Predicting the Need for Intensive Care Unit Treatment After Successful Transcatheter Edge-to-Edge Mitral Valve Repair
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Clinical Cohort Characteristics
3.2. Indications for Further ICU Treatment
3.3. Long-Term Outcomes
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CAB | Coronary artery bypass |
CAD | Coronary artery disease |
COPD | Chronic obstructive pulmonary disease |
CRT | Cardiac resynchronization therapy |
GFR | Glomerular filtration rate |
Hb | Hemoglobin |
ICU | Intensive care unit |
ICD | Implantable cardioverter-defibrillator |
LVEDD | Left ventricular end diastolic diameter |
LVEF | Left ventricular ejection fraction |
MACCE | Major adverse cardiovascular and cerebrovascular events |
MR | Mitral valve regurgitation |
M-TEER | Transcatheter edge-to-edge mitral valve repair |
MVARC | Mitral Valve Academic Research Consortium |
NYHA | New York Heart Association |
PAD | Peripheral arterial disease |
PCI | Percutaneous coronary intervention |
PCWP | Pulmonary capillary wedge pressure |
RAS | Renin angiotensin system |
PASP | Pulmonary artery systolic pressure |
TAPSE | Tricuspid annular plane systolic excursion |
TOE | Transesophageal echocardiography |
TR | Tricuspid valve regurgitation |
References
- Feldman, T.; Wasserman, H.S.; Herrmann, H.C.; Gray, W.; Block, P.C.; Whitlow, P.; St. Goar, F.; Rodriguez, L.; Silvestry, F.; Schwartz, A.; et al. Percutaneous Mitral Valve Repair Using the Edge-to-Edge Technique. J. Am. Coll. Cardiol. 2005, 46, 2134–2140. [Google Scholar] [CrossRef] [PubMed]
- Fann, J.I.; St Goar, F.G.; Komtebedde, J.; Oz, M.C.; Block, P.C.; Foster, E.; Butany, J.; Feldman, T.; Burdon, T.A. Beating heart catheter-based edge-to-edge mitral valve procedure in a porcine model: Efficacy and healing response. Circulation 2004, 110, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Enriquez-Sarano, M.; Schaff, H.V.; Orszulak, T.A.; Tajik, A.J.; Bailey, K.R.; Frye, R.L. Valve repair improves the outcome of surgery for mitral regurgitation. A multivariate analysis. Circulation 1995, 91, 1022–1028. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; de Bonis, M.; de Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Giustino, G.; Camaj, A.; Kapadia, S.R.; Kar, S.; Abraham, W.T.; Lindenfeld, J.; Lim, D.S.; Grayburn, P.A.; Cohen, D.J.; Redfors, B.; et al. Hospitalizations and Mortality in Patients With Secondary Mitral Regurgitation and Heart Failure: The COAPT Trial. J. Am. Coll. Cardiol. 2022, 80, 1857–1868. [Google Scholar] [CrossRef] [PubMed]
- Feldman, T.; Kar, S.; Elmariah, S.; Smart, S.C.; Trento, A.; Siegel, R.J.; Apruzzese, P.; Fail, P.; Rinaldi, M.J.; Smalling, R.W.; et al. Randomized Comparison of Percutaneous Repair and Surgery for Mitral Regurgitation: 5-Year Results of EVEREST II. J. Am. Coll. Cardiol. 2015, 66, 2844–2854. [Google Scholar] [CrossRef]
- Boekstegers, P.; Hausleiter, J.; Baldus, S.; von Bardeleben, R.S.; Beucher, H.; Butter, C.; Franzen, O.; Hoffmann, R.; Ince, H.; Kuck, K.H.; et al. Percutaneous interventional mitral regurgitation treatment using the Mitra-Clip system. Clin. Res. Cardiol. 2014, 103, 85–96. [Google Scholar] [CrossRef]
- Gröger, M.; Felbel, D.; Paukovitsch, M.; Schneider, L.M.; Markovic, S.; Rottbauer, W.; Keßler, M. Valve unit instead of intensive or intermediate care unit admission following transcatheter edge-to-edge mitral valve repair is safe and reduces postprocedural complications. Clin. Res. Cardiol. 2024. [Google Scholar] [CrossRef]
- Tamburino, C.; Ussia, G.P.; Maisano, F.; Capodanno, D.; La Canna, G.; Scandura, S.; Colombo, A.; Giacomini, A.; Michev, I.; Mangiafico, S.; et al. Percutaneous mitral valve repair with the MitraClip system: Acute results from a real world setting. Eur. Heart J. 2010, 31, 1382–1389. [Google Scholar] [CrossRef]
- Mack, M.J.; Abraham, W.T.; Lindenfeld, J.; Bolling, S.F.; Feldman, T.E.; Grayburn, P.A.; Kapadia, S.R.; McCarthy, P.M.; Lim, D.S.; Udelson, J.E.; et al. Cardiovascular Outcomes Assessment of the MitraClip in Patients with Heart Failure and Secondary Mitral Regurgitation: Design and rationale of the COAPT trial. Am. Heart J. 2018, 205, 1–11. [Google Scholar] [CrossRef]
- Di Prima, A.L.; Covello, D.R.; Franco, A.; Gerli, C.; Lembo, R.; Denti, P.; Godino, C.; Taramasso, M.; Maisano, F.; Pappalardo, F. Do patients undergoing MitraClip implantation require routine ICU admission? J. Cardiothorac. Vasc. Anesth. 2014, 28, 1479–1483. [Google Scholar] [CrossRef]
- Young, M.N.; Kearing, S.; Albaghdadi, M.A.; Latib, A.; Iribarne, A. Trends in Transcatheter vs Surgical Mitral Valve Repair Among Medicare Beneficiaries, 2012 to 2019. JAMA Cardiol. 2022, 7, 770–772. [Google Scholar] [CrossRef] [PubMed]
- Obadia, J.-F.; Messika-Zeitoun, D.; Leurent, G.; Iung, B.; Bonnet, G.; Piriou, N.; Lefèvre, T.; Piot, C.; Rouleau, F.; Carrié, D.; et al. Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation. N. Engl. J. Med. 2018, 379, 2297–2306. [Google Scholar] [CrossRef]
- Webb, J.G.; Hensey, M.; Szerlip, M.; Schäfer, U.; Cohen, G.N.; Kar, S.; Makkar, R.; Kipperman, R.M.; Spargias, K.; O’Neill, W.W.; et al. 1-Year Outcomes for Transcatheter Repair in Patients With Mitral Regurgitation From the CLASP Study. JACC Cardiovasc. Interv. 2020, 13, 2344–2357. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Adams, D.H.; Abraham, W.T.; Kappetein, A.P.; Généreux, P.; Vranckx, P.; Mehran, R.; Kuck, K.-H.; Leon, M.B.; Piazza, N.; et al. Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement: Part 2: Endpoint Definitions: A Consensus Document From the Mitral Valve Academic Research Consortium. J. Am. Coll. Cardiol. 2015, 66, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Hausleiter, J.; Stocker, T.J.; Adamo, M.; Karam, N.; Swaans, M.J.; Praz, F. Mitral valve transcatheter edge-to-edge repair. EuroIntervention 2023, 18, 957. [Google Scholar] [CrossRef]
- Hahn, R.T.; Mahmood, F.; Kodali, S.; Lang, R.; Monaghan, M.; Gillam, L.D.; Swaminathan, M.; Bonow, R.O.; von Bardeleben, R.S.; Bax, J.J.; et al. Core Competencies in Echocardiography for Imaging Structural Heart Disease Interventions: An Expert Consensus Statement. JACC Cardiovasc. Imaging 2019, 12, 2560–2570. [Google Scholar] [CrossRef]
- Agricola, E.; Ancona, F.; Brochet, E.; Donal, E.; Dweck, M.; Faletra, F.; Lancellotti, P.; Mahmoud-Elsayed, H.; Marsan, N.A.; Maurovich-Hovart, P.; et al. The structural heart disease interventional imager rationale, skills and training: A position paper of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 471–479. [Google Scholar] [CrossRef]
- Teufel, T.; Steinberg, D.H.; Wunderlich, N.; Doss, M.; Fichtlscherer, S.; Ledwoch, J.; Herholz, T.; Hofmann, I.; Sievert, H. Percutaneous mitral valve repair with the MitraClip® system under deep sedation and local anaesthesia. EuroIntervention 2012, 8, 587–590. [Google Scholar] [CrossRef]
- Ussia, G.P.; Barbanti, M.; Tamburino, C. Feasibility of percutaneous transcatheter mitral valve repair with the MitraClip® system using conscious sedation. Catheter. Cardiovasc. Interv. 2010, 75, 1137–1140. [Google Scholar] [CrossRef]
- Raposeiras-Roubin, S.; Adamo, M.; Freixa, X.; Arzamendi, D.; Benito-González, T.; Montefusco, A.; Pascual, I.; Nombela-Franco, L.; Rodes-Cabau, J.; Shuvy, M.; et al. A Score to Assess Mortality After Percutaneous Mitral Valve Repair. J. Am. Coll. Cardiol. 2022, 79, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Nashef, S.A.M.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardiothorac. Surg. 2012, 41, 734–744, discussion 744-5. [Google Scholar] [CrossRef] [PubMed]
- Hemmann, K.; Sirotina, M.; de Rosa, S.; Ehrlich, J.R.; Fox, H.; Weber, J.; Moritz, A.; Zeiher, A.M.; Hofmann, I.; Schächinger, V.; et al. The STS score is the strongest predictor of long-term survival following transcatheter aortic valve implantation, whereas access route (transapical versus transfemoral) has no predictive value beyond the periprocedural phase. Interact. Cardiovasc. Thorac. Surg. 2013, 17, 359–364. [Google Scholar] [CrossRef]
- Lombardi, C.; Peveri, G.; Cani, D.; Latta, F.; Bonelli, A.; Tomasoni, D.; Sbolli, M.; Ravera, A.; Carubelli, V.; Saccani, N.; et al. In-hospital and long-term mortality for acute heart failure: Analysis at the time of admission to the emergency department. ESC Heart Fail. 2020, 7, 2650–2661. [Google Scholar] [CrossRef]
- Ausbuettel, F.; Barth, S.; Chatzis, G.; Sassani, K.; Fischer, D.; Weyand, S.; Mueller, J.; Schuett, H.; Schieffer, B.; Luesebrink, U.; et al. Sex-Specific Disparities in Outcomes of Transcatheter Edge-to-Edge Repair for Mitral Regurgitation: A Multicenter “Real-World” Analysis. J. Clin. Med. 2023, 12, 7231. [Google Scholar] [CrossRef]
- Savarese, G.; von Haehling, S.; Butler, J.; Cleland, J.G.F.; Ponikowski, P.; Anker, S.D. Iron deficiency and cardiovascular disease. Eur. Heart J. 2023, 44, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Segall, L.; Nistor, I.; Covic, A. Heart failure in patients with chronic kidney disease: A systematic integrative review. Biomed. Res. Int. 2014, 2014, 937398. [Google Scholar] [CrossRef]
- Bansal, N.; Zelnick, L.R.; Scherzer, R.; Estrella, M.; Shlipak, M.G. Risk Factors and Outcomes Associated With Heart Failure with Preserved and Reduced Ejection Fraction in People with Chronic Kidney Disease. Circ. Heart Fail. 2024, 17, e011173. [Google Scholar] [CrossRef]
- Yucel, E.; Al-Bawardy, R.; Bertrand, P.B. Pulmonary Hypertension in Patients Eligible for Transcatheter Mitral Valve Repair: Prognostic Impact and Clinical Implications. Curr. Treat. Options Cardiovasc. Med. 2019, 21, 60. [Google Scholar] [CrossRef]
- Wundram, S.; Seoudy, H.; Dümmler, J.C.; Ritter, L.; Frank, J.; Puehler, T.; Lutter, G.; Lutz, M.; Saad, M.; Bramlage, P.; et al. Is the outcome of elective vs non-elective patients undergoing transcatheter aortic valve implantation different? Results of a single-centre, observational assessment of outcomes at a large university clinic. BMC Cardiovasc. Disord. 2023, 23, 295. [Google Scholar] [CrossRef]
- Alkhouli, M.; Alqahtani, F.; Bhatt, D.L.; Mathew, V. Outcomes and resource utilization for nonelective versus elective transcatheter mitral valve repair. Am. J. Cardiol. 2019, 123, 1889–1891. [Google Scholar] [PubMed]
Variable |
Overall Cohort (n = 183) |
No Indication for ICU (n = 121) |
Indication for ICU (n = 62) | p-Value |
---|---|---|---|---|
Clinical cohort characteristics | ||||
Age (years) | 79 ± 7 | 79 ± 6 | 79 ± 7 | 0.9 |
Male sex | 57.4% (105) | 56.2% (68) | 59.7% (37) | 0.8 |
BMI (kg/m2) | 27 ± 5 | 27 ± 5 | 27 ± 4 | 0.6 |
EuroSCORE II (%) * | 7.5 ± 12 | 6.4 ± 7 | 15.3 ± 25.2 | <0.001 |
STS risk score (%) * | 6.4 ± 6.3 | 5.6 ± 5 | 9.2 ± 17.1 | <0.001 |
MitraScore | 3.6 ± 1.4 | 3.2 ± 1.4 | 4.2 ± 1.2 | <0.001 |
COPD | 24% (44) | 22.3% (27) | 27.4% (17) | 0.5 |
CAD | 73.8% (135) | 71.1% (86) | 79% (49) | 0.3 |
Pacemaker Prior CRT + ICD | 29.5% (54) 10.4% (19) 20.2% (37) | 28.9% (35) 13.2% (16) 20.6% (25) | 30.6% (19) 20.9% (13) 19.4% (12) | 0.9 0.3 0.08 |
Diabetes mellitus | 33.9% (62) | 33.1% (40) | 35.5% (22) | 0.7 |
Arterial hypertension | 88.5% (162) | 87.6% (106) | 90.3% (56) | 0.8 |
Prior CAB-OP | 21.9% (40) | 19.8% (24) | 25.8% (16) | 0.4 |
Prior PCI | 47% (86) | 52.9% (64) | 67.7% (42) | 0.06 |
Previous stroke | 11.5% (21) | 13.2% (16) | 8.1% (5) | 0.3 |
Atrial fibrillation | 72.1% (132) | 71.1% (86) | 74.2% (46) | 0.7 |
PAD | 13.7% (25) | 10.7% (13) | 19.4% (12) | 0.1 |
NYHA III NYHA IV | 56.8% (104) 38.8% (71) | 62% (75) 31.4% (38) | 46.8% (29) 53.2% (33) | 0.06 0.006 |
NTproBNP (pg/mL) * | 2756 ± 5319 | 2531 ± 4532 | 4158 ± 6502 | 0.02 |
GFR (mL/min) | 46 ± 20 | 48 ± 21 | 42 ± 19 | 0.1 |
High-dose diuretics | 44.8% (82) | 38.8% (47) | 56.5% (35) | 0.04 |
No RAS inhibitor therapy | 20.8% (38) | 13.2% (16) | 35.5% (22) | <0.001 |
Periprocedural data | ||||
Procedure duration (min) | 96 ± 38 | 90 ± 34 | 107 ± 42 | 0.009 |
General anesthesia | 4.4% (8) | 0% (0) | 12.9% (8) | <0.001 |
Peri-interventional MR reduction (carpentier grade) | Δ2.1 ± 0.5 | Δ2.1 ± 0.5 | Δ2.0 ± 0.6 | 0.5 |
Length of postinterventional hospital stay (d) | 7 (3) | 6 (3) | 8 (8) | <0.001 |
MACCE Bleeding ≥ MVARC class II Cardiac death | 12.6% (23) 8.7% (16) 2.7% (5) | 0% (0) 0% (0) 0% (0) | 37.1% (23) 25.8% (16) 9.3% (5) | <0.001 <0.001 0.004 |
Echocardiographic characteristics | ||||
TR grade III | 22.4% (41) | 18.2% (22) | 30.6% (19) | 0.06 |
LVEF (%) | 44 ± 12 | 45 ± 12 | 42 ± 13 | 0.07 |
Functional MR etiology | 67.2% (123) | 66.1% (80) | 69.4% (43) | 0.5 |
LA diameter (mm) | 47 ± 10 | 46 ± 10 | 48 ± 10 | 0.4 |
LVEDD (mm) | 56 ± 8 | 55 ± 8 | 57 ± 9 | 0.07 |
TAPSE (mm) | 18 ± 4 | 18 ± 4 | 17 ± 4 | 0.2 |
TAPSE/PASP ratio | 0.45 ± 0.18 | 0.46 ± 0.15 | 0.43 ± 0.23 | 0.5 |
Non-invasive PASP (mmHg) | 43 ± 13 | 42 ± 12 | 45 ± 14 | 0.2 |
Invasive PASP (mmHg) | 60 ± 18 | 55 ± 16 | 72 ± 18 | <0.001 |
Variable | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
EuroSCORE II >10% | 2.6 | 1.3–5.4 | 0.006 |
MitraScore >3 | 2.5 | 1.2–5.2 | 0.02 |
Hospital stay before M-TEER >5 days | 3.2 | 1.6–6.4 | <0.001 |
Variable | Hazard Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
ICD | 2.2 | 1.4–3.7 | 0.002 |
High-grade TR | 4.2 | 2.1–8.2 | <0.001 |
TAPSE/PASP ratio > 0.5 | 0.3 | 0.1–0.7 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausbuettel, F.; Fischer, D.; Kano, F.; Patsalis, N.; Fichera, C.; Divchev, D.; Fichera, C.-F. Predicting the Need for Intensive Care Unit Treatment After Successful Transcatheter Edge-to-Edge Mitral Valve Repair. J. Clin. Med. 2025, 14, 2167. https://doi.org/10.3390/jcm14072167
Ausbuettel F, Fischer D, Kano F, Patsalis N, Fichera C, Divchev D, Fichera C-F. Predicting the Need for Intensive Care Unit Treatment After Successful Transcatheter Edge-to-Edge Mitral Valve Repair. Journal of Clinical Medicine. 2025; 14(7):2167. https://doi.org/10.3390/jcm14072167
Chicago/Turabian StyleAusbuettel, Felix, Dieter Fischer, Fares Kano, Nikolaos Patsalis, Christin Fichera, Dimitar Divchev, and Carlo-Federico Fichera. 2025. "Predicting the Need for Intensive Care Unit Treatment After Successful Transcatheter Edge-to-Edge Mitral Valve Repair" Journal of Clinical Medicine 14, no. 7: 2167. https://doi.org/10.3390/jcm14072167
APA StyleAusbuettel, F., Fischer, D., Kano, F., Patsalis, N., Fichera, C., Divchev, D., & Fichera, C.-F. (2025). Predicting the Need for Intensive Care Unit Treatment After Successful Transcatheter Edge-to-Edge Mitral Valve Repair. Journal of Clinical Medicine, 14(7), 2167. https://doi.org/10.3390/jcm14072167