Real Versus Sham-Based Neurodynamic Techniques in the Treatment of Cubital Tunnel Syndrome: A Randomized Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design
2.3. Sample Size
2.4. Participants
2.5. Protocol
2.5.1. Diagnostic Criteria of CuTS
- (a)
- Clinical symptoms of peripheral neuropathy of the ulnar nerve (pain, numbness, and tingling),
- (b)
- Objective clinical symptoms of peripheral neuropathy of the ulnar nerve (positive elbow flexion test; Tinel’s sign; one or two points in the McGowan classification),
- (c)
- Disturbances in the ulnar nerve sensation tests (two-point discrimination sense, sensory threshold test),
- (d)
- Changes in ultrasound measurement (increased cross-sectional area, greater stiffness of the ulnar nerve),
- (e)
- Below-normal results of the nerve conduction study (motor conduction velocity < 49.3 m/s).
2.5.2. Randomization and Allocation
2.5.3. Blinding Procedures
2.6. Outcome Measures
2.6.1. Primary Outcomes
2.6.2. Secondary Outcomes
2.7. Intervention
- Neurodynamic techniques for ulnar nerve 1 (NTUN1)—position: supine; neurodynamic sequence: wrist and finger extension, forearm pronation, shoulder external rotation, elbow flexion, shoulder girdle depression, shoulder abduction; neurodynamic techniques: one-direction distal sliding mobilization (movement—rhythmic hand flexion and extension—large amplitude of motion), one-direction distal tensioning mobilization (movement—rhythmic hand flexion and extension—small amplitude of motion at the end of the movement), one-direction proximal sliding mobilization (movement—rhythmic elbow flexion and extension—large amplitude of motion), one-direction proximal tensioning mobilization (movement—rhythmic elbow flexion and extension—small amplitude of motion at the end of the movement).
- Neurodynamic techniques for ulnar nerve 2 (NTUN2)—position: supine; neurodynamic sequence: wrist and finger extension and radial adduction, forearm pronation, shoulder internal rotation, elbow extension, shoulder girdle depression, shoulder abduction; neurodynamic techniques: one-direction distal sliding mobilization (movement—rhythmic hand flexion and extension—large amplitude of motion), one-direction distal tensioning mobilization (movement—rhythmic hand flexion and extension—small amplitude of motion at the end of the movement), one-direction proximal sliding mobilization (movement—rhythmic elbow flexion and extension—large amplitude of motion), one-direction proximal tensioning mobilization (movement—rhythmic elbow flexion and extension—small amplitude of motion and the end of the movement).
- (a)
- Sham neurodynamic techniques for ulnar nerve 1 (sNTUN1)—position: supine; no neurodynamic sequence: wrist and finger in the neutral position, forearm pronation, shoulder external rotation, elbow flexion, shoulder girdle neutral position, no shoulder abduction; sham neurodynamic techniques: sham one-direction distal sliding mobilization (movement—rhythmic hand flexion and extension—large amplitude of motion), sham one-direction distal tensioning mobilization (movement—rhythmic hand flexion and extension—small amplitude of motion at the end of the movement), sham one-direction proximal sliding mobilization (movement—rhythmic elbow flexion and extension—large amplitude of motion), sham one-direction proximal tensioning mobilization (movement—rhythmic elbow flexion and extension—small amplitude of motion at the end of the movement).
- (b)
- Sham neurodynamic techniques for ulnar nerve 2 (sNTUN2)—position: supine; no neurodynamic sequence: wrist and finger in neutral position, forearm pronation, shoulder in neutral position, elbow extension, shoulder girdle in neutral position, no shoulder abduction; sham neurodynamic techniques: sham one-direction distal sliding mobilization (movement—rhythmic hand flexion and extension—large amplitude of motion), sham one-direction distal tensioning mobilization (movement—rhythmic hand flexion and extension—small amplitude of motion at the end of the movement), sham one-direction proximal sliding mobilization (movement—rhythmic elbow flexion and extension—large amplitude of motion), sham one-direction proximal tensioning mobilization (movement—rhythmic elbow flexion and extension—small amplitude of motion at the end of the movement).
2.8. Statistical Analysis
3. Results
3.1. Participant Characteristics at Baseline
3.2. Inter- and Intra-Group Comparison of Clinical Symptoms
3.3. Inter- and Intra-Group Comparison of Primary Outcomes
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elhassan, B.; Steinmann, S.P. Entrapment neuropathy of the ulnar nerve. J. Am. Acad. Orthop. Surg. 2007, 15, 672–681. [Google Scholar] [CrossRef] [PubMed]
- An, T.W.; Evanoff, B.A.; Boyer, M.I.; Osei, D.A. The Prevalence of Cubital Tunnel Syndrome: A Cross-Sectional Study in a U.S. Metropolitan Cohort. J. Bone Jt. Surg. 2017, 99, 408–416. [Google Scholar] [CrossRef]
- Szabo, R.M.; Kwak, C. Natural history and conservative management of cubital tunnel syndrome. Hand Clin. 2007, 23, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Kooner, S.; Cinats, D.; Kwong, C.; Matthewson, G.; Dhaliwal, G. Conservative treatment of cubital tunnel syndrome: A systematic review. Orthop. Rev. 2019, 11, 7955. [Google Scholar] [CrossRef] [PubMed]
- Wolny, T.; Fernández-de-las Peñas, C.; Buczek, T.; Domin, M.; Granek, A.; Linek, P. The Effects of Physiotherapy in the Treatment of Cubital Tunnel Syndrome: A Systematic Review. J. Clin. Med. 2022, 11, 4247. [Google Scholar] [CrossRef]
- Assmus, H.; Antoniadis, G.; Bischoff, C. Carpal and cubital tunnel and other, rarer nerve compression syndromes. Dtsch. Arztebl. Int. 2015, 112, 14–25. [Google Scholar] [CrossRef]
- Nyman, E.; Dahlin, L.B. The Unpredictable Ulnar Nerve—Ulnar Nerve Entrapment from Anatomical, Pathophysiological, and Biopsychosocial Aspects. Diagnostics 2024, 14, 489. [Google Scholar] [CrossRef]
- Ozkan, F.U.; Saygı, E.K.; Senol, S.; Kapcı, S.; Aydeniz, B.; Aktas, I.; Gozke, E. New Treatment Alternatives in the Ulnar Neuropathy at the Elbow: Ultrasound and Low-Level Laser Therapy. Acta Neurol. Belg. 2015, 115, 355–360. [Google Scholar] [CrossRef]
- Mackinnon, S.E. Pathophysiology of nerve compression. Hand Clin. 2002, 18, 231–241. [Google Scholar] [CrossRef]
- Babusiaux, D.; Laulan, J.; Bouilleau, L.; Martin, A.; Adrien, C.; Aubertin, A.; Rabarin, F. Contribution of static and dynamic ultrasound in cubital tunnel syndrome. Orthop. Traumatol. Surg. Res. 2014, 100, 209–212. [Google Scholar] [CrossRef]
- Letissier, H.; Dardenne, G.; Saraux, A.; Le Nen, D.; Borotikar, B.; Jousse-Joulin, S. Ultrasound ulnar nerve measurement in a healthy population. Rheumatol. Ther. 2021, 8, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Mezian, K.; Jacisko, J.; Kaiser, R.; Machač, S.; Steyerova, P.; Sobotova, K.; Angerova, Y.; Nanka, O. Ulnar neuropathy at the elbow: From ultrasound scanning to treatment. Front. Neurol. 2021, 12, 661441. [Google Scholar] [CrossRef] [PubMed]
- Kotevoglu, N.; Gulbahce-Saglam, S. Ultrasound imaging in the diagnosis of carpal tunnel syndrome and its relevance to clinical evaluation. Jt. Bone Spine 2005, 72, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Tomažin, T.; Pušnik, L.; Albano, D.; Jengojan, S.A.; Snoj, Ž. Multiparametric Ultrasound Assessment of Carpal Tunnel Syndrome: Beyond Nerve Cross-sectional Area. Semin. Musculoskelet. Radiol. 2024, 28, 661–671. [Google Scholar] [CrossRef]
- Cutts, S. Cubital tunnel syndrome. Postgrad. Med. J. 2007, 83, 28–31. [Google Scholar] [CrossRef]
- Palmer, B.A.; Hughes, T.B. Cubital tunnel syndrome. J. Hand Surg. Am. 2010, 35, 153–163. [Google Scholar] [CrossRef]
- Lund, A.T.; Amadio, P.C. Treatment of cubital tunel syndrome: Perspectives for the therapist. J. Hand Ther. 2006, 19, 170–178. [Google Scholar] [CrossRef]
- Wieczorek, M.; Gnat, R.; Wolny, T. The Use of Physiotherapy in the Conservative Treatment of Cubital Tunnel Syndrome: A Critical Review of the Literature. Diagnostics 2024, 14, 1201. [Google Scholar] [CrossRef]
- Svernlov, B.; Larsson, M.; Rehn, K.; Adolfsson, L. Conservative treatment of the cubital tunnel syndrome. J. Hand Surg. 2009, 34, 201–207. [Google Scholar] [CrossRef]
- Caliandro, P.; La Torre, G.; Padua, R.; Giannini, F.; Padua, L. Treatment for ulnar neuropathy at the elbow. Cochrane Database Syst. Rev. 2016, 11, CD006839. [Google Scholar] [CrossRef]
- Gaber, M.; El_dein, M. Ultrasound Versus Nerve Gliding on Hand Grip Strength in Cubital Tunnel Syndrome. Egypt. J. Phys. Ther. 2021, 5, 1–5. [Google Scholar] [CrossRef]
- Galal DOSMG; Abdelmageed, S.M.; Elserty, N.; Helmy, A.M. Effect of Dry Cupping Therapy with Neurodynamic Mobilization on Pain Intensity, Muscle Strength and Functional Abilities in Patients with Cubital Tunnel Syndrome: A Randomized Clinical Trial. Turk. J. Physiother. Rehabil. 2021, 32, 8689–8697. [Google Scholar]
- Oskay, D.; Meriç, A.; Nuray, K.; Firat, T.; Ayhan, C.; Leblebicioglu, G. Neurodynamic mobilization in the conservative treatment of cubital tunnel syndrome: Long-term follow-up of 7 cases. J. Manip. Physiol. Ther. 2010, 33, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las-Peñas, C.; Arias-Buría, J.L.; El Bachiri, Y.R.; Plaza-Manzano, G.; Cleland, J.A. Ultrasound-guided percutaneous electrical stimulation for a patient with cubital tunnel syndrome: A case report with a one-year follow-up. Physiother. Theory Pract. 2020, 6, 1–6. [Google Scholar] [CrossRef]
- Coppieters, M.W.; Bartholomeeusen, K.E.; Stappaerts, K.H. Incorporating nerve-gliding techniques in the conservative treatment of cubital tunnel syndrome. J. Manip. Physiol. Ther. 2004, 27, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Wolny, T.; Linek, P. Neurodynamic Techniques Versus “Sham” Therapy in the Treatment of Carpal Tunnel Syndrome: A Randomized Placebo-Controlled Trial. Arch. Phys. Med. Rehabil. 2018, 99, 843–854. [Google Scholar] [CrossRef]
- Wolny, T.; Linek, P. Is manual therapy based on neurodynamic techniques effective in the treatment of carpal tunnel syndrome? A randomized controlled trial. Clin. Rehabil. 2019, 33, 408–417. [Google Scholar] [CrossRef]
- McGowan, A.J. The results of transposition of the ulnar nerve for traumatic ulnar neuritis. J. Bone Jt. Surg. Br. 1950, 32, 293–301. [Google Scholar] [CrossRef]
- Walter, S.D.; Eliasziw, M.; Donner, A. Sample size and optimal designs for reliability studies. Stat. Med. 1998, 17, 101–110. [Google Scholar] [CrossRef]
- Wolny, T.; Fernández-De-Las-Peñas, C.; Granek, A.; Linek, P. Changes in Ultrasound Measurements of the Ulnar Nerve at Different Elbow Joint Positions in Patients with Cubital Tunnel Syndrome. Sensors 2022, 22, 8354. [Google Scholar] [CrossRef]
- Jensen, M.P.; Turner, J.A.; Romano, J.M.; Fisher, L.D. Comparative reliability and validity of chronic pain intensity measures. Pain 1999, 83, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Wolny, T.; Fernández-De-Las-Peñas, C.; Granek, A.; Linek, P. Reliability of Ulnar Nerve Sensation Tests in Patients with Cubital Tunnel Syndrome and Healthy Subjects. Diagnostics 2022, 12, 2347. [Google Scholar] [CrossRef] [PubMed]
- Schreuders, T.A.; Selles, R.W.; van Ginneken, B.T.; Janssen, W.G.; Stam, H.J. Sensory evaluation of the hands in patients with Charcot-Marie-Tooth disease using Semmes-Weinstein monofilaments. J. Hand Ther. 2008, 21, 28–34. [Google Scholar] [CrossRef]
- Gummesson, C.; Ward, M.M.; Atroshi, I. The shortened disabilities of the arm, shoulder and hand questionnaire (QuickDASH): Validity and reliability based on responses within the full-length DASH. BMC Musculoskelet. Disord. 2006, 7, 44. [Google Scholar] [CrossRef]
- Cnotliwy, M.; Jurewicz, A.; Janowska-Gołąb, M.; Kazimierczak, A.; Głazek, W. The Self-Complete of Leeds Assessment Neuropathic Symptoms and Signs: An attempt to adapt it for Polish population. Pomeran. J. Life Sci. 2016, 62, 18–21. [Google Scholar] [CrossRef]
- Jaeschke, R.; Singer, J.; Guyatt, G.H. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin. Trials. 1989, 10, 407–415. [Google Scholar] [CrossRef]
- Nee, R.J.; Butler, D. Management of Peripheral Neuropathic Pain: Integrating Neurobiology, Neurodynamics, and Clinical Evidence. Phys. Ther. Sport. 2006, 7, 36–49. [Google Scholar] [CrossRef]
- Villafañe, J.H.; Silva, G.B.; Fernandez-Carnero, J. Short-Term Effects of Neurodynamic Mobilization in 15 Patients with Secondary Thumb Carpometacarpal Osteoarthritis. J. Manipul. Physiol. Ther. 2011, 34, 449–456. [Google Scholar] [CrossRef]
- Lundborg, G.; Dahlin, L.B. Anatomy, function and pathophys iology of peripheral nerves and nerve compression. Hand Clin. 1996, 12, 185–193. [Google Scholar] [CrossRef]
- Gelberman, G.H.; Eaton, R.G.; Urbaniak, J.R. Peripheral nerve compression. Instr. Course Lect. 1994, 43, 31–53. [Google Scholar] [CrossRef]
- Milesi, H.; Zoch, G.; Reihsner, R. Mechanical properties of peripheral nerves. Clin. Orthop. 1995, 79, 76–83. [Google Scholar] [CrossRef]
- Mackinnon, S.E.; Novak, C.B. Compression neuropathies. In Green’s Operative Hand Surgery, 7th ed.; Wolfe, S.W., Ed.; Churchill Livingstone: London, UK, 2017; pp. 940–947. [Google Scholar]
Characteristics | NT Group (n = 48) | ST Group (n = 43) | p-Value * |
---|---|---|---|
Women/Men (n, %) | 16 (33%)/32 (67%) | 16 (37%)/27 (63%) | 0.68 a |
Age (mean, SD, min–max), year | 54.4; 6.97; 40–68 | 53.3; 6.52; 43–66 | 0.44 b |
Body mass (mean, SD, min–max), kg | 77.1; 13.1; 49–102 | 72.6; 11.3; 51–94 | 0.18 b |
Body height (mean, SD, min–max), cm | 174; 9.74; 157–188 | 173; 9.73; 148–187 | 0.64 b |
BMI (mean, SD, min–max), kg/m2 | 24.8; 2.66; 20.2–32.4 | 24.1; 2.25; 20.1–30.5 | 0.10 b |
CuTS unilateral/bilateral (n, %) | 43 (90%)/5 (10%) | 40 (93%)/3 (7%) | 0.72 a |
Symptomatic hand right/left (n, %) | 25 (47%)/28 (53%) | 20 (43%)/26 (57%) | 0.71 a |
Asymptomatic hand right/left (n, %) | 23 (51%)/22 (49%) | 23 (57%)/17 (43%) | 0.63 a |
Dominant hand right/left (n, %) | 41 (85%)/7 (16%) | 38 (88%)/5 (12%) | 0.67 a |
Symptoms duration (mean, SD, min–max), month | 11.1; 2.54; 7–17 | 11.4; 2.68; 7–18 | 0.29 b |
Clinical Tests | Group | NT Group (n = 48) | ST Group (n = 43) | Inter-Groups Difference p; 95% CI | ||
---|---|---|---|---|---|---|
Time Point | Mean (SD) | Intra-Group Differences p | Mean (SD) | Intra-Group Differences p | ||
McGowan classification (scale 1–3) | Baseline Final | 1.51 (0.5) 0.49 (0.5) | B vs. F—0.0001 * | 1.5 (0.5) 1.3 (0.59) | B vs. F—0.0087 * | 0.99 −0.19 to 0.21 0.0000 * −1.03 to −0.59 |
Elbow flexion test (0–60 s) | Baseline Final | 22.3 (5.96) 40.4 (11.7) | B vs. F—0.0001 * | 21.9 (6.71) 22.6 (5.51) | B vs. F—0.88 | 0.99 −2.08 to 2.97 0.0000 * 13.9 to 21.4 |
Tinel’s sign (0—negative, 1—positive) | Baseline Final | 0.81 (0.39) 0.16 (0.37) | B vs. F—0.0001 * | 0.71 (0.45) 0.58 (0.49) | B vs. F—0.02 | 0.72 −0.07 to 0.26 0.0000 * −0.59 to −0.24 |
Clinical Tests | Group | NT Group (n = 48) | ST Group (n = 43) | Inter-Groups Difference p; 95% CI | ||
---|---|---|---|---|---|---|
Time Point | Mean (SD) | Intra-Group Differences p | Mean (SD) | Intra-Group Differences p | ||
Motor conduction velocity (m/s) | Baseline Final | 35.1 (6.28) 45.6 (6.65) | B vs. F—0.0001 * | 36.1 (4.38) 36.2 (4.47) | B vs. F—0.99 | 0.89 −3.01 to 1.36 0.0000 * 7.24 to 11.8 |
Ultrasound cross-sectional area at elbow extension (mm2) | Baseline Final | 10.9 (1.52) 9.42 (1.65) | B vs. F—0.0001 * | 10.7 (1.13) 10.6 (1.08) | B vs. F—0.80 | 0.88 −0.33 to 0.75 0.0002 * −1.84 to −0.71 |
Ultrasound cross-sectional area 45° flexion (mm2) | Baseline Final | 10.8 (1.51) 9.19 (1.41) | B vs. F—0.0001 * | 10.8 (1.08) 10.8 (1.21) | B vs. F—0.99 | 0.99 −0.55 to 0.51 0.0000 * −2.19 to −1.14 |
Ultrasound cross-sectional area 90° flexion (mm2) | Baseline Final | 10.4 (1.56) 10.1 (1.46) | B vs. F—0.0001 * | 10.3 (1.31) 10.3 (1.35) | B vs. F—0.98 | 0.98 −0.46 to 0.69 0.86 −0.79 to 0.33 |
Ultrasound cross-sectional area at full flexion (mm2) | Baseline Final | 11.1 (1.41) 10.5 (1.24) | B vs. F—0.0001 * | 10.9 (1.48) 10.8 (1.12) | B vs. F—0.15 | 0.99 −0.44 to 0.58 0.70 −0.75 to 0.19 |
Ultrasound shear modulus at elbow extension (kPa) | Baseline Final | 29.8 (4.93) 21.4 (5.19) | B vs. F—0.0001 * | 30.2 (4.25) 27.4 (4.08) | B vs. F—0.0002 * | 0.96 −2.33 to1.36 0.0000 * −7.93 to −4.16 |
Ultrasound shear modulus 45° flexion (kPa) | Baseline Final | 89.6 (22.4) 51.6 (15.9) | B vs. F—0.0001 * | 88.9 (17.1) 82.8 (16.9) | B vs. F—0.0024 * | 0.99 −7.39 to8.73 0.0001 * −37.7 to −24.6 |
Ultrasound shear modulus 90° flexion (kPa) | Baseline Final | 111.8 (17.4) 88.3 (18.5) | B vs. F—0.0001 * | 112.4 (12.6) 109.5 (12.2) | B vs. F—0.24 | 0.99 −6.73 to5.57 0.0000 * −27.5 to −14.8 |
Ultrasound shear modulus at full flexion (kPa) | Baseline Final | 209.9 (83.9) 139.1 (43.6) | B vs. F—0.0001 * | 204.6 (62.4) 201.5 (62.2) | B vs. F—0.93 | 0.97 −24.6 to35.1 0.0001 * −83.7 to −41.2 |
Diurnal pain NPRS (0—no pain; 10—maximum pain) | Baseline Final | 4.77 (1.01) 1.09 (0.94) | B vs. F—0.0001 * | 4.63 (0.95) 4.41 (0.83) | B vs. F—0.17 | 0.88 −0.25 to 0.53 0.0000 * −3.67 to −2.96 |
Nocturnal pain NPRS (0—no pain; 10—maximum pain) | Baseline Final | 2.56 (0.61) 0.64 (0.68) | B vs. F—0.0001 * | 2.84 (0.69) 2.71 (0.71) | B vs. F—0.40 | 0.18 −0.54 to −0.02 0.0000 * −2.35 to −1.79 |
Clinical Tests | Group | NT Group (n = 48) | ST Group (n = 43) | Inter-Groups Difference p; 95% CI | ||
---|---|---|---|---|---|---|
Time Point | Mean (SD) | Intra-Group Differences p | Mean (SD) | Intra-Group Differences p | ||
2PD—4th finger (mm) | Baseline Final | 6.83 (0.97) 5.41 (1.26) | B vs. F—0.0001 * | 6.76 (1.13) 6.73 (1.11) | B vs. F—0.99 | 0.99 −0.35 to 0.48 0.0000 * −1.81 to −0.84 |
2PD—5th finger (mm) | Baseline Final | 7.05 (0.63) 5.81 (0.72) | B vs. F—0.0001 * | 7.31 (0.61) 7.16 (0.57) | B vs. F—0.56 | 0.24 −0.49 to 0.01 0.0000 * −1.62 to −1.09 |
CSPT—4th finger (scale 0–4) | Baseline Final | 3.04 (0.66) 1.54 (0.57) | B vs. F—0.0001 * | 2.91 (0.71) 2.85 (0.66) | B vs. F—0.93 | 0.74 −0.13 to 0.41 0.0000 * −1.56 to −1.06 |
CSPT—5th finger (scale 0–4) | Baseline Final | 3.06 (0.49) 1.74 (0.62) | B vs. F—0.0001 * | 3.04 (0.58) 3.01 (0.57) | B vs. F—0.98 | 0.99 −0.21 to 0.22 0.0000 * −1.51 to −1.03 |
Q-DASH (scale 0–55) | Baseline Final | 51.7 (7.48) 3.94 (3.11) | B vs. F—0.0001 * | 52.1 (6.86) 51.6 (6.69) | B vs. F—0.93 | 0.99 −3.21 to 2.55 0.0000 * −49.7 to −45.6 |
S-LANSS (scale 0–24) | Baseline Final | 14.1 (1.87) 3.24 (2.69) | B vs. F—0.0001 * | 13.8 (1.87) 13.7 (1.71) | B vs. F—0.92 | 0.95 −0.52 to 0.97 0.0001 * −11.4 to −9.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolny, T.; Wieczorek, M. Real Versus Sham-Based Neurodynamic Techniques in the Treatment of Cubital Tunnel Syndrome: A Randomized Placebo-Controlled Trial. J. Clin. Med. 2025, 14, 2096. https://doi.org/10.3390/jcm14062096
Wolny T, Wieczorek M. Real Versus Sham-Based Neurodynamic Techniques in the Treatment of Cubital Tunnel Syndrome: A Randomized Placebo-Controlled Trial. Journal of Clinical Medicine. 2025; 14(6):2096. https://doi.org/10.3390/jcm14062096
Chicago/Turabian StyleWolny, Tomasz, and Michał Wieczorek. 2025. "Real Versus Sham-Based Neurodynamic Techniques in the Treatment of Cubital Tunnel Syndrome: A Randomized Placebo-Controlled Trial" Journal of Clinical Medicine 14, no. 6: 2096. https://doi.org/10.3390/jcm14062096
APA StyleWolny, T., & Wieczorek, M. (2025). Real Versus Sham-Based Neurodynamic Techniques in the Treatment of Cubital Tunnel Syndrome: A Randomized Placebo-Controlled Trial. Journal of Clinical Medicine, 14(6), 2096. https://doi.org/10.3390/jcm14062096