Sex Hormone-Binding Globulin and Cardiac Function in Men with Heart Failure: Possible Role of Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. Data Collection
2.3. Echocardiographic Examination
2.4. Statistical Analyses
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HF | Heart failure |
SHBG | Sex hormone-binding globulin |
T2DM | Type 2 diabetes mellitus |
GFR | Glomerular filtration rate |
LVEF | Left ventricular ejection fraction |
LVDD | Left ventricular diastolic dysfunction |
NT-proBNP | N-terminal pro-B type natriuretic peptide |
E | Early filling |
A | Atrial filling |
References
- Saccà, L. Heart failure as a multiple hormonal deficiency syndrome. Circ. Heart Fail. 2009, 2, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Bušić, Ž.; Čulić, V. Central and peripheral testosterone effects in men with heart failure: An approach for cardiovascular research. World J. Cardiol. 2015, 7, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, S.; Aydin, M.A.; Appelbaum, S.; Kuulasmaa, K.; Palosaari, T.; Ojeda, F.; Blankenberg, S.; Jousilahti, P.; Salomaa, V.; Karakas, M. Low testosterone concentrations and prediction of future heart failure in men and in women: Evidence from the large FINRISK97 study. ESC Heart Fail. 2021, 8, 2485–2491. [Google Scholar] [CrossRef] [PubMed]
- Razvi, S.; Jabbar, A.; Pingitore, A.; Danzi, S.; Biondi, B.; Klein, I.; Peeters, R.; Zaman, A.; Iervasi, G. Thyroid hormones and cardiovascular function and diseases. J. Am. Coll. Cardiol. 2018, 71, 1781–1796. [Google Scholar] [CrossRef]
- Arcopinto, M.; Salzano, A.; Giallauria, F.; Bossone, E.; Isgaard, J.; Marra, A.M.; Bobbio, E.; Vriz, O.; Åberg, D.N.; Masarone, D.; et al. Growth hormone deficiency is associated with worse cardiac function, physical performance, and outcome in chronic heart failure: Insights from the T.O.S.CA. GHD study. PLoS ONE 2017, 12, e0170058. [Google Scholar] [CrossRef]
- De Giorgi, A.; Marra, A.M.; Iacoviello, M.; Triggiani, V.; Rengo, G.; Cacciatore, F.; Maiello, C.; Limongelli, G.; Masarone, D.; Perticone, F.; et al. Insulin-like growth factor-1 (IGF-1) as predictor of cardiovascular mortality in heart failure patients: Data from the T.O.S.CA. registry. Intern. Emerg. Med. 2022, 17, 1651–1660. [Google Scholar] [CrossRef]
- Nägele, M.P.; Barthelmes, J.; Kreysing, L.; Haider, T.; Nebunu, D.; Ruschitzka, F.; Sudano, I.; Flammer, A.J. Endocrine hormone imbalance in heart failure with reduced ejection fraction: A cross-sectional study. Health Sci. Rep. 2022, 5, e880. [Google Scholar] [CrossRef]
- Yeap, B.B.; Marriott, R.J.; Antonio, L.; Raj, S.; Dwivedi, G.; Reid, C.M.; Anawalt, B.D.; Bhasin, S.; Dobs, A.S.; Handelsman, D.J.; et al. Associations of serum testosterone and sex hormone–binding globulin with incident cardiovascular events in middle-aged to older men. Ann. Intern. Med. 2022, 175, 159–170. [Google Scholar] [CrossRef]
- Yeap, B.B.; Marriott, R.J.; Dwivedi, G.; Adams, R.J.; Antonio, L.; Ballantyne, C.M.; Bauer, D.C.; Bhasin, S.; Biggs, M.L.; Cawthon, P.M.; et al. Associations of testosterone and related hormones with all-cause and cardiovascular mortality and incident cardiovascular disease in men: Individual participant data meta-analyses. Ann. Intern. Med. 2024, 177, 768–781. [Google Scholar] [CrossRef]
- Zhao, D.; Guallar, E.; Ballantyne, C.M.; Post, W.S.; Ouyang, P.; Vaidya, D.; Jia, X.; Ying, W.; Subramanya, V.; Ndumele, C.E.; et al. Sex hormones and incident heart failure in men and postmenopausal women: The Atherosclerosis Risk in Communities study. J. Clin. Endocrinol. Metab. 2020, 105, e3798–e3807. [Google Scholar] [CrossRef]
- Wang, A.; Hess, S.; Lee, S.F.; Gerstein, H.C. Sex hormone-binding globulin and heart failure hospitalizations in patients with dysglycemia: Experiences from the outcome reduction with an Initial Glargine Intervention trial. Diabetes Res. Clin. Pract. 2023, 206, 111010. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Figal, D.A.; Tornel, P.L.; Nicolas, F.; Sanchez-Mas, J.; Martinez, M.D.; Gracia, M.R.; Garrido, I.P.; Ruipérez, J.A.; Valdés, M. Sex hormone-binding globulin: A new marker of disease severity and prognosis in men with chronic heart failure. Rev. Esp. Cardiol. 2009, 62, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Pencina, K.M.; Travison, T.G.; Bhasin, S.; Li, Z.; Nigam, N.; Manning, W.J.; Vasan, R.S.; Hoffmann, U.; O’Donnell, C.J.; Basaria, S. Endogenous circulating testosterone and sex hormone-binding globulin levels and measures of myocardial structure and function: The Framingham Heart Study. Andrology 2019, 7, 307–314. [Google Scholar] [CrossRef]
- Seferović, P.M.; Paulus, W.J.; Rosano, G.; Polovina, M.; Petrie, M.C.; Jhund, P.S.; Tschöpe, C.; Sattar, N.; Piepoli, M.; Papp, Z.; et al. Diabetic myocardial disorder. A clinical consensus statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases. Eur. J. Heart Fail. 2024, 26, 1893–1903. [Google Scholar] [CrossRef]
- Čulić, V.; Bušić, Ž. Severity of acute heart failure in men according to diabetes mellitus: The role of testosterone and renal dysfunction. Int. J. Cardiol. 2013, 168, 5039–5041. [Google Scholar] [CrossRef]
- Turić, I.; Velat, I.; Bušić, Ž.; Čulić, V. Circulating thyroid hormones and clinical parameters of heart failure in men. Sci. Rep. 2023, 13, 20319. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F.; Chronic Kidney Disease Epidemiology Collaboration. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Black, S.; Kushner, I.; Samols, D. C-reactive protein. J. Biol. Chem. 2004, 279, 48487–48490. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; von Haehling, S. Inflammatory mediators in chronic heart failure: An overview. Heart 2004, 90, 464–470. [Google Scholar] [CrossRef]
- Čulić, V.; Bušić, Ž.; Bušić, M. Circulating sex hormones, alcohol consumption and echocardiographic parameters of cardiac function in men with heart failure. Int. J. Cardiol. 2016, 224, 245–251. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef] [PubMed]
- Marriott, R.J.; Murray, K.; Adams, R.J.; Antonio, L.; Ballantyne, C.M.; Bauer, D.C.; Bhasin, S.; Biggs, M.L.; Cawthon, P.M.; Couper, D.J.; et al. Factors associated with circulating sex hormones in men: Individual participant data meta-analyses. Ann. Intern. Med. 2023, 176, 1221–1234. [Google Scholar] [CrossRef] [PubMed]
- Arathimos, R.; Millard, L.A.; Bell, J.A.; Relton, C.L.; Suderman, M. Impact of sex hormone-binding globulin on the human phenome. Hum. Mol. Genet. 2020, 29, 1824–1832. [Google Scholar] [CrossRef]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and gender differ ences in risk, pathophysiology and complications of type 2 diabe tes mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef] [PubMed]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [CrossRef]
- Hammes, A.; Andreassen, T.K.; Spoelgen, R.; Raila, J.; Hubner, N.; Schulz, H.; Metzger, J.; Schweigert, F.J.; Luppa, P.B.; Nykjaer, A.; et al. Role of endocytosis in cellular uptake of sex steroids. Cell 2005, 122, 751–762. [Google Scholar] [CrossRef]
- Perry, J.R.; Weedon, M.N.; Langenberg, C.; Jackson, A.U.; Lyssenko, V.; Sparsø, T.; Thorleifsson, G.; Grallert, H.; Ferrucci, L.; Maggio, M.; et al. Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes. Hum. Mol. Genet. 2010, 19, 535–544. [Google Scholar] [CrossRef]
- Fortunati, N.; Catalano, M.G.; Boccuzzi, G.; Frairia, R. Sex hormone-binding globulin (SHBG), estradiol and breast cancer. Mol. Cell. Endocrinol. 2010, 316, 86–92. [Google Scholar] [CrossRef]
- Ding, E.L.; Song, Y.; Malik, V.S.; Liu, S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2006, 295, 1288–1299. [Google Scholar] [CrossRef]
- Wang, Q.; Kangas, A.J.; Soininen, P.; Tiainen, M.; Tynkkynen, T.; Puukka, K.; Ruokonen, A.; Viikari, J.; Kähönen, M.; Lehtimäki, T.; et al. Sex hormone-binding globulin associations with circulating lipids and metabolites and the risk for type 2 diabetes: Observational and causal effect esti mates. Int. J. Epidemiol. 2015, 44, 623–637. [Google Scholar] [CrossRef]
- Raeisi-Dehkordi, H.; Amiri, M.; Rathmann, W.; Zeller, T.; Adamski, J.; Bano, A.; van der Schouw, Y.T.; Thorand, B.; Muka, T.; Nano, J. Sex hormone-binding globulin may explain sex differences for glucose homeostasis and incidence of type 2 diabetes: The KORA study. Eur. J. Epidemiol. 2024, 39, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Raeisi-Dehkordi, H.; Thorand, B.; Beigrezaei, S.; Peters, A.; Rathman, W.; Adamski, J.; Chatelan, A.; van der Schouw, Y.T.; Franco, O.H.; Muka, T.; et al. The mediatory role of androgens on sex differences in glucose homeostasis and incidence of type 2 diabetes: The KORA study. Cardiovasc. Diabetol. 2024, 23, 411. [Google Scholar] [CrossRef]
- Kadkhodayan, A.; Coggan, A.R.; Peterson, L.R. A “PET” area of interest: Myocardial metabolism in human systolic heart failure. Heart Fail. Rev. 2013, 18, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac energy metabolism in heart failure. Circ. Res. 2021, 128, 1487–1513. [Google Scholar] [CrossRef]
- Glass, C.K.; Olefsky, J.M. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metabol. 2012, 15, 635–645. [Google Scholar] [CrossRef]
- Abourjaili, G.; Shtaynberg, N.; Wetz, R.; Costantino, T.; Abela, G.S. Current concepts in triglyceride metabolism, pathophysiology, and treatment. Metabolism 2010, 59, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Falcăo-Pires, I.; Hamdani, N.; Borbély, A.; Gavina, C.; Schalkwijk, C.G.; van der Velden, J.; van Heerebeek, L.; Stienen, G.J.; Niessen, H.W.; Leite-Moreira, A.F.; et al. Diabetes mellitus worsens diastolic left ventricular dysfunction in aortic stenosis through altered myocardial structure and cardiomyocyte stiffness. Circulation 2011, 124, 1151–1159. [Google Scholar] [CrossRef]
- Shimizu, I.; Minamino, T.; Toko, H.; Okada, S.; Ikeda, H.; Yasuda, N.; Tateno, K.; Moriya, J.; Yokoyama, M.; Nojima, A.; et al. Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. J. Clin. Investig. 2010, 120, 1506–1514. [Google Scholar] [CrossRef]
- Khan, Z.A.; Farhangkhoee, H.; Chakrabarti, S. Towards newer molecular targets for chronic diabetic complications. Curr. Vasc. Pharmacol. 2006, 4, 45–57. [Google Scholar] [CrossRef]
- Prattichizzo, F.; Giuliani, A.; Ceka, A.; Rippo, M.R.; Bonfigli, A.R.; Testa, R.; Procopio, A.D.; Olivieri, F. Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin. Epigenetics 2015, 7, 56. [Google Scholar] [CrossRef]
- Feng, B.; Chen, S.; Gordon, A.D.; Chakrabarti, S. miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J. Mol. Cell Cardiol. 2017, 105, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Chehab, O.; Shabani, M.; Varadarajan, V.; Wu, C.O.; Watson, K.E.; Yeboah, J.; Post, W.S.; Ambale-Venkatesh, B.; Bluemke, D.A.; Michos, E.; et al. Endogenous sex hormone levels and myocardial fibrosis in men and postmenopausal women. JACC Adv. 2023, 2, 100320. [Google Scholar] [CrossRef]
- Čulić, V. Androgens in cardiac fibrosis and other cardiovascular mechanisms. Int. J. Cardiol. 2015, 179, 190–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, T.; Li, C.; Chen, J.; Cao, K.; Qi, L.W.; Li, P.; Zhu, W.; Zhu, B.; Chen, Y. Will testosterone replacement therapy become a new treatment of chronic heart failure? A review based on 8 clinical trials. J. Thorac. Dis. 2016, 8, E269–E277. [Google Scholar] [CrossRef]
- Toma, M.; McAlister, F.A.; Coglianese, E.E.; Vidi, V.; Vasaiwala, S.; Bakal, J.A.; Armstrong, P.W.; Ezekowitz, J.A. Testosterone supplementation in heart failure: A meta-analysis. Circ. Heart Fail. 2012, 5, 315–321. [Google Scholar] [CrossRef]
- Tao, J.; Liu, X.; Bai, W. Testosterone supplementation in patients with chronic heart failure: A meta-analysis of randomized controlled trials. Front. Endocrinol. 2020, 11, 110. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Sparano, C.; Carinci, V.; Casella, G.; Vignozzi, L.; Sforza, A.; Maggi, M. Cardiovascular safety of testosterone replacement therapy in men: An updated systematic review and meta-analysis. Expert. Opin. Drug Saf. 2024, 23, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Lincoff, A.M.; Bhasin, S.; Flevaris, P.; Mitchell, L.M.; Basaria, S.; Boden, W.E.; Cunningham, G.R.; Granger, C.B.; Khera, M.; Thompson, I.M., Jr.; et al. Cardiovascular safety of testosterone-replacement therapy. N. Engl. J. Med. 2023, 389, 107–117. [Google Scholar] [CrossRef]
- McBride, J.A.; Carson, C.C.; Coward, R.M. Diagnosis and management of testosterone deficiency. Asian J. Androl. 2015, 17, 177–186. [Google Scholar] [CrossRef]
- Paduch, D.A.; Brannigan, R.E.; Fuchs, E.F.; Kim, E.D.; Marmar, J.L.; Sandlow, J.I. The laboratory diagnosis of testosterone deficiency. Urology 2014, 83, 980–988. [Google Scholar] [CrossRef]
All Patients (n = 215) | T2DM Yes (n = 91) | T2DM No (n = 124) | p Value | |
---|---|---|---|---|
Baseline characteristics | ||||
Age (mean ± SD; years) | 74.4 ± 8.0 | 76.0 ± 7.6 | 73.3 ± 8.2 | 0.013 |
Body mass index (mean ± SD, kg/m2) | 27.5 ± 5.1 | 28.5 ± 4.0 | 26.8 ± 5.6 | 0.009 |
LVEF (mean ± SD, %) | 46.1 ± 13.7 | 44.7 ± 13.4 | 47.2 ± 13.9 | 0.186 |
LVDD (mean ± SD, grade) | 2.5 ± 0.6 | 2.6 ± 0.5 | 2.4 ± 0.6 | 0.066 |
NYHA class (mean ± SD, grade) | 3.4 ± 0.5 | 3.6 ± 0.5 | 3.3 ± 0.5 | 0.001 |
HF duration (median, IQR; months) | 24 (5–116) | 25 (5–157) | 16.5 (4–84) | 0.076 |
Arterial hypertension (n, %) | 123 (57.2%) | 70 (76.9%) | 53 (42.7%) | <0.001 |
Hyperlipidemia (n, %) | 59 (27.4%) | 32 (35.2%) | 27 (21.8%) | 0.032 |
Previous MI (n, %) | 44 (20.5%) | 22 (24.2%) | 22 (17.7%) | 0.305 |
Smoking (n, %) | 27 (12.6%) | 7 (7.7%) | 20 (16.1%) | 0.062 |
Prehospital medication (n, %) | ||||
Loop diuretic | 142 (66.0%) | 73 (80.2%) | 69 (55.6%) | <0.001 |
Mineralocorticoid receptor antagonist | 47 (21.9%) | 31 (34.1%) | 34 (27.4%) | 0.308 |
Hygroton | 6 (2.8%) | 3 (3.3%) | 3 (2.4%) | 0.700 |
Beta-blocker | 114 (53.0%) | 53 (58.2%) | 61 (49.2%) | 0.189 |
Calcium antagonist | 34 (15.8%) | 23 (25.3%) | 11(8.9%) | 0.001 |
ACEI | 88 (40.9%) | 36 (39.6%) | 52 (41.9%) | 0.726 |
Angiotensin II-receptor blocker | 28 (13.0%) | 19 (20.9%) | 9 (7.3%) | 0.003 |
Aspirin | 57 (26.5%) | 32 (35.2%) | 25 (20.2%) | 0.014 |
Nitrate | 13 (6.0%) | 6 (6.6%) | 7 (5.6%) | 0.773 |
Statin | 48 (22.3%) | 29 (31.9%) | 19 (15.3%) | 0.004 |
All Patients (n = 215) | T2DM Yes (n = 91) | T2DM No (n = 124) | p Value | |
---|---|---|---|---|
Hemoglobin level (mean ± SD; g/L) | 129.1 ± 22 | 122.1 ± 24.9 | 134.2 ± 18.2 | <0.0001 |
Serum urea (mmol/L) | 8.2 (6.1–11.9) | 9.5 (7.4–17.4) | 7.3 (5.4–9.9) | <0.0001 |
Serum creatinine (mg/dL) | 1.4 (1.1–1.8) | 1.5 (1.2–2) | 1.3 (1.1–1.5) | <0.0001 |
GFR (mean ± SD; mL/min/1.73 m2) | 55.8 ± 19.5 | 49.7 ± 21.1 | 60.3 ± 16.9 | <0.0001 |
Urates (mean ± SD; mg/dL) | 50.7 ± 152.5 | 502.7 ± 152.5 | 492.5 ± 128.6 | 0.606 |
High-sensitive troponin (ng/mL) | 0.07 (0.02–0.2) | 0.1 (0.04–0.4) | 0.04 (0.02–0.2) | 0.002 |
NT-proBNP (pmol/L) | 479.6 (182–1442) | 474.1 (180–1612) | 497.4 (194–1271) | 0.733 |
Total testosterone (nmol/L) | 10.2 (6–14) | 9.1 (6.4–12.8) | 11.3 (5.5–14.9) | 0.453 |
Triiodothyronine (nmol/L) | 1.3 (1–1.6) | 1.2 (0.9–1.5) | 1.3 (1–1.6) | 0.019 |
SHBG (nmol/L) | 46.6 (32.3–61.9) | 43.3 (31–60.6) | 47.1 (37.7–65.8) | 0.035 |
Total bilirubin (µmol/L) | 18.5 (12.1–27.1) | 16.7 (11.4–23.5) | 20.8 (12.9–32.1) | 0.005 |
Direct bilirubin (µmol/L) | 4.6 (3.1–7.2) | 4.2 (2.4–6.2) | 5.4 (3.2–8.4) | 0.010 |
Indirect bilirubin (µmol/L) | 13.8 (9.1–20) | 13.1 (8.5–18.6) | 14.5 (9.7–22.6) | 0.022 |
Alkaline phosphatase (U/L) | 25 (20–34) | 24 (20–32) | 27 (20.3–36.8) | 0.203 |
Aspartate aminotransferase (U/L) | 24 (18–35) | 24 (18–33) | 24 (17–37) | 0.768 |
Gamma-glutamyl transferase (U/L) | 58 (27–110) | 71 (25–114) | 50.5 (27.5–107.3) | 0.656 |
Alkaline phosphatase (U/L) | 74 (57–100) | 78 (68–105) | 67 (54–97) | 0.008 |
Total proteins (mean ± SD; g/L) | 70.3 ± 8.6 | 71.2 ± 8.8 | 69.7 ± 8.4 | 0.208 |
Serum albumins (mean ± SD; g/L) | 37.5 ± 4.4 | 37.3 ± 4.6 | 37.6 ± 4.3 | 0.649 |
Serum globulins (mean ± SD; g/L) | 32.2 ± 7.6 | 33.3 ± 8.6 | 31.3 ± 6.6 | 0.063 |
Serum sodium (mean ± SD; mmol/L) | 138.1 ± 4.8 | 137.6 ± 4.9 | 138.4 ± 4.8 | 0.273 |
Serum potassium (mean ± SD; mmol/L) | 4.3 ± 0.6 | 4.4 ± 0.7 | 4.1 ± 0.6 | 0.001 |
Serum chloride (mean ± SD; mmol/L) | 99 ± 5.8 | 99 ± 6 | 99 ± 5.8 | 0.997 |
Serum calcium (mean ± SD; mmol/L) | 2.4 ± 0.2 | 2.4 ± 0.2 | 2.4 ± 0.2 | 0.605 |
Serum magnesium (mean ± SD; mg/dL) | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.8 ± 0.1 | 0.133 |
All Patients (n = 215) | T2DM Yes (n = 91) | T2DM No (n = 124) | |
---|---|---|---|
SHBG | |||
LVEF, r (p) * | 0.03 (0.662) | −0.127 (0.23) | 0.087 (0.338) |
LVDD, ρ (p) † | −0.039 (0.567) | −0.029 (0.786) | −0.027 (0.767) |
NT-proBNP, r (p) * | −0.216 (0.001) | −0.316 (0.002) | −0.146 (0.106) |
NYHA, ρ (p) † | −0.074 (0.281) | −0.329 (0.001) | 0.135 (0.146) |
Duration of HF, r (p) * | −0.089 (0.196) | −0.066 (0.532) | −0.053 (0.557) |
Total testosterone | |||
LVEF, r (p) * | 0.274 (<0.0001) | 0.285 (0.006) | 0.265 (0.003) |
LVDD, ρ (p) † | −0.225 (0.001) | −0.395 (<0.0001) | −0.135 (0.136) |
NT-proBNP, r (p) * | −0.418 (<0.0001) | −0.421 (<0.0001) | −0.429 (<0.0001) |
NYHA, ρ (p) † | −0.195 (0.004) | −0.445 (<0.0001) | −0.023 (0.802) |
Duration of HF, r (p) * | 0.119 (0.083) | 0.105 (0.321) | 0.174 (0.053) |
SHBG by total testosterone, r (p) * | 0.544 (<0.0001) | 0.575 (<0.0001) | 0.531 (<0.0001) |
Models | R2 | ΔR2 | p for Change | p for Model |
---|---|---|---|---|
1 | 0.119 | 0.119 | 0.012 | 0.012 |
2 | 0.250 | 0.131 | 0.009 | 0.001 |
3 | 0.302 | 0.052 | 0.055 | <0.0001 |
4 | 0.426 | 0.125 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čulić, V.; Bušić, Ž.; Vio, R.; Mijić, T.; Velat, I. Sex Hormone-Binding Globulin and Cardiac Function in Men with Heart Failure: Possible Role of Diabetes. J. Clin. Med. 2025, 14, 2132. https://doi.org/10.3390/jcm14072132
Čulić V, Bušić Ž, Vio R, Mijić T, Velat I. Sex Hormone-Binding Globulin and Cardiac Function in Men with Heart Failure: Possible Role of Diabetes. Journal of Clinical Medicine. 2025; 14(7):2132. https://doi.org/10.3390/jcm14072132
Chicago/Turabian StyleČulić, Viktor, Željko Bušić, Riccardo Vio, Tanni Mijić, and Ivan Velat. 2025. "Sex Hormone-Binding Globulin and Cardiac Function in Men with Heart Failure: Possible Role of Diabetes" Journal of Clinical Medicine 14, no. 7: 2132. https://doi.org/10.3390/jcm14072132
APA StyleČulić, V., Bušić, Ž., Vio, R., Mijić, T., & Velat, I. (2025). Sex Hormone-Binding Globulin and Cardiac Function in Men with Heart Failure: Possible Role of Diabetes. Journal of Clinical Medicine, 14(7), 2132. https://doi.org/10.3390/jcm14072132