglioli, R.; Nanni, C.; Morigi, J.J.; Graziosi, M.; Trapani, F.; Bartoletti, M.; Tumietto, F.; Ambrosini, V.; Ferretti, A.; Rubello, D.; et al. ¹⁸F-FDG PET/CT diagnosis of unexpected extracardiac septic embolisms in patients with suspected cardiac endocarditis. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1190–1196. [Google Scholar] [CrossRef]
- Holle, S.L.K.; Andersen, M.H.; Klein, C.F.; Bruun, N.E.; Tønder, N.; Haarmark, C.; Loft, A.; Høilund-Carlsen, P.F.; Bundgaard, H.; Iversen, K.K. Clinical usefulness of FDG-PET/CT for identification of abnormal extra-cardiac foci in patients with infective endocarditis. Int. J. Cardiovasc. Imaging 2020, 36, 939–946. [Google Scholar] [CrossRef]
- de Camargo, R.A.; Sommer Bitencourt, M.; Meneghetti, J.C.; Soares, J.; Gonçalves, L.F.T.; Buchpiguel, C.A.; Paixão, M.R.; Felicio, M.F.; de Matos Soeiro, A.; Varejão Strabelli, T.M.; et al. The Role of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in the Diagnosis of Left-sided Endocarditis: Native vs Prosthetic Valves Endocarditis. Clin. Infect. Dis. 2020, 70, 583–594. [Google Scholar] [CrossRef]
- Cautela, J.; Alessandrini, S.; Cammilleri, S.; Giorgi, R.; Richet, H.; Casalta, J.P.; Habib, G.; Raoult, D.; Mundler, O.; Deharo, J.C. Diagnostic yield of FDG positron-emission tomography/computed tomography in patients with CEID infection: A pilot study. Europace 2013, 15, 252–257. [Google Scholar] [CrossRef]
- Swart, L.E.; Gomes, A.; Scholtens, A.M.; Sinha, B.; Tanis, W.; Lam, M.G.E.H.; van der Vlugt, M.J.; Streukens, S.A.F.; Aarntzen, E.H.J.G.; Bucerius, J.; et al. Improving the Diagnostic Performance of 18F-Fluorodeoxyglucose Positron-Emission Tomography/Computed Tomography in Prosthetic Heart Valve Endocarditis. Circulation 2018, 138, 1412–1427. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, M.; Kendi, A.T.; Ajmal, S.; Farid, S.; O’Horo, J.C.; Chareonthaitawee, P.; Baddour, L.M.; Sohail, M.R. Meta-analysis of 18F-FDG PET/CT in the diagnosis of infective endocarditis. J. Nucl. Cardiol. 2019, 26, 922–935. [Google Scholar] [CrossRef]
- Scholtens, A.M.; Swart, L.E.; Verberne, H.J.; Budde, R.P.J.; Lam, M.G.E.H. Dual-time-point FDG PET/CT imaging in prosthetic heart valve endocarditis. J. Nucl. Cardiol. 2018, 25, 1960–1967. [Google Scholar] [CrossRef]
- San, S.; Ravis, E.; Tessonier, L.; Philip, M.; Cammilleri, S.; Lavagna, F.; Norscini, G.; Arregle, F.; Martel, H.; Oliver, L.; et al. Prognostic Value of 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Infective Endocarditis. J. Am. Coll. Cardiol. 2019, 74, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Bucy, L.; Erpelding, M.L.; Boursier, C.; Lefevre, B.; Alauzet, C.; Liu, Y.; Chevalier, E.; Huttin, O.; Agrinier, N.; Selton-Suty, C.; et al. Real world experience of therapeutic monitoring of medically treated prosthetic valve infective endocarditis by 18F-FDG-PET/CT. J. Nucl. Cardiol. 2023, 30, 2096–2103. [Google Scholar] [CrossRef]
- Régis, C.; Thy, M.; Mahida, B.; Deconinck, L.; Tubiana, S.; Iung, B.; Duval, X.; Rouzet, F. Absence of infective endocarditis relapse when end-of-treatment fluorodeoxyglucose positron emission tomography/computed tomography is negative. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 1480–1488. [Google Scholar] [CrossRef] [PubMed]
- Roque, A.; Pizzi, M.N.; Fernández-Hidalgo, N.; Romero-Farina, G.; Burcet, G.; Reyes-Juarez, J.L.; Espinet, C.; Castell-Conesa, J.; Escobar, M.; Ferreira-González, I.; et al. The valve uptake index: Improving assessment of prosthetic valve endocarditis and updating [18F]FDG PET/CT(A) imaging criteria. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 1260–1271. [Google Scholar] [CrossRef]
- Boursier, C.; Duval, X.; Bourdon, A.; Imbert, L.; Mahida, B.; Chevalier, E.; Claudin, M.; Hoen, B.; Goehringer, F.; Selton-Suty, C.; et al. ECG-Gated Cardiac FDG PET Acquisitions Significantly Improve Detectability of Infective Endocarditis. JACC Cardiovasc. Imaging 2020, 13, 2691–2693. [Google Scholar] [CrossRef]
- Wardak, M.; Gowrishankar, G.; Zhao, X.; Liu, Y.; Chang, E.; Namavari, M.; Haywood, T.; Gabr, M.T.; Neofytou, E.; Chour, T.; et al. Molecular Imaging of Infective Endocarditis with 6′′-[18F]Fluoromaltotriose Positron Emission Tomography-Computed Tomography. Circulation 2020, 141, 1729–1731. [Google Scholar] [CrossRef]
- Gomes, A.; Glaudemans, A.W.J.M.; Touw, D.J.; van Melle, J.P.; Willems, T.P.; Maass, A.H.; Natour, E.; Prakken, N.H.J.; Borra, R.J.H.; van Geel, P.P.; et al. Diagnostic value of imaging in infective endocarditis: A systematic review. Lancet Infect. Dis. 2017, 17, e1–e14. [Google Scholar] [CrossRef]
- Ferro, P.; Boni, R.; Slart, R.H.; Erba, P.A. Imaging of Endocarditis and Cardiac Device-Related Infections: An Update. Semin. Nucl. Med. 2023, 53, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, K.; Bauer, M.; Riedemann, N.C.; Hartog, C.S. New approaches to sepsis: Molecular diagnostics and biomarkers. Clin. Microbiol. Rev. 2012, 25, 609–634. [Google Scholar] [CrossRef] [PubMed]
- Liesman, R.M.; Pritt, B.S.; Maleszewski, J.J.; Patel, R. Laboratory Diagnosis of Infective Endocarditis. J. Clin. Microbiol. 2017, 55, 2599–2608. [Google Scholar] [CrossRef]
- Edouard, S.; Nabet, C.; Lepidi, H.; Fournier, P.E.; Raoult, D. Bartonella, a common cause of endocarditis: A report on 106 cases and review. J. Clin. Microbiol. 2015, 53, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.; Lee, H.J.; Park, J.H.; Bae, S.; Jung, J.; Kim, M.J.; Lee, S.O.; Choi, S.H.; Kim, Y.S.; Shin, Y.; et al. Molecular diagnosis of Coxiella burnetii in culture negative endocarditis and vascular infection in South Korea. Ann. Med. 2021, 53, 2256–2265. [Google Scholar] [CrossRef]
- Harris, K.A.; Yam, T.; Jalili, S.; Williams, O.M.; Alshafi, K.; Gouliouris, T.; Munthali, P.; NiRiain, U.; Hartley, J.C. Service evaluation to establish the sensitivity, specificity and additional value of broad-range 16S rDNA PCR for the diagnosis of infective endocarditis from resected endocardial material in patients from eight UK and Ireland hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 2061–2066. [Google Scholar] [CrossRef]
- Greub, G.; Lepidi, H.; Rovery, C.; Casalta, J.P.; Habib, G.; Collard, F.; Collard, F.; Fournier, P.E.; Raoult, D. Diagnosis of infectious endocarditis in patients undergoing valve surgery. Am. J. Med. 2005, 118, 230–238. [Google Scholar] [CrossRef]
- Marin, M.; Munoz, P.; Sanchez, M.; del Rosal, M.; Alcala, L.; Rodriguez-Creixems, M.; Bouza, E.; Group for the Management of Infective Endocarditis of the Gregorio Maranon H. Molecular diagnosis of infective endocarditis by real-time broad-range polymerase chain reaction (PCR) and sequencing directly from heart valve tissue. Medicine 2007, 86, 195–202. [Google Scholar] [CrossRef]
- Haddad, S.F.; DeSimone, D.C.; Chesdachai, S.; Gerberi, D.J.; Baddour, L.M. Utility of Metagenomic Next-Generation Sequencing in Infective Endocarditis: A Systematic Review. Antibiotics 2022, 11, 1798. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, H.; Fang, W.; Shi, D.; Liang, C.; Sun, Y.; Gao, G.; Wang, H.; Zhang, Q.; Wang, L.; et al. Detection of pathogens from resected heart valves of patients with infective endocarditis by next-generation sequencing. Int. J. Infect. Dis. 2019, 83, 148–153. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, J.; Li, X.; Xiong, W.; Tang, L.; Li, X.; Zhuang, J.; Yu, R.; Chen, J.; Jian, X.; et al. Application of Metagenomic Next-Generation Sequencing in the Etiological Diagnosis of Infective Endocarditis During the Perioperative Period of Cardiac Surgery: A Prospective Cohort Study. Front. Cardiovasc. Med. 2022, 9, 811492. [Google Scholar] [CrossRef] [PubMed]
- Hajduczenia, M.M.; Klefisch, F.R.; Hopf, A.G.M.; Grubitzsch, H.; Stegemann, M.S.; Pfäfflin, F.; Puhlmann, B.; Ocken, M.; Kretzler, L.; von Schöning, D.; et al. New Perspectives for Prosthetic Valve Endocarditis: Impact of Molecular Imaging by FISHseq Diagnostics. Clin. Infect. Dis. 2023, 76, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Osler, W. The Gulstonian Lectures, on malignant endocarditis. Br. Med. J. 1885, 1, 577–579. [Google Scholar] [CrossRef]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapti, V.; Giannitsioti, E.; Spernovasilis, N.; Magiorakos, A.-P.; Poulakou, G. The Evolving Landscape of Infective Endocarditis: Difficult-to-Treat Resistance Bacteria and Novel Diagnostics at the Foreground. J. Clin. Med. 2025, 14, 2087. https://doi.org/10.3390/jcm14062087
Rapti V, Giannitsioti E, Spernovasilis N, Magiorakos A-P, Poulakou G. The Evolving Landscape of Infective Endocarditis: Difficult-to-Treat Resistance Bacteria and Novel Diagnostics at the Foreground. Journal of Clinical Medicine. 2025; 14(6):2087. https://doi.org/10.3390/jcm14062087
Chicago/Turabian StyleRapti, Vasiliki, Efthymia Giannitsioti, Nikolaos Spernovasilis, Anna-Pelagia Magiorakos, and Garyfallia Poulakou. 2025. "The Evolving Landscape of Infective Endocarditis: Difficult-to-Treat Resistance Bacteria and Novel Diagnostics at the Foreground" Journal of Clinical Medicine 14, no. 6: 2087. https://doi.org/10.3390/jcm14062087
APA StyleRapti, V., Giannitsioti, E., Spernovasilis, N., Magiorakos, A.-P., & Poulakou, G. (2025). The Evolving Landscape of Infective Endocarditis: Difficult-to-Treat Resistance Bacteria and Novel Diagnostics at the Foreground. Journal of Clinical Medicine, 14(6), 2087. https://doi.org/10.3390/jcm14062087