Optimal Aspirin Dosage for the Prevention of Preeclampsia and Other Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Process
2.3. Eligibility Criteria
2.4. Data Collection Process and Data Items
2.5. Outcome Definitions
2.6. Risk of Bias Assessment
2.7. Synthesis Methods
2.8. Evidence Synthesis
3. Results
3.1. Search and Selection
3.2. Basic Characteristics of Included Studies
3.3. Primary Outcomes
3.4. Secondary Outcomes
3.5. Publication Bias
3.6. Risk of Bias Assessment and Evidence Synthesis
4. Discussion
4.1. Main Findings
4.2. Additional Findings
4.3. Safety
4.4. Strengths and Limitations
4.5. Implications for Practice and Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.S.; Wojdyla, D.; Say, L.; Gülmezoglu, A.M.; Van Look, P.F. WHO analysis of causes of maternal death: A systematic review. Lancet 2006, 367, 1066–1074. [Google Scholar] [CrossRef]
- Hogan, M.C.; Foreman, K.J.; Naghavi, M.; Ahn, S.Y.; Wang, M.; Makela, S.M.; Lopez, A.D.; Lozano, R.; Murray, C.J.L. Maternal mortality for 181 countries, 1980–2008: A systematic analysis of progress towards Millennium Development Goal 5. Lancet 2010, 375, 1609–1623. [Google Scholar] [CrossRef] [PubMed]
- Wanderer, J.P.; Leffert, L.R.; Mhyre, J.M.; Kuklina, E.V.; Callaghan, W.M.; Bateman, B.T. Epidemiology of Obstetric-Related ICU Admissions in Maryland. Crit. Care Med. 2013, 41, 1844–1852. [Google Scholar] [CrossRef]
- Kuklina, E.V.; Ayala, C.; Callaghan, W.M. Hypertensive Disorders and Severe Obstetric Morbidity in the United States. Obstet. Gynecol. 2009, 113, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Duley, L.; Meher, S.; Hunter, K.E.; Seidler, A.L.; Askie, L.M. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst. Rev. 2019, 2019, CD004659. [Google Scholar] [CrossRef]
- Beaufils, M.; Donsimoni, R.; Uzan, S.; Colau, J.C. Prevention of pre-eclampsia by early antiplatelet therapy. Lancet 1985, 325, 840–842. [Google Scholar] [CrossRef] [PubMed]
- Roberge, S.; Nicolaides, K.H.; Demers, S.; Villa, P.; Bujold, E. Prevention of perinatal death and adverse perinatal outcome using low-dose aspirin: A meta-analysis. Ultrasound Obstet. Gynecol. 2013, 41, 491–499. [Google Scholar] [CrossRef]
- Roberge, S.; Bujold, E.; Nicolaides, K.H. Aspirin for the prevention of preterm and term preeclampsia: Systematic review and metaanalysis. Am. J. Obstet. Gynecol. 2018, 218, 287–293.e1. [Google Scholar] [CrossRef]
- Van Doorn, R.; Mukhtarova, N.; Flyke, I.P.; Lasarev, M.; Kim, K.; Hennekens, C.H.; Hoppe, K.K. Dose of aspirin to prevent preterm preeclampsia in women with moderate or high-risk factors: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0247782. [Google Scholar] [CrossRef]
- Man, R.; Hodgetts Morton, V.; Devani, P.; Morris, R.K. Aspirin for preventing adverse outcomes in low risk nulliparous women with singleton pregnancies: A systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 262, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynecol. Obstet. 2019, 145 (Suppl. S1), 1–33. [Google Scholar] [CrossRef] [PubMed]
- Tugwell, P.; Tovey, D. PRISMA 2020. J. Clin. Epidemiol. 2021, 134, A5–A6. [Google Scholar] [CrossRef] [PubMed]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 2019, ED000142. [Google Scholar] [CrossRef]
- Khan, N.; Andrade, W.; De Castro, H.; Wright, A.; Wright, D.; Nicolaides, K.H. Impact of new definitions of pre-eclampsia on incidence and performance of first-trimester screening. Ultrasound Obstet. Gynecol. 2020, 55, 50–57. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Evid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Viechtbauer, W. Bias and Efficiency of Meta-Analytic Variance Estimators in the Random-Effects Model. J. Educ. Behav. Stat. 2005, 30, 261–293. [Google Scholar] [CrossRef]
- Aguayo-Albasini, J.L.; Flores-Pastor, B.; Soria-Aledo, V. GRADE System: Classification of Quality of Evidence and Strength of Recommendation. Cirugía Española 2014, 92, 82–88. [Google Scholar] [CrossRef]
- Abdali, K.; Taghizadeh, R.; Amoei, S.; Tabatabai, S.H.R. Comparison between aspirin and placebo on the mean of 24 hour blood pressure in pregnant women at preeclampsia risk, a double blind randomized controlled clinical trial. Int. J. Community Based Nurs. Midwifery 2013, 1, 83–89. Available online: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-01995023/full (accessed on 3 December 2024).
- Abdi, N.; Rozrokh, A.; Alavi, A.; Zare, S.; Vafaei, H.; Asadi, N.; Kasraeian, M.; Hessami, K. The effect of aspirin on preeclampsia, intrauterine growth restriction and preterm delivery among healthy pregnancies with a history of preeclampsia. J. Chin. Med. Assoc. 2020, 83, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.; Silva, R.M.D.; Araujo Júnior, E.; Carvalho, F.H.C. Low-dose acetylsalicylic acid does not modify maternal vascular reactivity in nulliparas. J. Matern. Fetal Neonatal Med. 2021, 35, 6029–6035. [Google Scholar] [CrossRef] [PubMed]
- Benigni, A.; Gregorini, G.; Frusca, T.; Chiabrando, C.; Ballerini, S.; Valcamonico, A.; Orisio, S.; Piccinelli, A.; Pinciroli, V.; Fanelli, R.; et al. Effect of low-dose aspirin on fetal and maternal generation of thromboxane by platelets in women at risk for pregnancy-induced hypertension. New Engl. J. Med. 1989, 321, 357–362. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L19190440&from=export (accessed on 3 December 2024). [CrossRef] [PubMed]
- Beroyz, G.; Casale, R.; Farreiros, A.; Palermo, M.; Margulies, M.; Voto, L.; Fabregues, G.; Ramalingam, R.; Davies, T.; Bryce, R.; et al. CLASP: A randomised trial of low-dose aspirin for the prevention and treatment of pre-eclampsia among 9364 pregnant women. Lancet 1994, 343, 619–629. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L24087805&from=export (accessed on 3 December 2024).
- Blomqvist, L.; Hellgren, M.; Strandell, A. Acetylsalicylic acid does not prevent first-trimester unexplained recurrent pregnancy loss: A randomized controlled trial. Acta Obstet. Gynecol. Scand. 2018, 97, 1365–1372. [Google Scholar] [CrossRef]
- Caritis, S.; Sibai, B.; Hauth, J.; Lindheimer, M.D.; Klebanoff, M.; Thom, E.; VanDorsten, P.; Landon, M.; Paul, R.; Miodovnik, M.; et al. Low-dose aspirin to prevent preeclampsia in women at high risk. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N. Engl. J. Med. 1998, 338, 701–705. Available online: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-00148035/full (accessed on 3 December 2024). [CrossRef]
- Caspi, E.; Raziel, A.; Sherman, D.; Arieli, S.; Bukovski, I.; Weinraub, Z. Prevention of pregnancy-induced hypertension in twins by early administration of low-dose aspirin: A preliminary report. Am. J. Reprod. Immunol. 1994, 31, 19–24. [Google Scholar] [CrossRef]
- Chiaffarino, F.; Parazzini, F.; Paladini, D.; Acaia, B.; Ossola, W.; Marozio, L.; Facchinetti, F.; Del Giudice, A. A small randomised trial of low-dose aspirin in women at high risk of pre-eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 112, 142–144. [Google Scholar] [CrossRef]
- Dasari, R.; Narang, A.; Vasishta, K.; Garewal, G. Effect of maternal low dose aspirin on neonatal platelet function. Indian Pediatr. 1998, 35, 507–511. [Google Scholar]
- Davies, N.J.; Gazvani, M.R.; Farquharson, R.G.; Walkinshaw, S.A. Low-dose aspirin in the prevention of hypertensive disorders of pregnancy in relatively low-risk nulliparous women. Hypertens. Pregnancy 1995, 14, 49–55. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L25122276&from=export (accessed on 3 December 2024). [CrossRef]
- Ebrashy, A.; Ibrahim, M.; Marzook, A.; Yousef, D. Usefulness of aspirin therapy in high-risk pregnant women with abnormal uterine artery Doppler ultrasound at 14-16 weeks pregnancy: Randomized controlled clinical trial. Croat Med. J. 2005, 46, 826–831. [Google Scholar] [PubMed]
- Gallery, E.D.M.; Ross, M.R.; Hawkins, M.; Leslie, G.; Györy, Á.Z. Low-dose aspirin in high-risk pregnancy? Hypertens. Pregnancy. 1997, 16, 229–238. [Google Scholar] [CrossRef]
- Golding, J. Jamaica Low Dose Aspirin Study Group. A randomised trial of low dose aspirin for primiparae in pregnancy. Br. J. Obstet. Gynaecol. 1998, 105, 293–299. [Google Scholar] [CrossRef]
- Haapsamo, M.; Martikainen, H.; Tinkanen, H.; Heinonen, S.; Nuojua-Huttunen, S.; Räsänen, J. Low-dose aspirin therapy and hypertensive pregnancy complications in unselected IVF and ICSI patients: A randomized, placebo-controlled, double-blind study. Hum. Reprod. 2010, 25, 2972–2977. [Google Scholar] [CrossRef]
- Herabutya, Y.; Jetsawangsri, T.; Saropala, N. The use of low-dose aspirin to prevent preeclampsia. Int. J. Gynaecol. Obstet. 1996, 54, 177–178. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Iglesias, M.; Mojón, A.; Silva, I.; Ucieda, R.; Fernández, J.R. Time-dependent effects of low-dose aspirin administration on blood pressure in pregnant women. Hypertension 1997, 30 Pt 2, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.K.; Goudar, S.S.; Kodkany, B.S.; Metgud, M.; Somannavar, M.; Okitawutshu, J.; Lokangaka, A.; Tshefu, A.; Bose, C.L.; Mwapule, A.; et al. Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): A randomised, double-blind, placebo-controlled trial. Lancet 2020, 395, 285–293. [Google Scholar] [CrossRef]
- Huai, J.; Lin, L.; Juan, J.; Chen, J.; Li, B.; Zhu, Y.; Yu, M.; Yang, H. Preventive effect of aspirin on preeclampsia in high-risk pregnant women with stage 1 hypertension. J. Clin. Hypertens. 2021, 23, 1060–1067. [Google Scholar] [CrossRef]
- Kaandorp, S.P.; Goddijn, M.; Post Van Der, J.A.M.; Hutten, B.A.; Verhoeve, H.R.; Hamulyak, K.; Mol, B.W.; Folkeringa, N.; Nahuis, M.; Papastonis, D.N.M.; et al. Aspirin alone or combined with low-molecular-weight heparin in women with unexplained recurrent miscarriage, a randomised placebo-controlled trial. Hum. Reprod. 2010, 25, i28–i29. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L70245484&from=export (accessed on 3 December 2024). [CrossRef]
- Khazardoost, S.; Mousavi, S.; Borna, S.; Hantoushzadeh, S.; Alavi, A.; Khezerlou, N. Effect of aspirin in prevention of adverse pregnancy outcome in women with elevated alpha-fetoprotein. J. Matern.-Fetal Neonatal Med. 2014, 27, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Lambers, M.J.; Hoozemans, D.A.; Schats, R.; Homburg, R.; Lambalk, C.B.; Hompes, P.G.A. Low-dose aspirin in non-tubal IVF patients with previous failed conception: A prospective randomized double-blind placebo-controlled trial. Fertil. Steril. 2009, 92, 923–929. [Google Scholar] [CrossRef]
- Landman, A.; de Boer, M.; Visser, L.; Hemels, M.; Naaktgeboren, C.; Jansen-van der Weide, M.; Mol, B.; van Laar, J.; Papatsonis, D.; Bekker, M.; et al. Low dose aspirin for the prevention of recurrent preterm labor (APRIL): A randomized controlled trial. Am. J. Obstet. Gynecol. 2021, 224, S6. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L2010868438&from=export (accessed on 3 December 2024). [CrossRef]
- Leslie, G.I.; Gallery, E.D.M.; Arnold, J.D.; Ross, M.R.; Gyory, A.Z. Neonatal outcome in a randomized, controlled trial of low-dose aspirin in high-risk pregnancies. J. Paediatr. Child. Health 1995, 31, 549–552. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L26019307&from=export (accessed on 3 December 2024). [CrossRef] [PubMed]
- Lin, L.; Huai, J.; Li, B.; Zhu, Y.; Juan, J.; Zhang, M.; Cui, S.; Zhao, X.; Ma, Y.; Zhao, Y.; et al. A randomized controlled trial of low-dose aspirin for the prevention of preeclampsia in women at high risk in China. Am. J. Obstet. Gynecol. 2021, 226, 251.e1–251.e12. Available online: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-02326513/full (accessed on 3 December 2024). [CrossRef] [PubMed]
- Liu, F.M.; Zhao, M.; Wang, M.; Yang, H.L.; Li, L. Effect of regular oral intake of aspirin during pregnancy on pregnancy outcome of high-risk pregnancy-induced hypertension syndrome patients. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 5013–5016. [Google Scholar]
- Liu, F.; Yang, H.; Li, G.; Zou, K.; Chen, Y. Effect of a small dose of aspirin on quantitative test of 24-h urinary protein in patients with hypertension in pregnancy. Exp. Ther. Med. 2017, 13, 37–40. [Google Scholar] [CrossRef]
- Louden, K.A.; Broughton Pipkin, F.; Symonds, E.M.; Tuohy, P.; O’Callaghan, C.; Heptinstall, S.; Fox, S.; Mitchell, J.R.A. A randomized placebo-controlled study of the effect of low dose aspirin on platelet reactivity and serum thromboxane B2 production in non-pregnant women, in normal pregnancy, and in gestational hypertension. Br. J. Obstet. Gynaecol. 1992, 99, 371–376. [Google Scholar] [CrossRef]
- Mone, F.; Mulcahy, C.; McParland, P.; Downey, P.; Culliton, M.; Maguire, O.; Mooney, E.E.; Clarke, P.; Fitzgerald, D.; Tully, E.; et al. The impact of low dose aspirin on preeclampsia biomarkers and fetal growth in lowrisk women. Am. J. Obstet. Gynecol. 2018, 218, S303. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L620310171&from=export (accessed on 3 December 2024). [CrossRef]
- Morris, J.; Fay, R.; Ellwood, D.; Cook, C.; Devonald, K. A Randomized Controlled Trial of Aspirin in Patients With Abnormal Uterine Artery Blood Flow. Obstet. Gynecol. 1996, 87, 74–78. [Google Scholar] [CrossRef]
- Odibo, A.O.; Goetzinger, K.R.; Odibo, L.; Tuuli, M.G. Early prediction and aspirin for prevention of pre-eclampsia (EPAPP) study: A randomized controlled trial. Ultrasound Obstet. Gynecol. 2015, 46, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Pattison, N.S.; Chamley, L.W.; Birdsall, M.; Zanderigo, A.M.; Liddell, H.S.; McDougall, J. Does aspirin have a role in improving pregnancy outcome for women with the antiphospholipid syndrome? A randomized controlled trial. Am. J. Obstet. Gynecol. 2000, 183, 1008–1012. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Wright, D.; Poon, L.C.Y.; Syngelaki, A.; O’Gorman, N.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. ASPRE trial: Performance of screening for preterm pre-eclampsia. Ultrasound Obstet. Gynecol. 2017, 50, 492–495. [Google Scholar] [CrossRef]
- Rotchell, Y.E.; Cruickshank, J.K.; Gay, M.P.; Griffiths, J.; Stewart, A.; Farrell, B.; Ayers, S.; Hennis, A.; Grant, A.; Duley, L.; et al. Barbados Low Dose Aspirin Study in Pregnancy (BLASP): A randomised trial for the prevention of pre-eclampsia and its complications. Br. J. Obstet. Gynaecol. 1998, 105, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Scazzocchio, E.; Oros, D.; Diaz, D.; Ramirez, J.C.; Ricart, M.; Meler, E.; de Agüero, R.G.; Gratacos, E.; Figueras, F. Impact of aspirin on trophoblastic invasion in women with abnormal uterine artery Doppler at 11–14 weeks: A randomized controlled study. Ultrasound Obstet. Gynecol. 2017, 49, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Sibai, B.M.; Caritis, S.N.; Thom, E.; Klebanoff, M.; McNellis, D.; Rocco, L.; Paul, R.H.; Romero, R.; Witter, F.; Rosen, M.; et al. Prevention of preeclampsia with low-dose aspirin in healthy, nulliparous pregnant women. The National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N. Engl. J. Med. 1993, 329, 1213–1218. Available online: https://www.cochranelibrary.com/central/doi/10.1002/central/CN-00096363/full (accessed on 3 December 2024). [CrossRef]
- Stanescu, A.D.; Banica, R.; Sima, R.M.; Ples, L. Low dose aspirin for preventing fetal growth restriction: A randomised trial. J. Perinat. Med. 2018, 46, 776–779. [Google Scholar] [CrossRef]
- Subtil, D.; Goeusse, P.; Puech, F.; Lequien, P.; Biausque, S.; Breart, G.; Uzan, S.; Marquis, P.; Parmentier, D.; Churlet, A.; et al. Aspirin (100 mg) used for prevention of pre-eclampsia in nulliparous women: The Essai Régional Aspirine Mère-Enfant study (Part 1). BJOG Int. J. Obstet. Gynaecol. 2003, 110, 475–484. [Google Scholar] [CrossRef]
- Subtil, D.; Goeusse, P.; Houfflin-Debarge, V.; Puech, F.; Lequien, P.; Breart, G.E.; Uzan, S.; Quandalle, F.; Delcourt, Y.M.; Malek, Y.M.; et al. Randomised comparison of uterine artery Doppler and aspirin (100 mg) with placebo in nulliparous women: The Essai Régional Aspirine Mère-Enfant study (Part 2). BJOG Int. J. Obstet. Gynaecol. 2003, 110, 485–491. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L36556131&from=export (accessed on 3 December 2024). [CrossRef]
- Trudinger, B.J.; Cook, C.M.; Thompson, R.S.; Giles, W.B.; Connelly, A. Low-dose aspirin therapy improves fetal weight in umbilical placental insufficiency. Am. J. Obstet. Gynecol. 1988, 159, 681–685. [Google Scholar] [CrossRef]
- Tulppala, M.; Marttunen, M.; Söderstrom-Anttila, V.; Foudila, T.; Ailus, K.; Palosuo, T.; Ylikorkala, O. Low-dose aspirin in prevention of miscarriage in women with unexplained or autoimmune related recurrent miscarriage: Effect on prostacyclin and thromboxane A2 production. Hum. Reprod. 1997, 12, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Vainio, M.; Kujansuu, E.; Iso-Mustajärvi, M.; Mäenpää, J. Low dose acetylsalicylic acid in prevention of pregnancy-induced hypertension and intrauterine growth retardation in women with bilateral uterine artery notches. BJOG Int. J. Obstet. Gynaecol. 2002, 109, 161–167. [Google Scholar]
- Viinikka, L.; Hartikainen-Sorri, A.L.; Lumme, R.; Hiilesmaa, V.; Ylikorkala, O. Low dose aspirin in hypertensive pregnant women: Effect on pregnancy outcome and prostacyclin-thromboxane balance in mother and newborn. Br. J. Obstet. Gynaecol. 1993, 100, 809–815. [Google Scholar] [CrossRef]
- Villa, P.M.; Kajantie, E.; Räikkönen, K.; Pesonen, A.K.; Hämäläinen, E.; Vainio, M.; Taipale, P.; Laivuori, H.; on behalf of the PREDO Study Group. Aspirin in the prevention of pre-eclampsia in high-risk women: A randomised placebo-controlled PREDO Trial and a meta-analysis of randomised trials. BJOG Int. J. Obstet. Gynaecol. 2013, 120, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Byaruhanga, R.N.; Chipato, T.; Rusakaniko, S. A randomized controlled trial of low-dose aspirin in women at risk from pre-eclampsia. Int. J. Gynaecol. Obstet. 1998, 60, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Grab, D.; Paulus, W.E.; Erdmann, M.; Terinde, R.; Oberhoffer, R.; Lang, D.; Muche, R.; Kreienberg, R. Effects of low-dose aspirin on uterine and fetal blood flow during pregnancy: Results of a randomized, placebo-controlled, double-blind trial. Ultrasound Obstet. Gynecol. 2000, 15, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.; Kurdi, W.; Aquilina, J.; England, P.; Campbell, S. A prospective management study of slow-release aspirin in the palliation of uteroplacental insufficiency predicted by uterine artery Doppler at 20 weeks. Ultrasound Obstet. Gynecol. 2000, 15, 13–18. [Google Scholar] [CrossRef]
- Hauth, J.C.; Goldenberg, R.L.; Parker, C.R.; Philips, J.B.; Copper, R.L.; DuBard, M.B.; Cutter, G.R. Low-dose aspirin therapy to prevent preeclampsia. Am. J. Obstet. Gynecol. 1993, 168, 1083–1093. [Google Scholar] [CrossRef]
- Kyle, P.M.; Buckley, D.; Kissane, J.; De Swiet, M.; Redman, C.W.G. The angiotensin sensitivity test and low-dose aspirin are ineffective methods to predict and prevent hypertensive disorders in nulliparous pregnancy. Am. J. Obstet. Gynecol. 1995, 173, 865–872. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L25297339&from=export (accessed on 3 December 2024). [CrossRef]
- McCowan, L.M.; Harding, J.; Roberts, A.; Barker, S.; Ford, C.; Stewart, A. Administration of low-dose aspirin to mothers with small for gestational age fetuses and abnormal umbilical Doppler studies to increase birthweight: A randomised double-blind controlled trial. Br. J. Obstet. Gynaecol. 1999, 106, 647–651. [Google Scholar] [CrossRef] [PubMed]
- McParland, P.; Pearce, J.M.; Chamberlain, G.V.P. Doppler ultrasound and aspirin in recognition and prevention of pregnancy-induced hypertension. Lancet 1990, 335, 1552–1555. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L20189627&from=export (accessed on 3 December 2024).
- Schiff, E.; Peleg, E.; Goldenberg, M.; Rosenthal, T.; Ruppin, E.; Tamarkin, M.; Barkai, G.; Ben-Baruch, G.; Yahal, I.; Blankstein, J.; et al. The use of aspirin to prevent pregnancy-induced hypertension and lower the ratio of thromboxane A2 to prostacyclin in relatively high risk pregnancies. N. Engl. J. Med. 1989, 321, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Schiff, E.; Barkai, G.; Ben-Baruch, G.; Mashiach, S. Low-dose aspirin does not influence the clinical course of women with mild pregnancy-induced hypertension. Obstet. Gynecol. 1990, 76 Pt 1, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Schröcksnadel, H.; Sitte, B.; Alge, A.; Steckel-Berger, G.; Schwegel, P.; Pastner, E.; Daxenbichler, G.; Hansen, H.; Dapunt, O. Low-dose aspirin in primigravidae with positive roll-over test. Gynecol. Obstet. Invest. 1992, 34, 146–150. [Google Scholar] [CrossRef]
- Taherian, A.A.; Taherian, A.; Shirvani, A. Prevention of preeclampsia with low-dose aspirin or calcium supplementation. Arch. Iran Med. 2002, 5, 151–156. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L35314985&from=export (accessed on 3 December 2024).
- Wallenburg, H.C.S.; Dekker, G.A.; Makovitz, J.W.; Rotmans, P. Low-dose aspirin prevents pregnancy-induced hypertension and pre-eclampsia in angiotensin-sensitive primigravidae. Lancet 1986, 1, 1–3. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L16182814&from=export (accessed on 3 December 2024). [CrossRef] [PubMed]
- Wang, Z.; Li, W. A prospective randomized placebo-controlled trial of low-dose aspirin for prevention of intra-uterine growth retardation. Chin. Med. J. 1996, 109, 238–242. [Google Scholar]
- Yu, C.K.H.; Papageorghiou, A.T.; Parra, M.; Palma Dias, R.; Nicolaides, K.H. Randomized controlled trial using low-dose aspirin in the prevention of pre-eclampsia in women with abnormal uterine artery Doppler at 23 weeks’ gestation. Ultrasound Obstet. Gynecol. 2003, 22, 233–239. [Google Scholar] [CrossRef]
- Zimmermann, P.; Eiriö, V.; Koskinen, J.; Niemi, K.; Nyman, R.; Kujansuu, E.; Ranta, T. Effect of low-dose aspirin treatment on vascular resistance in the uterine, uteroplacental, renal and umbilical arteries—A prospective longitudinal study on a high risk population with persistent notch in the uterine arteries. Eur. J. Ultrasound 1997, 5, 17–30. Available online: https://www.embase.com/search/results?subaction=viewrecord&id=L27096629&from=export (accessed on 3 December 2024). [CrossRef]
- Choi, Y.J.; Shin, S. Aspirin Prophylaxis During Pregnancy: A Systematic Review and Meta-Analysis. Am. J. Prev. Med. 2021, 61, e31–e45. [Google Scholar] [CrossRef]
- Espinoza, J.; Vidaeff, A.; Pettker, C.M.; Shiman, H. ACOG Committee Opinion No. 202. ACOG. Obstet. Gynecol. 2019, 133, 1. [Google Scholar]
- Mirabito Colafella, K.M.; Neuman, R.I.; Visser, W.; Danser, A.H.J.; Versmissen, J. Aspirin for the prevention and treatment of pre-eclampsia: A matter of COX-1 and/or COX-2 inhibition? Basic Clin. Pharmacol. Toxicol. 2020, 127, 132–141. [Google Scholar] [CrossRef] [PubMed]
- LeFevre, M.L. Low-Dose Aspirin Use for the Prevention of Morbidity and Mortality From Preeclampsia: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2014, 161, 819. [Google Scholar] [CrossRef] [PubMed]
- Porter, F.T.; Gyamfi-Bannerman, C.; Manuk, T. ACOG Committee Opinion No. 743: Low-Dose Aspirin Use During Pregnancy. Obstet. Gynecol. 2018, 132, e44–e52. [Google Scholar]
- Rolnik, D.L.; Nicolaides, K.H.; Poon, L.C. Prevention of preeclampsia with aspirin. Am. J. Obstet. Gynecol. 2022, 226, S1108–S1119. [Google Scholar] [CrossRef]
- Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.; Doubeni, C.A.; Kubik, M.; Li, L.; et al. Aspirin Use to Prevent Preeclampsia and Related Morbidity and Mortality. JAMA 2021, 326, 1186. [Google Scholar]
Author (Year) | Study Site | Population | No. of Analyzed Patients (I/C), Completion % | Aspirin Dosage and Administration Period | Control | Outcomes |
---|---|---|---|---|---|---|
Aspirin Initiation Before 20 Weeks | ||||||
Abdali 2013 [20] | Iran | high risk for PE or for gestational hypertension | 32/32 100% | 100 mg/day (12–16 w)–32 w | Placebo | PE, IUGR, PTD |
Abdi 2020 [21] | Iran | high risk for PE | 43/43 96% | 80 mg/day (12–15 w)–36 w | Placebo | PE, IUGR, PTD, GA, BW |
Andrade 2021 [22] | Portugal | moderate to high risk for PE | 139/138 90% | 100 mg/day (11–14 w)–34 w | Placebo | PE |
Benigni 1989 [23] | Italy | high risk for PE | 17/16 100% | 60 mg/day 12 w–until delivery | Placebo | PD, GA, BW, PND |
Beroyz 1994 [24] | Multicentric | high risk for PE | 4659/4650 99% | 60 mg/day 12–32 w–until delivery | Placebo | PE, PTD, IUGR, PND, BW, GA, PA, NICA |
Blomqvist 2018 [25] | Sweden | habitual abortion in history | 200/200 100% | 75 mg/day (5–6 w)–36 w | Placebo | PE, IUGR, PTD, PND, NICA |
Caritis 1998 [26] | Multicentric | high risk for PE | 1254/1249 99% | 60 mg/day 13–26 w–until delivery | Placebo | PE |
Caspi 1994 [27] | Israel | high risk for PE | 24/23 100% | 100 mg/day 15–23 w–until delivery | Placebo | IUGR, PTD, BW, GA, PND, PA |
Chiaffarino 2004 [28] | Italy | high risk for PE | 16/19 88% | 100 mg/day <14 w–until delivery | No treatment | GA, BW |
Dasari 1998 [29] | India | moderate to high risk for PE | 25/25 100% | 100 mg/day 12 w–36 w | Placebo | GA, BW |
Davies 1995 [30] | United Kingdom | moderate to high risk for PE | 58/60 97% | 75 mg/day 18 w–until delivery | Placebo | PE, IUGR, BW, GA, PA, PND, NICA |
Ebrashy 2015 [31] | Egypt | high risk for PE or IUGR and abnormal uterine flow | 74/65 98% | 75 mg/day 14–16 w–37 w | No treatment | PE, IUGR, PTD, BW |
Gallery 1997 [32] | Australia | high risk for PE | 58/50 100% | 100 mg/day 17–19 w–until 2 weeks prior to planned delivery | Placebo | PTD, PND |
Golding 1998 [33] | Jamaica | moderate to high risk for PE | 3023/3026 97% | 60 mg/day 12–32 w–until delivery | Placebo | PE, PTD, BW, PND, NICA |
Gu 2020 [retracted] † | China | high risk for PE | 272/278/ 271/284 95% | 25 mg/50 mg/75 mg/day 12 w–until delivery | Placebo | PE, IUGR, PTD, PA |
Haapsamo 2010 [34] | Finland | high risk for PE | 52/55 22% | 100 mg/day from the day of gonadotropin stimulation–until delivery | Placebo | PE, IUGR, BW, GA |
Herabutya 1996 [35] | Thailand | moderate to high risk for PE | 651/697 90% | 60 mg/day 18–24 w–no data | Placebo | PE |
Hermida 1997 [36] | Spain | high risk for PE | 50/50 100% | 100 mg/day 12–16 w–until delivery | Placebo | PE, IUGR, PTD, BW, GA |
Hoffman 2020 [37] | Multicentric | moderate to high risk for PE | 5787/5771 97% | 81 mg/day 6–13 w–37 w | Placebo | PE, PTD, BW, GA |
Huai 2021 [38] | China | low to high risk for PE | 139/144 100% | 100 mg/day 12–20 w–until delivery | Placebo | PE, PTD, PA, IUGR |
Kaandorp 2010 [39] | Netherlands | low to high risk for PE | 99/103 84% | 80 mg/day 0–6 w–36 w | Placebo | PE, IUGR, PTD, GA, PA, PND |
Khazardoost 2013 [40] | Iran | low to high risk for PE | 65/68 95% | 80 mg/day 15–18 w–32 w | No treatment | PE, IUGR, PTD, PND, NICA |
Lambers 2009 [41] | Netherlands | high risk for PE | 28/26 100% | 100 mg/day preconceptional–until 12 w | Placebo | PE, PTD, IUGR |
Landman 2022 [42] | Netherlands | high risk for PE | 194/193 95% | 80 mg/day 8–16 w–until delivery | Placebo | PTD, GA, BW, IUGR |
Leslie 1995 [43] | Australia | high risk for PE | 54/50 90% | 100 mg/day 17–19 w–until 2 weeks prior to planned delivery | Placebo | BW, GA, PND, NICA |
Lin 2021 [44] | China | high risk for PE | 464/434 91% | 100 mg/day 12–20 w–until 32 w | No treatment | PE, IUGR, PTD, BW, GA, PA, PND, NICA |
Liu 2016 [45] | China | high risk for PE | 50/48 92% | 100 mg/day 12 w–until delivery | Placebo | PE, GA |
Liu 2017 [46] | China | high risk for PE | 60/58/56/50 100% | 50 mg, 75 mg and100 mg/day 16 w–until delivery | Placebo | PE, GA, PA, PND |
Louden 1992 [47] | United Kingdom | moderate to high risk for PE | 10/8 100% | 60 mg/day 16 w–until delivery | Placebo | IUGR, BW, GA |
Mone 2018 [48] | Ireland | moderate risk for PE | 179/183 100% | 75 mg/day 11–14 w–until delivery | No treatment | PE, PTD, PND, NICA |
Morris 1996 [49] | Australia | high risk for PE | 52/50 98% | 100 mg/day 17–19 w–until delivery | Placebo | PE, IUGR, PTD, BW |
Odibo 2015 [50] | USA | high risk for PE | 16/14 57% | 81 mg/day 11–14 w–until 37 w | Placebo | PE, IUGR |
Pattison 2000 [51] | New Zealand | high risk for PE | 20/20 100% | 75 mg/day 4–13 w–until delivery | Placebo | IUGR, PTD, BW, NICA |
Rolnik 2017 [52] | Multicentric | high risk for PE | 798/822 (91%) | 150 mg/day 11–14 w–36 w | Placebo | PE, IUGR, PTD, PA, PND, NICA |
Rotchell 1998 [53] | Barbados | low to high risk for PE | 1834/1841 (99,8%) | 75 mg/day 12–32 w–until delivery | Placebo | PE, BW, GA, PA, PND, NICA |
Scazzoccio 2017 [54] | Spain | high risk for PE | 80/75 (83%) | 150 mg/day 11–14 w–28 w | Placebo | PE, IUGR, BW, GA |
Sibai 1993 [55] | USA | moderate to high risk for PE | 1485/1500 (95%) | 60 mg/day 13–25 w–until delivery | Placebo | PE, IUGR, BW, GA, PND, NICA |
Stanescu 2018 [56] | Romania | high risk for PE and fetal growth restriction | 100/50 (100%) | 150 mg/day at average of 12.4 w–until 32 w and 36 w | Placebo | PE, IUGR |
Subtil 2003 [57,58] | France | moderate to high risk for PE | 1634/1640 (99%) | 100 mg/day 14–21 w–34 w | Placebo | PE, IUGR, BW, GA, PA, PND, NICA |
Trudinger 1988 [59] | Australia | high risk for PE | 14/20 (100%) | 150 mg/day 18–36 w–until delivery | Placebo | BW, GA, PND, NICA |
Tulppala 1997 [60] | Finland | low to high risk for PE | 23/23 (53%) | 50 mg/day 5–22 w–w34 | Placebo | PE, IUGR, BW, GA |
Vainio 2002 [61] | Finland | high risk for PE | 43/43 (96%) | 0,5 mg/kg/day 12–14 w–until delivery | Placebo | PE, IUGR, BW, GA |
Viinikka 1993 [62] | Finland | high risk for PE | 97/100 (95%) | 50 mg/day 12–18 w–until delivery | Placebo | PE, IUGR, BW, GA, PND, NICA |
Villa 2012 [63] | Finland | moderate to high risk for PE | 61/60 (80%) | 100 mg/day 12–14 w–until 35 w | Placebo | PE, IUGR |
Aspirin Initiation After 20 Weeks | ||||||
Byaruhanga 1998 [64] | Zimbabwe | high risk for PE | 113/117 92% | 75 mg/day 20–28 w–38 w | Placebo | PE, IUGR, PTD, GA, BW, PA, PND, NICA |
Grab 2000 [65] | Germany | high risk for PE | 22/21 100% | 100 mg/day 20 w–until delivery | Placebo | PE, BW, GA |
Harrington 2000 [66] | United Kingdom | high risk for PE | 107/103 100% | 100 mg/day 24–26 w–37 w | No treatment | PE, IUGR, BW, GA, PA, NICA, PND |
Hauth 1993 [67] | United States | moderate to high risk for PE | 302/302 99% | 60 mg/day 24 w–until delivery | Placebo | PE, IUGR, PTD, PND, BW |
Kyle 1995 [68] | United Kingdom | moderate to high risk for PE | 44/36 100% | 60 mg/day 27–29 w–32 w | Placebo | PE, BW, GA, PND |
McCowan 1999 [69] | New Zealand | high risk for IUGR | 32/33 100% | 100 mg/day 24–36 w–until delivery | Placebo | PE, IUGR, BW, GA, PND, NICA |
McParland 1990 [70] | United Kingdom | high risk for PE | 52/48 94% | 75 mg/day 24 w–until delivery | Placebo | PE, BW, GA, PND |
Schiff 1989 [71] | Israel | high risk for PE | 34/31 (100%) | 100 mg/day 28–29 w–until 10 days prior to estimated delivery | Placebo | PE, IUGR, PTD, BW, GA, PND, NICA |
Schiff 1990 [72] | Israel | high risk for PE | 23/24 (100%) | 100 mg/day 30–36 w–until 5 days prior to estimated delivery | Placebo | PE, BW, GA |
Schröcksnadel 1992 [73] | Germany | moderate to high risk for PE | 22/19 (100%) | 80 mg/day 28–32 w–until 37 w | Placebo | PE, IUGR, PTD, BW, GA, PND, NICA |
Taherian 2002 [74] | Iran | moderate to high risk for PE | 330/330 (100%) | 75 mg/day 20 w–until delivery | No treatment | PE, IUGR, PTD, BW, PND |
Wallenburg 1986 [75] | Netherlands | high risk for PE | 21/23 (96%) | 60 mg/day 28 w–until delivery | Placebo | PE, IUGR, BW |
Wang 1996 [76] | China | high risk for IUGR | 40/44 (100%) | 100 mg/day 28–30 w–until 34 w | Placebo | IUGR, PTD, BW, GA, PND |
Yu 2003 [77] | Multicentric | high risk for PE | 276/278 (99%) | 150 mg/day 22–24 w–until 36 w | Placebo | PE, IUGR, PTD, PA, PND, NICA |
Zimmermann 1996 [78] | Finland | high risk for hypertensive disorders of pregnancy or IUGR | 13/13 (100%) | 50 mg/day 22–24 w–until 38 w | No treatment | PE, IUGR, PTD, BW, GA, PA, PND |
Outcome | No. of Studies/Participants | RR or MD (95% CI) | Certainty of Evidence |
---|---|---|---|
Overall | |||
Preeclampsia | 47/48,080 | 0.67 (0.53 to 0.85) | High |
IUGR (10%) | 26/12,172 | 0.90 (0.83 to 1.00) | High |
IUGR (5%) | 7/2870 | 0.84 (0.70 to 1.00) | High |
IUGR (3%) | 5/14,031 | 0.99 (0.66 to 1.47) | High |
Preterm birth | 29/33,933 | 0.82 (0.65 to 1.03) | High |
Gestational age at delivery (weeks) | 31/23,095 | 0.26 (0.05 to 0.46) | High |
Actual birth weight (grams) | 34/27,178 | 27.56 (5.09 to 50.04) | High |
Placental abruption | 14/20,698 | 1.13 (0.91 to 1.40) | High |
NIC admission | 23/31,009 | 0.96 (0.86 to 1.06) | High |
Perinatal death | 36/42,778 | 0.86 (0.77 to 0.96) | High |
Postpartum hemorrhage | 15/38,311 | 1.13 (0.95 to 1.34) | High |
Aspirin started <20 weeks | |||
Preeclampsia | 31/28,318 | 0.63 (0.47 to 0.84) | High |
IUGR (10%) | 19/8250 | 0.92 (0.82 to 1.04) | High |
IUGR (5%) | 5/2161 | 0.88 (0.68 to 1.15) | High |
IUGR (3%) | 3/9099 | 1.00 (0.56 to 1.77) | High |
Preterm birth | 20/26,190 | 0.83 (0.60 to 1.14) | High |
Gestational age at delivery (weeks) | 16/2800 | 0.19 (0.04 to 0.35) | High |
Actual birth weight (grams) | 16/2786 | 62.88 (3.75 to 122.00) | High |
Perinatal death | 20/26,511 | 0.82 (0.72 to 0.93) | High |
Aspirin started >20 weeks | |||
Preeclampsia | 12/4348 | 0.67 (0.35 to 1.28) | High |
IUGR (10%) | 5/804 | 0.95 (0.65 to 1.37) | High |
Preterm birth | 8/4097 | 0.79 (0.70 to 0.91) | High |
Gestational age at delivery (weeks) | 9/772 | 0.25 (−0.38 to 0.87) | High |
Actual birth weight (grams) | 9/1317 | 42.37 (−15.96 to 100.70) | High |
Perinatal death | 12/4548 | 0.68 (0.48 to 0.98) | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komoróczy, B.; Váncsa, S.; Váradi, A.; Hegyi, P.; Vágási, V.; Baradács, I.; Szabó, A.; Nyirády, P.; Benkő, Z.; Ács, N. Optimal Aspirin Dosage for the Prevention of Preeclampsia and Other Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2025, 14, 2134. https://doi.org/10.3390/jcm14072134
Komoróczy B, Váncsa S, Váradi A, Hegyi P, Vágási V, Baradács I, Szabó A, Nyirády P, Benkő Z, Ács N. Optimal Aspirin Dosage for the Prevention of Preeclampsia and Other Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Medicine. 2025; 14(7):2134. https://doi.org/10.3390/jcm14072134
Chicago/Turabian StyleKomoróczy, Balázs, Szilárd Váncsa, Alex Váradi, Péter Hegyi, Veronika Vágási, István Baradács, Anett Szabó, Péter Nyirády, Zsófia Benkő, and Nándor Ács. 2025. "Optimal Aspirin Dosage for the Prevention of Preeclampsia and Other Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Journal of Clinical Medicine 14, no. 7: 2134. https://doi.org/10.3390/jcm14072134
APA StyleKomoróczy, B., Váncsa, S., Váradi, A., Hegyi, P., Vágási, V., Baradács, I., Szabó, A., Nyirády, P., Benkő, Z., & Ács, N. (2025). Optimal Aspirin Dosage for the Prevention of Preeclampsia and Other Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Journal of Clinical Medicine, 14(7), 2134. https://doi.org/10.3390/jcm14072134